-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Permalink
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Join GitHub today
-GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.
- Sign up -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- executable file
-
- 6888 lines (6259 sloc)
-
- 170 KB
-
-
-
-
-
-
-
-
-
- | - | /** | -
| - | * @fileoverview gl-matrix - High performance matrix and vector operations | -
| - | * @author Brandon Jones | -
| - | * @author Colin MacKenzie IV | -
| - | * @version 2.4.0 | -
| - | */ | -
| - | - | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | (function webpackUniversalModuleDefinition(root, factory) { | -
| - | if(typeof exports === 'object' && typeof module === 'object') | -
| - | module.exports = factory(); | -
| - | else if(typeof define === 'function' && define.amd) | -
| - | define([], factory); | -
| - | else { | -
| - | var a = factory(); | -
| - | for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i]; | -
| - | } | -
| - | })(this, function() { | -
| - | return /******/ (function(modules) { // webpackBootstrap | -
| - | /******/ // The module cache | -
| - | /******/ var installedModules = {}; | -
| - | /******/ | -
| - | /******/ // The require function | -
| - | /******/ function __webpack_require__(moduleId) { | -
| - | /******/ | -
| - | /******/ // Check if module is in cache | -
| - | /******/ if(installedModules[moduleId]) { | -
| - | /******/ return installedModules[moduleId].exports; | -
| - | /******/ } | -
| - | /******/ // Create a new module (and put it into the cache) | -
| - | /******/ var module = installedModules[moduleId] = { | -
| - | /******/ i: moduleId, | -
| - | /******/ l: false, | -
| - | /******/ exports: {} | -
| - | /******/ }; | -
| - | /******/ | -
| - | /******/ // Execute the module function | -
| - | /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); | -
| - | /******/ | -
| - | /******/ // Flag the module as loaded | -
| - | /******/ module.l = true; | -
| - | /******/ | -
| - | /******/ // Return the exports of the module | -
| - | /******/ return module.exports; | -
| - | /******/ } | -
| - | /******/ | -
| - | /******/ | -
| - | /******/ // expose the modules object (__webpack_modules__) | -
| - | /******/ __webpack_require__.m = modules; | -
| - | /******/ | -
| - | /******/ // expose the module cache | -
| - | /******/ __webpack_require__.c = installedModules; | -
| - | /******/ | -
| - | /******/ // define getter function for harmony exports | -
| - | /******/ __webpack_require__.d = function(exports, name, getter) { | -
| - | /******/ if(!__webpack_require__.o(exports, name)) { | -
| - | /******/ Object.defineProperty(exports, name, { | -
| - | /******/ configurable: false, | -
| - | /******/ enumerable: true, | -
| - | /******/ get: getter | -
| - | /******/ }); | -
| - | /******/ } | -
| - | /******/ }; | -
| - | /******/ | -
| - | /******/ // getDefaultExport function for compatibility with non-harmony modules | -
| - | /******/ __webpack_require__.n = function(module) { | -
| - | /******/ var getter = module && module.__esModule ? | -
| - | /******/ function getDefault() { return module['default']; } : | -
| - | /******/ function getModuleExports() { return module; }; | -
| - | /******/ __webpack_require__.d(getter, 'a', getter); | -
| - | /******/ return getter; | -
| - | /******/ }; | -
| - | /******/ | -
| - | /******/ // Object.prototype.hasOwnProperty.call | -
| - | /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); }; | -
| - | /******/ | -
| - | /******/ // __webpack_public_path__ | -
| - | /******/ __webpack_require__.p = ""; | -
| - | /******/ | -
| - | /******/ // Load entry module and return exports | -
| - | /******/ return __webpack_require__(__webpack_require__.s = 4); | -
| - | /******/ }) | -
| - | /************************************************************************/ | -
| - | /******/ ([ | -
| - | /* 0 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.setMatrixArrayType = setMatrixArrayType; | -
| - | exports.toRadian = toRadian; | -
| - | exports.equals = equals; | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | /** | -
| - | * Common utilities | -
| - | * @module glMatrix | -
| - | */ | -
| - | - | -
| - | // Configuration Constants | -
| - | var EPSILON = exports.EPSILON = 0.000001; | -
| - | var ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array; | -
| - | var RANDOM = exports.RANDOM = Math.random; | -
| - | - | -
| - | /** | -
| - | * Sets the type of array used when creating new vectors and matrices | -
| - | * | -
| - | * @param {Type} type Array type, such as Float32Array or Array | -
| - | */ | -
| - | function setMatrixArrayType(type) { | -
| - | exports.ARRAY_TYPE = ARRAY_TYPE = type; | -
| - | } | -
| - | - | -
| - | var degree = Math.PI / 180; | -
| - | - | -
| - | /** | -
| - | * Convert Degree To Radian | -
| - | * | -
| - | * @param {Number} a Angle in Degrees | -
| - | */ | -
| - | function toRadian(a) { | -
| - | return a * degree; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Tests whether or not the arguments have approximately the same value, within an absolute | -
| - | * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less | -
| - | * than or equal to 1.0, and a relative tolerance is used for larger values) | -
| - | * | -
| - | * @param {Number} a The first number to test. | -
| - | * @param {Number} b The second number to test. | -
| - | * @returns {Boolean} True if the numbers are approximately equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b)); | -
| - | } | -
| - | - | -
| - | /***/ }), | -
| - | /* 1 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.sub = exports.mul = undefined; | -
| - | exports.create = create; | -
| - | exports.fromMat4 = fromMat4; | -
| - | exports.clone = clone; | -
| - | exports.copy = copy; | -
| - | exports.fromValues = fromValues; | -
| - | exports.set = set; | -
| - | exports.identity = identity; | -
| - | exports.transpose = transpose; | -
| - | exports.invert = invert; | -
| - | exports.adjoint = adjoint; | -
| - | exports.determinant = determinant; | -
| - | exports.multiply = multiply; | -
| - | exports.translate = translate; | -
| - | exports.rotate = rotate; | -
| - | exports.scale = scale; | -
| - | exports.fromTranslation = fromTranslation; | -
| - | exports.fromRotation = fromRotation; | -
| - | exports.fromScaling = fromScaling; | -
| - | exports.fromMat2d = fromMat2d; | -
| - | exports.fromQuat = fromQuat; | -
| - | exports.normalFromMat4 = normalFromMat4; | -
| - | exports.projection = projection; | -
| - | exports.str = str; | -
| - | exports.frob = frob; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.multiplyScalar = multiplyScalar; | -
| - | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 3x3 Matrix | -
| - | * @module mat3 | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new identity mat3 | -
| - | * | -
| - | * @returns {mat3} a new 3x3 matrix | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(9); | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 1; | -
| - | out[5] = 0; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copies the upper-left 3x3 values into the given mat3. | -
| - | * | -
| - | * @param {mat3} out the receiving 3x3 matrix | -
| - | * @param {mat4} a the source 4x4 matrix | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function fromMat4(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[4]; | -
| - | out[4] = a[5]; | -
| - | out[5] = a[6]; | -
| - | out[6] = a[8]; | -
| - | out[7] = a[9]; | -
| - | out[8] = a[10]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new mat3 initialized with values from an existing matrix | -
| - | * | -
| - | * @param {mat3} a matrix to clone | -
| - | * @returns {mat3} a new 3x3 matrix | -
| - | */ | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(9); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | out[6] = a[6]; | -
| - | out[7] = a[7]; | -
| - | out[8] = a[8]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one mat3 to another | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the source matrix | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | out[6] = a[6]; | -
| - | out[7] = a[7]; | -
| - | out[8] = a[8]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Create a new mat3 with the given values | -
| - | * | -
| - | * @param {Number} m00 Component in column 0, row 0 position (index 0) | -
| - | * @param {Number} m01 Component in column 0, row 1 position (index 1) | -
| - | * @param {Number} m02 Component in column 0, row 2 position (index 2) | -
| - | * @param {Number} m10 Component in column 1, row 0 position (index 3) | -
| - | * @param {Number} m11 Component in column 1, row 1 position (index 4) | -
| - | * @param {Number} m12 Component in column 1, row 2 position (index 5) | -
| - | * @param {Number} m20 Component in column 2, row 0 position (index 6) | -
| - | * @param {Number} m21 Component in column 2, row 1 position (index 7) | -
| - | * @param {Number} m22 Component in column 2, row 2 position (index 8) | -
| - | * @returns {mat3} A new mat3 | -
| - | */ | -
| - | function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) { | -
| - | var out = new glMatrix.ARRAY_TYPE(9); | -
| - | out[0] = m00; | -
| - | out[1] = m01; | -
| - | out[2] = m02; | -
| - | out[3] = m10; | -
| - | out[4] = m11; | -
| - | out[5] = m12; | -
| - | out[6] = m20; | -
| - | out[7] = m21; | -
| - | out[8] = m22; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a mat3 to the given values | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {Number} m00 Component in column 0, row 0 position (index 0) | -
| - | * @param {Number} m01 Component in column 0, row 1 position (index 1) | -
| - | * @param {Number} m02 Component in column 0, row 2 position (index 2) | -
| - | * @param {Number} m10 Component in column 1, row 0 position (index 3) | -
| - | * @param {Number} m11 Component in column 1, row 1 position (index 4) | -
| - | * @param {Number} m12 Component in column 1, row 2 position (index 5) | -
| - | * @param {Number} m20 Component in column 2, row 0 position (index 6) | -
| - | * @param {Number} m21 Component in column 2, row 1 position (index 7) | -
| - | * @param {Number} m22 Component in column 2, row 2 position (index 8) | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { | -
| - | out[0] = m00; | -
| - | out[1] = m01; | -
| - | out[2] = m02; | -
| - | out[3] = m10; | -
| - | out[4] = m11; | -
| - | out[5] = m12; | -
| - | out[6] = m20; | -
| - | out[7] = m21; | -
| - | out[8] = m22; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set a mat3 to the identity matrix | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function identity(out) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 1; | -
| - | out[5] = 0; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transpose the values of a mat3 | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the source matrix | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function transpose(out, a) { | -
| - | // If we are transposing ourselves we can skip a few steps but have to cache some values | -
| - | if (out === a) { | -
| - | var a01 = a[1], | -
| - | a02 = a[2], | -
| - | a12 = a[5]; | -
| - | out[1] = a[3]; | -
| - | out[2] = a[6]; | -
| - | out[3] = a01; | -
| - | out[5] = a[7]; | -
| - | out[6] = a02; | -
| - | out[7] = a12; | -
| - | } else { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[3]; | -
| - | out[2] = a[6]; | -
| - | out[3] = a[1]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[7]; | -
| - | out[6] = a[2]; | -
| - | out[7] = a[5]; | -
| - | out[8] = a[8]; | -
| - | } | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Inverts a mat3 | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the source matrix | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function invert(out, a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2]; | -
| - | var a10 = a[3], | -
| - | a11 = a[4], | -
| - | a12 = a[5]; | -
| - | var a20 = a[6], | -
| - | a21 = a[7], | -
| - | a22 = a[8]; | -
| - | - | -
| - | var b01 = a22 * a11 - a12 * a21; | -
| - | var b11 = -a22 * a10 + a12 * a20; | -
| - | var b21 = a21 * a10 - a11 * a20; | -
| - | - | -
| - | // Calculate the determinant | -
| - | var det = a00 * b01 + a01 * b11 + a02 * b21; | -
| - | - | -
| - | if (!det) { | -
| - | return null; | -
| - | } | -
| - | det = 1.0 / det; | -
| - | - | -
| - | out[0] = b01 * det; | -
| - | out[1] = (-a22 * a01 + a02 * a21) * det; | -
| - | out[2] = (a12 * a01 - a02 * a11) * det; | -
| - | out[3] = b11 * det; | -
| - | out[4] = (a22 * a00 - a02 * a20) * det; | -
| - | out[5] = (-a12 * a00 + a02 * a10) * det; | -
| - | out[6] = b21 * det; | -
| - | out[7] = (-a21 * a00 + a01 * a20) * det; | -
| - | out[8] = (a11 * a00 - a01 * a10) * det; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the adjugate of a mat3 | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the source matrix | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function adjoint(out, a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2]; | -
| - | var a10 = a[3], | -
| - | a11 = a[4], | -
| - | a12 = a[5]; | -
| - | var a20 = a[6], | -
| - | a21 = a[7], | -
| - | a22 = a[8]; | -
| - | - | -
| - | out[0] = a11 * a22 - a12 * a21; | -
| - | out[1] = a02 * a21 - a01 * a22; | -
| - | out[2] = a01 * a12 - a02 * a11; | -
| - | out[3] = a12 * a20 - a10 * a22; | -
| - | out[4] = a00 * a22 - a02 * a20; | -
| - | out[5] = a02 * a10 - a00 * a12; | -
| - | out[6] = a10 * a21 - a11 * a20; | -
| - | out[7] = a01 * a20 - a00 * a21; | -
| - | out[8] = a00 * a11 - a01 * a10; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the determinant of a mat3 | -
| - | * | -
| - | * @param {mat3} a the source matrix | -
| - | * @returns {Number} determinant of a | -
| - | */ | -
| - | function determinant(a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2]; | -
| - | var a10 = a[3], | -
| - | a11 = a[4], | -
| - | a12 = a[5]; | -
| - | var a20 = a[6], | -
| - | a21 = a[7], | -
| - | a22 = a[8]; | -
| - | - | -
| - | return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two mat3's | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the first operand | -
| - | * @param {mat3} b the second operand | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2]; | -
| - | var a10 = a[3], | -
| - | a11 = a[4], | -
| - | a12 = a[5]; | -
| - | var a20 = a[6], | -
| - | a21 = a[7], | -
| - | a22 = a[8]; | -
| - | - | -
| - | var b00 = b[0], | -
| - | b01 = b[1], | -
| - | b02 = b[2]; | -
| - | var b10 = b[3], | -
| - | b11 = b[4], | -
| - | b12 = b[5]; | -
| - | var b20 = b[6], | -
| - | b21 = b[7], | -
| - | b22 = b[8]; | -
| - | - | -
| - | out[0] = b00 * a00 + b01 * a10 + b02 * a20; | -
| - | out[1] = b00 * a01 + b01 * a11 + b02 * a21; | -
| - | out[2] = b00 * a02 + b01 * a12 + b02 * a22; | -
| - | - | -
| - | out[3] = b10 * a00 + b11 * a10 + b12 * a20; | -
| - | out[4] = b10 * a01 + b11 * a11 + b12 * a21; | -
| - | out[5] = b10 * a02 + b11 * a12 + b12 * a22; | -
| - | - | -
| - | out[6] = b20 * a00 + b21 * a10 + b22 * a20; | -
| - | out[7] = b20 * a01 + b21 * a11 + b22 * a21; | -
| - | out[8] = b20 * a02 + b21 * a12 + b22 * a22; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Translate a mat3 by the given vector | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the matrix to translate | -
| - | * @param {vec2} v vector to translate by | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function translate(out, a, v) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a10 = a[3], | -
| - | a11 = a[4], | -
| - | a12 = a[5], | -
| - | a20 = a[6], | -
| - | a21 = a[7], | -
| - | a22 = a[8], | -
| - | x = v[0], | -
| - | y = v[1]; | -
| - | - | -
| - | out[0] = a00; | -
| - | out[1] = a01; | -
| - | out[2] = a02; | -
| - | - | -
| - | out[3] = a10; | -
| - | out[4] = a11; | -
| - | out[5] = a12; | -
| - | - | -
| - | out[6] = x * a00 + y * a10 + a20; | -
| - | out[7] = x * a01 + y * a11 + a21; | -
| - | out[8] = x * a02 + y * a12 + a22; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a mat3 by the given angle | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function rotate(out, a, rad) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a10 = a[3], | -
| - | a11 = a[4], | -
| - | a12 = a[5], | -
| - | a20 = a[6], | -
| - | a21 = a[7], | -
| - | a22 = a[8], | -
| - | s = Math.sin(rad), | -
| - | c = Math.cos(rad); | -
| - | - | -
| - | out[0] = c * a00 + s * a10; | -
| - | out[1] = c * a01 + s * a11; | -
| - | out[2] = c * a02 + s * a12; | -
| - | - | -
| - | out[3] = c * a10 - s * a00; | -
| - | out[4] = c * a11 - s * a01; | -
| - | out[5] = c * a12 - s * a02; | -
| - | - | -
| - | out[6] = a20; | -
| - | out[7] = a21; | -
| - | out[8] = a22; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Scales the mat3 by the dimensions in the given vec2 | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the matrix to rotate | -
| - | * @param {vec2} v the vec2 to scale the matrix by | -
| - | * @returns {mat3} out | -
| - | **/ | -
| - | function scale(out, a, v) { | -
| - | var x = v[0], | -
| - | y = v[1]; | -
| - | - | -
| - | out[0] = x * a[0]; | -
| - | out[1] = x * a[1]; | -
| - | out[2] = x * a[2]; | -
| - | - | -
| - | out[3] = y * a[3]; | -
| - | out[4] = y * a[4]; | -
| - | out[5] = y * a[5]; | -
| - | - | -
| - | out[6] = a[6]; | -
| - | out[7] = a[7]; | -
| - | out[8] = a[8]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector translation | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat3.identity(dest); | -
| - | * mat3.translate(dest, dest, vec); | -
| - | * | -
| - | * @param {mat3} out mat3 receiving operation result | -
| - | * @param {vec2} v Translation vector | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function fromTranslation(out, v) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 1; | -
| - | out[5] = 0; | -
| - | out[6] = v[0]; | -
| - | out[7] = v[1]; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a given angle | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat3.identity(dest); | -
| - | * mat3.rotate(dest, dest, rad); | -
| - | * | -
| - | * @param {mat3} out mat3 receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function fromRotation(out, rad) { | -
| - | var s = Math.sin(rad), | -
| - | c = Math.cos(rad); | -
| - | - | -
| - | out[0] = c; | -
| - | out[1] = s; | -
| - | out[2] = 0; | -
| - | - | -
| - | out[3] = -s; | -
| - | out[4] = c; | -
| - | out[5] = 0; | -
| - | - | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector scaling | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat3.identity(dest); | -
| - | * mat3.scale(dest, dest, vec); | -
| - | * | -
| - | * @param {mat3} out mat3 receiving operation result | -
| - | * @param {vec2} v Scaling vector | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function fromScaling(out, v) { | -
| - | out[0] = v[0]; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | - | -
| - | out[3] = 0; | -
| - | out[4] = v[1]; | -
| - | out[5] = 0; | -
| - | - | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copies the values from a mat2d into a mat3 | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat2d} a the matrix to copy | -
| - | * @returns {mat3} out | -
| - | **/ | -
| - | function fromMat2d(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = 0; | -
| - | - | -
| - | out[3] = a[2]; | -
| - | out[4] = a[3]; | -
| - | out[5] = 0; | -
| - | - | -
| - | out[6] = a[4]; | -
| - | out[7] = a[5]; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates a 3x3 matrix from the given quaternion | -
| - | * | -
| - | * @param {mat3} out mat3 receiving operation result | -
| - | * @param {quat} q Quaternion to create matrix from | -
| - | * | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function fromQuat(out, q) { | -
| - | var x = q[0], | -
| - | y = q[1], | -
| - | z = q[2], | -
| - | w = q[3]; | -
| - | var x2 = x + x; | -
| - | var y2 = y + y; | -
| - | var z2 = z + z; | -
| - | - | -
| - | var xx = x * x2; | -
| - | var yx = y * x2; | -
| - | var yy = y * y2; | -
| - | var zx = z * x2; | -
| - | var zy = z * y2; | -
| - | var zz = z * z2; | -
| - | var wx = w * x2; | -
| - | var wy = w * y2; | -
| - | var wz = w * z2; | -
| - | - | -
| - | out[0] = 1 - yy - zz; | -
| - | out[3] = yx - wz; | -
| - | out[6] = zx + wy; | -
| - | - | -
| - | out[1] = yx + wz; | -
| - | out[4] = 1 - xx - zz; | -
| - | out[7] = zy - wx; | -
| - | - | -
| - | out[2] = zx - wy; | -
| - | out[5] = zy + wx; | -
| - | out[8] = 1 - xx - yy; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix | -
| - | * | -
| - | * @param {mat3} out mat3 receiving operation result | -
| - | * @param {mat4} a Mat4 to derive the normal matrix from | -
| - | * | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function normalFromMat4(out, a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a03 = a[3]; | -
| - | var a10 = a[4], | -
| - | a11 = a[5], | -
| - | a12 = a[6], | -
| - | a13 = a[7]; | -
| - | var a20 = a[8], | -
| - | a21 = a[9], | -
| - | a22 = a[10], | -
| - | a23 = a[11]; | -
| - | var a30 = a[12], | -
| - | a31 = a[13], | -
| - | a32 = a[14], | -
| - | a33 = a[15]; | -
| - | - | -
| - | var b00 = a00 * a11 - a01 * a10; | -
| - | var b01 = a00 * a12 - a02 * a10; | -
| - | var b02 = a00 * a13 - a03 * a10; | -
| - | var b03 = a01 * a12 - a02 * a11; | -
| - | var b04 = a01 * a13 - a03 * a11; | -
| - | var b05 = a02 * a13 - a03 * a12; | -
| - | var b06 = a20 * a31 - a21 * a30; | -
| - | var b07 = a20 * a32 - a22 * a30; | -
| - | var b08 = a20 * a33 - a23 * a30; | -
| - | var b09 = a21 * a32 - a22 * a31; | -
| - | var b10 = a21 * a33 - a23 * a31; | -
| - | var b11 = a22 * a33 - a23 * a32; | -
| - | - | -
| - | // Calculate the determinant | -
| - | var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | -
| - | - | -
| - | if (!det) { | -
| - | return null; | -
| - | } | -
| - | det = 1.0 / det; | -
| - | - | -
| - | out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; | -
| - | out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; | -
| - | out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; | -
| - | - | -
| - | out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; | -
| - | out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; | -
| - | out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; | -
| - | - | -
| - | out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; | -
| - | out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; | -
| - | out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a 2D projection matrix with the given bounds | -
| - | * | -
| - | * @param {mat3} out mat3 frustum matrix will be written into | -
| - | * @param {number} width Width of your gl context | -
| - | * @param {number} height Height of gl context | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function projection(out, width, height) { | -
| - | out[0] = 2 / width; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = -2 / height; | -
| - | out[5] = 0; | -
| - | out[6] = -1; | -
| - | out[7] = 1; | -
| - | out[8] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a mat3 | -
| - | * | -
| - | * @param {mat3} a matrix to represent as a string | -
| - | * @returns {String} string representation of the matrix | -
| - | */ | -
| - | function str(a) { | -
| - | return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns Frobenius norm of a mat3 | -
| - | * | -
| - | * @param {mat3} a the matrix to calculate Frobenius norm of | -
| - | * @returns {Number} Frobenius norm | -
| - | */ | -
| - | function frob(a) { | -
| - | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat3's | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the first operand | -
| - | * @param {mat3} b the second operand | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | out[2] = a[2] + b[2]; | -
| - | out[3] = a[3] + b[3]; | -
| - | out[4] = a[4] + b[4]; | -
| - | out[5] = a[5] + b[5]; | -
| - | out[6] = a[6] + b[6]; | -
| - | out[7] = a[7] + b[7]; | -
| - | out[8] = a[8] + b[8]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts matrix b from matrix a | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the first operand | -
| - | * @param {mat3} b the second operand | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | out[2] = a[2] - b[2]; | -
| - | out[3] = a[3] - b[3]; | -
| - | out[4] = a[4] - b[4]; | -
| - | out[5] = a[5] - b[5]; | -
| - | out[6] = a[6] - b[6]; | -
| - | out[7] = a[7] - b[7]; | -
| - | out[8] = a[8] - b[8]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiply each element of the matrix by a scalar. | -
| - | * | -
| - | * @param {mat3} out the receiving matrix | -
| - | * @param {mat3} a the matrix to scale | -
| - | * @param {Number} b amount to scale the matrix's elements by | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function multiplyScalar(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | out[2] = a[2] * b; | -
| - | out[3] = a[3] * b; | -
| - | out[4] = a[4] * b; | -
| - | out[5] = a[5] * b; | -
| - | out[6] = a[6] * b; | -
| - | out[7] = a[7] * b; | -
| - | out[8] = a[8] * b; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat3's after multiplying each element of the second operand by a scalar value. | -
| - | * | -
| - | * @param {mat3} out the receiving vector | -
| - | * @param {mat3} a the first operand | -
| - | * @param {mat3} b the second operand | -
| - | * @param {Number} scale the amount to scale b's elements by before adding | -
| - | * @returns {mat3} out | -
| - | */ | -
| - | function multiplyScalarAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | out[2] = a[2] + b[2] * scale; | -
| - | out[3] = a[3] + b[3] * scale; | -
| - | out[4] = a[4] + b[4] * scale; | -
| - | out[5] = a[5] + b[5] * scale; | -
| - | out[6] = a[6] + b[6] * scale; | -
| - | out[7] = a[7] + b[7] * scale; | -
| - | out[8] = a[8] + b[8] * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {mat3} a The first matrix. | -
| - | * @param {mat3} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {mat3} a The first matrix. | -
| - | * @param {mat3} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3], | -
| - | a4 = a[4], | -
| - | a5 = a[5], | -
| - | a6 = a[6], | -
| - | a7 = a[7], | -
| - | a8 = a[8]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3], | -
| - | b4 = b[4], | -
| - | b5 = b[5], | -
| - | b6 = b[6], | -
| - | b7 = b[7], | -
| - | b8 = b[8]; | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat3.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat3.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /***/ }), | -
| - | /* 2 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined; | -
| - | exports.create = create; | -
| - | exports.clone = clone; | -
| - | exports.length = length; | -
| - | exports.fromValues = fromValues; | -
| - | exports.copy = copy; | -
| - | exports.set = set; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.multiply = multiply; | -
| - | exports.divide = divide; | -
| - | exports.ceil = ceil; | -
| - | exports.floor = floor; | -
| - | exports.min = min; | -
| - | exports.max = max; | -
| - | exports.round = round; | -
| - | exports.scale = scale; | -
| - | exports.scaleAndAdd = scaleAndAdd; | -
| - | exports.distance = distance; | -
| - | exports.squaredDistance = squaredDistance; | -
| - | exports.squaredLength = squaredLength; | -
| - | exports.negate = negate; | -
| - | exports.inverse = inverse; | -
| - | exports.normalize = normalize; | -
| - | exports.dot = dot; | -
| - | exports.cross = cross; | -
| - | exports.lerp = lerp; | -
| - | exports.hermite = hermite; | -
| - | exports.bezier = bezier; | -
| - | exports.random = random; | -
| - | exports.transformMat4 = transformMat4; | -
| - | exports.transformMat3 = transformMat3; | -
| - | exports.transformQuat = transformQuat; | -
| - | exports.rotateX = rotateX; | -
| - | exports.rotateY = rotateY; | -
| - | exports.rotateZ = rotateZ; | -
| - | exports.angle = angle; | -
| - | exports.str = str; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 3 Dimensional Vector | -
| - | * @module vec3 | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new, empty vec3 | -
| - | * | -
| - | * @returns {vec3} a new 3D vector | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(3); | -
| - | out[0] = 0; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new vec3 initialized with values from an existing vector | -
| - | * | -
| - | * @param {vec3} a vector to clone | -
| - | * @returns {vec3} a new 3D vector | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(3); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the length of a vec3 | -
| - | * | -
| - | * @param {vec3} a vector to calculate length of | -
| - | * @returns {Number} length of a | -
| - | */ | -
| - | function length(a) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | var z = a[2]; | -
| - | return Math.sqrt(x * x + y * y + z * z); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new vec3 initialized with the given values | -
| - | * | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @param {Number} z Z component | -
| - | * @returns {vec3} a new 3D vector | -
| - | */ | -
| - | function fromValues(x, y, z) { | -
| - | var out = new glMatrix.ARRAY_TYPE(3); | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | out[2] = z; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one vec3 to another | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the source vector | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a vec3 to the given values | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @param {Number} z Z component | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function set(out, x, y, z) { | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | out[2] = z; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | out[2] = a[2] + b[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts vector b from vector a | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | out[2] = a[2] - b[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | out[0] = a[0] * b[0]; | -
| - | out[1] = a[1] * b[1]; | -
| - | out[2] = a[2] * b[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Divides two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function divide(out, a, b) { | -
| - | out[0] = a[0] / b[0]; | -
| - | out[1] = a[1] / b[1]; | -
| - | out[2] = a[2] / b[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Math.ceil the components of a vec3 | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a vector to ceil | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function ceil(out, a) { | -
| - | out[0] = Math.ceil(a[0]); | -
| - | out[1] = Math.ceil(a[1]); | -
| - | out[2] = Math.ceil(a[2]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Math.floor the components of a vec3 | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a vector to floor | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function floor(out, a) { | -
| - | out[0] = Math.floor(a[0]); | -
| - | out[1] = Math.floor(a[1]); | -
| - | out[2] = Math.floor(a[2]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the minimum of two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function min(out, a, b) { | -
| - | out[0] = Math.min(a[0], b[0]); | -
| - | out[1] = Math.min(a[1], b[1]); | -
| - | out[2] = Math.min(a[2], b[2]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the maximum of two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function max(out, a, b) { | -
| - | out[0] = Math.max(a[0], b[0]); | -
| - | out[1] = Math.max(a[1], b[1]); | -
| - | out[2] = Math.max(a[2], b[2]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Math.round the components of a vec3 | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a vector to round | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function round(out, a) { | -
| - | out[0] = Math.round(a[0]); | -
| - | out[1] = Math.round(a[1]); | -
| - | out[2] = Math.round(a[2]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Scales a vec3 by a scalar number | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the vector to scale | -
| - | * @param {Number} b amount to scale the vector by | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function scale(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | out[2] = a[2] * b; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two vec3's after scaling the second operand by a scalar value | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @param {Number} scale the amount to scale b by before adding | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function scaleAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | out[2] = a[2] + b[2] * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the euclidian distance between two vec3's | -
| - | * | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {Number} distance between a and b | -
| - | */ | -
| - | function distance(a, b) { | -
| - | var x = b[0] - a[0]; | -
| - | var y = b[1] - a[1]; | -
| - | var z = b[2] - a[2]; | -
| - | return Math.sqrt(x * x + y * y + z * z); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the squared euclidian distance between two vec3's | -
| - | * | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {Number} squared distance between a and b | -
| - | */ | -
| - | function squaredDistance(a, b) { | -
| - | var x = b[0] - a[0]; | -
| - | var y = b[1] - a[1]; | -
| - | var z = b[2] - a[2]; | -
| - | return x * x + y * y + z * z; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the squared length of a vec3 | -
| - | * | -
| - | * @param {vec3} a vector to calculate squared length of | -
| - | * @returns {Number} squared length of a | -
| - | */ | -
| - | function squaredLength(a) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | var z = a[2]; | -
| - | return x * x + y * y + z * z; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Negates the components of a vec3 | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a vector to negate | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function negate(out, a) { | -
| - | out[0] = -a[0]; | -
| - | out[1] = -a[1]; | -
| - | out[2] = -a[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the inverse of the components of a vec3 | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a vector to invert | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function inverse(out, a) { | -
| - | out[0] = 1.0 / a[0]; | -
| - | out[1] = 1.0 / a[1]; | -
| - | out[2] = 1.0 / a[2]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Normalize a vec3 | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a vector to normalize | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function normalize(out, a) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | var z = a[2]; | -
| - | var len = x * x + y * y + z * z; | -
| - | if (len > 0) { | -
| - | //TODO: evaluate use of glm_invsqrt here? | -
| - | len = 1 / Math.sqrt(len); | -
| - | out[0] = a[0] * len; | -
| - | out[1] = a[1] * len; | -
| - | out[2] = a[2] * len; | -
| - | } | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the dot product of two vec3's | -
| - | * | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {Number} dot product of a and b | -
| - | */ | -
| - | function dot(a, b) { | -
| - | return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Computes the cross product of two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function cross(out, a, b) { | -
| - | var ax = a[0], | -
| - | ay = a[1], | -
| - | az = a[2]; | -
| - | var bx = b[0], | -
| - | by = b[1], | -
| - | bz = b[2]; | -
| - | - | -
| - | out[0] = ay * bz - az * by; | -
| - | out[1] = az * bx - ax * bz; | -
| - | out[2] = ax * by - ay * bx; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Performs a linear interpolation between two vec3's | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function lerp(out, a, b, t) { | -
| - | var ax = a[0]; | -
| - | var ay = a[1]; | -
| - | var az = a[2]; | -
| - | out[0] = ax + t * (b[0] - ax); | -
| - | out[1] = ay + t * (b[1] - ay); | -
| - | out[2] = az + t * (b[2] - az); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Performs a hermite interpolation with two control points | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @param {vec3} c the third operand | -
| - | * @param {vec3} d the fourth operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function hermite(out, a, b, c, d, t) { | -
| - | var factorTimes2 = t * t; | -
| - | var factor1 = factorTimes2 * (2 * t - 3) + 1; | -
| - | var factor2 = factorTimes2 * (t - 2) + t; | -
| - | var factor3 = factorTimes2 * (t - 1); | -
| - | var factor4 = factorTimes2 * (3 - 2 * t); | -
| - | - | -
| - | out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4; | -
| - | out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4; | -
| - | out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Performs a bezier interpolation with two control points | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the first operand | -
| - | * @param {vec3} b the second operand | -
| - | * @param {vec3} c the third operand | -
| - | * @param {vec3} d the fourth operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function bezier(out, a, b, c, d, t) { | -
| - | var inverseFactor = 1 - t; | -
| - | var inverseFactorTimesTwo = inverseFactor * inverseFactor; | -
| - | var factorTimes2 = t * t; | -
| - | var factor1 = inverseFactorTimesTwo * inverseFactor; | -
| - | var factor2 = 3 * t * inverseFactorTimesTwo; | -
| - | var factor3 = 3 * factorTimes2 * inverseFactor; | -
| - | var factor4 = factorTimes2 * t; | -
| - | - | -
| - | out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4; | -
| - | out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4; | -
| - | out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a random vector with the given scale | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function random(out, scale) { | -
| - | scale = scale || 1.0; | -
| - | - | -
| - | var r = glMatrix.RANDOM() * 2.0 * Math.PI; | -
| - | var z = glMatrix.RANDOM() * 2.0 - 1.0; | -
| - | var zScale = Math.sqrt(1.0 - z * z) * scale; | -
| - | - | -
| - | out[0] = Math.cos(r) * zScale; | -
| - | out[1] = Math.sin(r) * zScale; | -
| - | out[2] = z * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transforms the vec3 with a mat4. | -
| - | * 4th vector component is implicitly '1' | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the vector to transform | -
| - | * @param {mat4} m matrix to transform with | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function transformMat4(out, a, m) { | -
| - | var x = a[0], | -
| - | y = a[1], | -
| - | z = a[2]; | -
| - | var w = m[3] * x + m[7] * y + m[11] * z + m[15]; | -
| - | w = w || 1.0; | -
| - | out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w; | -
| - | out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w; | -
| - | out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transforms the vec3 with a mat3. | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the vector to transform | -
| - | * @param {mat3} m the 3x3 matrix to transform with | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function transformMat3(out, a, m) { | -
| - | var x = a[0], | -
| - | y = a[1], | -
| - | z = a[2]; | -
| - | out[0] = x * m[0] + y * m[3] + z * m[6]; | -
| - | out[1] = x * m[1] + y * m[4] + z * m[7]; | -
| - | out[2] = x * m[2] + y * m[5] + z * m[8]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transforms the vec3 with a quat | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec3} a the vector to transform | -
| - | * @param {quat} q quaternion to transform with | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function transformQuat(out, a, q) { | -
| - | // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations | -
| - | - | -
| - | var x = a[0], | -
| - | y = a[1], | -
| - | z = a[2]; | -
| - | var qx = q[0], | -
| - | qy = q[1], | -
| - | qz = q[2], | -
| - | qw = q[3]; | -
| - | - | -
| - | // calculate quat * vec | -
| - | var ix = qw * x + qy * z - qz * y; | -
| - | var iy = qw * y + qz * x - qx * z; | -
| - | var iz = qw * z + qx * y - qy * x; | -
| - | var iw = -qx * x - qy * y - qz * z; | -
| - | - | -
| - | // calculate result * inverse quat | -
| - | out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; | -
| - | out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; | -
| - | out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotate a 3D vector around the x-axis | -
| - | * @param {vec3} out The receiving vec3 | -
| - | * @param {vec3} a The vec3 point to rotate | -
| - | * @param {vec3} b The origin of the rotation | -
| - | * @param {Number} c The angle of rotation | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function rotateX(out, a, b, c) { | -
| - | var p = [], | -
| - | r = []; | -
| - | //Translate point to the origin | -
| - | p[0] = a[0] - b[0]; | -
| - | p[1] = a[1] - b[1]; | -
| - | p[2] = a[2] - b[2]; | -
| - | - | -
| - | //perform rotation | -
| - | r[0] = p[0]; | -
| - | r[1] = p[1] * Math.cos(c) - p[2] * Math.sin(c); | -
| - | r[2] = p[1] * Math.sin(c) + p[2] * Math.cos(c); | -
| - | - | -
| - | //translate to correct position | -
| - | out[0] = r[0] + b[0]; | -
| - | out[1] = r[1] + b[1]; | -
| - | out[2] = r[2] + b[2]; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotate a 3D vector around the y-axis | -
| - | * @param {vec3} out The receiving vec3 | -
| - | * @param {vec3} a The vec3 point to rotate | -
| - | * @param {vec3} b The origin of the rotation | -
| - | * @param {Number} c The angle of rotation | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function rotateY(out, a, b, c) { | -
| - | var p = [], | -
| - | r = []; | -
| - | //Translate point to the origin | -
| - | p[0] = a[0] - b[0]; | -
| - | p[1] = a[1] - b[1]; | -
| - | p[2] = a[2] - b[2]; | -
| - | - | -
| - | //perform rotation | -
| - | r[0] = p[2] * Math.sin(c) + p[0] * Math.cos(c); | -
| - | r[1] = p[1]; | -
| - | r[2] = p[2] * Math.cos(c) - p[0] * Math.sin(c); | -
| - | - | -
| - | //translate to correct position | -
| - | out[0] = r[0] + b[0]; | -
| - | out[1] = r[1] + b[1]; | -
| - | out[2] = r[2] + b[2]; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotate a 3D vector around the z-axis | -
| - | * @param {vec3} out The receiving vec3 | -
| - | * @param {vec3} a The vec3 point to rotate | -
| - | * @param {vec3} b The origin of the rotation | -
| - | * @param {Number} c The angle of rotation | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function rotateZ(out, a, b, c) { | -
| - | var p = [], | -
| - | r = []; | -
| - | //Translate point to the origin | -
| - | p[0] = a[0] - b[0]; | -
| - | p[1] = a[1] - b[1]; | -
| - | p[2] = a[2] - b[2]; | -
| - | - | -
| - | //perform rotation | -
| - | r[0] = p[0] * Math.cos(c) - p[1] * Math.sin(c); | -
| - | r[1] = p[0] * Math.sin(c) + p[1] * Math.cos(c); | -
| - | r[2] = p[2]; | -
| - | - | -
| - | //translate to correct position | -
| - | out[0] = r[0] + b[0]; | -
| - | out[1] = r[1] + b[1]; | -
| - | out[2] = r[2] + b[2]; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Get the angle between two 3D vectors | -
| - | * @param {vec3} a The first operand | -
| - | * @param {vec3} b The second operand | -
| - | * @returns {Number} The angle in radians | -
| - | */ | -
| - | function angle(a, b) { | -
| - | var tempA = fromValues(a[0], a[1], a[2]); | -
| - | var tempB = fromValues(b[0], b[1], b[2]); | -
| - | - | -
| - | normalize(tempA, tempA); | -
| - | normalize(tempB, tempB); | -
| - | - | -
| - | var cosine = dot(tempA, tempB); | -
| - | - | -
| - | if (cosine > 1.0) { | -
| - | return 0; | -
| - | } else if (cosine < -1.0) { | -
| - | return Math.PI; | -
| - | } else { | -
| - | return Math.acos(cosine); | -
| - | } | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a vector | -
| - | * | -
| - | * @param {vec3} a vector to represent as a string | -
| - | * @returns {String} string representation of the vector | -
| - | */ | -
| - | function str(a) { | -
| - | return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {vec3} a The first vector. | -
| - | * @param {vec3} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the vectors have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {vec3} a The first vector. | -
| - | * @param {vec3} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2]; | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.divide} | -
| - | * @function | -
| - | */ | -
| - | var div = exports.div = divide; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.distance} | -
| - | * @function | -
| - | */ | -
| - | var dist = exports.dist = distance; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.squaredDistance} | -
| - | * @function | -
| - | */ | -
| - | var sqrDist = exports.sqrDist = squaredDistance; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.length} | -
| - | * @function | -
| - | */ | -
| - | var len = exports.len = length; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec3.squaredLength} | -
| - | * @function | -
| - | */ | -
| - | var sqrLen = exports.sqrLen = squaredLength; | -
| - | - | -
| - | /** | -
| - | * Perform some operation over an array of vec3s. | -
| - | * | -
| - | * @param {Array} a the array of vectors to iterate over | -
| - | * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed | -
| - | * @param {Number} offset Number of elements to skip at the beginning of the array | -
| - | * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array | -
| - | * @param {Function} fn Function to call for each vector in the array | -
| - | * @param {Object} [arg] additional argument to pass to fn | -
| - | * @returns {Array} a | -
| - | * @function | -
| - | */ | -
| - | var forEach = exports.forEach = function () { | -
| - | var vec = create(); | -
| - | - | -
| - | return function (a, stride, offset, count, fn, arg) { | -
| - | var i = void 0, | -
| - | l = void 0; | -
| - | if (!stride) { | -
| - | stride = 3; | -
| - | } | -
| - | - | -
| - | if (!offset) { | -
| - | offset = 0; | -
| - | } | -
| - | - | -
| - | if (count) { | -
| - | l = Math.min(count * stride + offset, a.length); | -
| - | } else { | -
| - | l = a.length; | -
| - | } | -
| - | - | -
| - | for (i = offset; i < l; i += stride) { | -
| - | vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2]; | -
| - | fn(vec, vec, arg); | -
| - | a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2]; | -
| - | } | -
| - | - | -
| - | return a; | -
| - | }; | -
| - | }(); | -
| - | - | -
| - | /***/ }), | -
| - | /* 3 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined; | -
| - | exports.create = create; | -
| - | exports.clone = clone; | -
| - | exports.fromValues = fromValues; | -
| - | exports.copy = copy; | -
| - | exports.set = set; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.multiply = multiply; | -
| - | exports.divide = divide; | -
| - | exports.ceil = ceil; | -
| - | exports.floor = floor; | -
| - | exports.min = min; | -
| - | exports.max = max; | -
| - | exports.round = round; | -
| - | exports.scale = scale; | -
| - | exports.scaleAndAdd = scaleAndAdd; | -
| - | exports.distance = distance; | -
| - | exports.squaredDistance = squaredDistance; | -
| - | exports.length = length; | -
| - | exports.squaredLength = squaredLength; | -
| - | exports.negate = negate; | -
| - | exports.inverse = inverse; | -
| - | exports.normalize = normalize; | -
| - | exports.dot = dot; | -
| - | exports.lerp = lerp; | -
| - | exports.random = random; | -
| - | exports.transformMat4 = transformMat4; | -
| - | exports.transformQuat = transformQuat; | -
| - | exports.str = str; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 4 Dimensional Vector | -
| - | * @module vec4 | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new, empty vec4 | -
| - | * | -
| - | * @returns {vec4} a new 4D vector | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = 0; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new vec4 initialized with values from an existing vector | -
| - | * | -
| - | * @param {vec4} a vector to clone | -
| - | * @returns {vec4} a new 4D vector | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new vec4 initialized with the given values | -
| - | * | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @param {Number} z Z component | -
| - | * @param {Number} w W component | -
| - | * @returns {vec4} a new 4D vector | -
| - | */ | -
| - | function fromValues(x, y, z, w) { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | out[2] = z; | -
| - | out[3] = w; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one vec4 to another | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the source vector | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a vec4 to the given values | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @param {Number} z Z component | -
| - | * @param {Number} w W component | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function set(out, x, y, z, w) { | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | out[2] = z; | -
| - | out[3] = w; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two vec4's | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | out[2] = a[2] + b[2]; | -
| - | out[3] = a[3] + b[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts vector b from vector a | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | out[2] = a[2] - b[2]; | -
| - | out[3] = a[3] - b[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two vec4's | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | out[0] = a[0] * b[0]; | -
| - | out[1] = a[1] * b[1]; | -
| - | out[2] = a[2] * b[2]; | -
| - | out[3] = a[3] * b[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Divides two vec4's | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function divide(out, a, b) { | -
| - | out[0] = a[0] / b[0]; | -
| - | out[1] = a[1] / b[1]; | -
| - | out[2] = a[2] / b[2]; | -
| - | out[3] = a[3] / b[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Math.ceil the components of a vec4 | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a vector to ceil | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function ceil(out, a) { | -
| - | out[0] = Math.ceil(a[0]); | -
| - | out[1] = Math.ceil(a[1]); | -
| - | out[2] = Math.ceil(a[2]); | -
| - | out[3] = Math.ceil(a[3]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Math.floor the components of a vec4 | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a vector to floor | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function floor(out, a) { | -
| - | out[0] = Math.floor(a[0]); | -
| - | out[1] = Math.floor(a[1]); | -
| - | out[2] = Math.floor(a[2]); | -
| - | out[3] = Math.floor(a[3]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the minimum of two vec4's | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function min(out, a, b) { | -
| - | out[0] = Math.min(a[0], b[0]); | -
| - | out[1] = Math.min(a[1], b[1]); | -
| - | out[2] = Math.min(a[2], b[2]); | -
| - | out[3] = Math.min(a[3], b[3]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the maximum of two vec4's | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function max(out, a, b) { | -
| - | out[0] = Math.max(a[0], b[0]); | -
| - | out[1] = Math.max(a[1], b[1]); | -
| - | out[2] = Math.max(a[2], b[2]); | -
| - | out[3] = Math.max(a[3], b[3]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Math.round the components of a vec4 | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a vector to round | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function round(out, a) { | -
| - | out[0] = Math.round(a[0]); | -
| - | out[1] = Math.round(a[1]); | -
| - | out[2] = Math.round(a[2]); | -
| - | out[3] = Math.round(a[3]); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Scales a vec4 by a scalar number | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the vector to scale | -
| - | * @param {Number} b amount to scale the vector by | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function scale(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | out[2] = a[2] * b; | -
| - | out[3] = a[3] * b; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two vec4's after scaling the second operand by a scalar value | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @param {Number} scale the amount to scale b by before adding | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function scaleAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | out[2] = a[2] + b[2] * scale; | -
| - | out[3] = a[3] + b[3] * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the euclidian distance between two vec4's | -
| - | * | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {Number} distance between a and b | -
| - | */ | -
| - | function distance(a, b) { | -
| - | var x = b[0] - a[0]; | -
| - | var y = b[1] - a[1]; | -
| - | var z = b[2] - a[2]; | -
| - | var w = b[3] - a[3]; | -
| - | return Math.sqrt(x * x + y * y + z * z + w * w); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the squared euclidian distance between two vec4's | -
| - | * | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {Number} squared distance between a and b | -
| - | */ | -
| - | function squaredDistance(a, b) { | -
| - | var x = b[0] - a[0]; | -
| - | var y = b[1] - a[1]; | -
| - | var z = b[2] - a[2]; | -
| - | var w = b[3] - a[3]; | -
| - | return x * x + y * y + z * z + w * w; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the length of a vec4 | -
| - | * | -
| - | * @param {vec4} a vector to calculate length of | -
| - | * @returns {Number} length of a | -
| - | */ | -
| - | function length(a) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | var z = a[2]; | -
| - | var w = a[3]; | -
| - | return Math.sqrt(x * x + y * y + z * z + w * w); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the squared length of a vec4 | -
| - | * | -
| - | * @param {vec4} a vector to calculate squared length of | -
| - | * @returns {Number} squared length of a | -
| - | */ | -
| - | function squaredLength(a) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | var z = a[2]; | -
| - | var w = a[3]; | -
| - | return x * x + y * y + z * z + w * w; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Negates the components of a vec4 | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a vector to negate | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function negate(out, a) { | -
| - | out[0] = -a[0]; | -
| - | out[1] = -a[1]; | -
| - | out[2] = -a[2]; | -
| - | out[3] = -a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the inverse of the components of a vec4 | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a vector to invert | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function inverse(out, a) { | -
| - | out[0] = 1.0 / a[0]; | -
| - | out[1] = 1.0 / a[1]; | -
| - | out[2] = 1.0 / a[2]; | -
| - | out[3] = 1.0 / a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Normalize a vec4 | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a vector to normalize | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function normalize(out, a) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | var z = a[2]; | -
| - | var w = a[3]; | -
| - | var len = x * x + y * y + z * z + w * w; | -
| - | if (len > 0) { | -
| - | len = 1 / Math.sqrt(len); | -
| - | out[0] = x * len; | -
| - | out[1] = y * len; | -
| - | out[2] = z * len; | -
| - | out[3] = w * len; | -
| - | } | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the dot product of two vec4's | -
| - | * | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @returns {Number} dot product of a and b | -
| - | */ | -
| - | function dot(a, b) { | -
| - | return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Performs a linear interpolation between two vec4's | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the first operand | -
| - | * @param {vec4} b the second operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function lerp(out, a, b, t) { | -
| - | var ax = a[0]; | -
| - | var ay = a[1]; | -
| - | var az = a[2]; | -
| - | var aw = a[3]; | -
| - | out[0] = ax + t * (b[0] - ax); | -
| - | out[1] = ay + t * (b[1] - ay); | -
| - | out[2] = az + t * (b[2] - az); | -
| - | out[3] = aw + t * (b[3] - aw); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a random vector with the given scale | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function random(out, vectorScale) { | -
| - | vectorScale = vectorScale || 1.0; | -
| - | - | -
| - | //TODO: This is a pretty awful way of doing this. Find something better. | -
| - | out[0] = glMatrix.RANDOM(); | -
| - | out[1] = glMatrix.RANDOM(); | -
| - | out[2] = glMatrix.RANDOM(); | -
| - | out[3] = glMatrix.RANDOM(); | -
| - | normalize(out, out); | -
| - | scale(out, out, vectorScale); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transforms the vec4 with a mat4. | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the vector to transform | -
| - | * @param {mat4} m matrix to transform with | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function transformMat4(out, a, m) { | -
| - | var x = a[0], | -
| - | y = a[1], | -
| - | z = a[2], | -
| - | w = a[3]; | -
| - | out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; | -
| - | out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; | -
| - | out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; | -
| - | out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transforms the vec4 with a quat | -
| - | * | -
| - | * @param {vec4} out the receiving vector | -
| - | * @param {vec4} a the vector to transform | -
| - | * @param {quat} q quaternion to transform with | -
| - | * @returns {vec4} out | -
| - | */ | -
| - | function transformQuat(out, a, q) { | -
| - | var x = a[0], | -
| - | y = a[1], | -
| - | z = a[2]; | -
| - | var qx = q[0], | -
| - | qy = q[1], | -
| - | qz = q[2], | -
| - | qw = q[3]; | -
| - | - | -
| - | // calculate quat * vec | -
| - | var ix = qw * x + qy * z - qz * y; | -
| - | var iy = qw * y + qz * x - qx * z; | -
| - | var iz = qw * z + qx * y - qy * x; | -
| - | var iw = -qx * x - qy * y - qz * z; | -
| - | - | -
| - | // calculate result * inverse quat | -
| - | out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; | -
| - | out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; | -
| - | out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; | -
| - | out[3] = a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a vector | -
| - | * | -
| - | * @param {vec4} a vector to represent as a string | -
| - | * @returns {String} string representation of the vector | -
| - | */ | -
| - | function str(a) { | -
| - | return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {vec4} a The first vector. | -
| - | * @param {vec4} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the vectors have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {vec4} a The first vector. | -
| - | * @param {vec4} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3]; | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.divide} | -
| - | * @function | -
| - | */ | -
| - | var div = exports.div = divide; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.distance} | -
| - | * @function | -
| - | */ | -
| - | var dist = exports.dist = distance; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.squaredDistance} | -
| - | * @function | -
| - | */ | -
| - | var sqrDist = exports.sqrDist = squaredDistance; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.length} | -
| - | * @function | -
| - | */ | -
| - | var len = exports.len = length; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec4.squaredLength} | -
| - | * @function | -
| - | */ | -
| - | var sqrLen = exports.sqrLen = squaredLength; | -
| - | - | -
| - | /** | -
| - | * Perform some operation over an array of vec4s. | -
| - | * | -
| - | * @param {Array} a the array of vectors to iterate over | -
| - | * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed | -
| - | * @param {Number} offset Number of elements to skip at the beginning of the array | -
| - | * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array | -
| - | * @param {Function} fn Function to call for each vector in the array | -
| - | * @param {Object} [arg] additional argument to pass to fn | -
| - | * @returns {Array} a | -
| - | * @function | -
| - | */ | -
| - | var forEach = exports.forEach = function () { | -
| - | var vec = create(); | -
| - | - | -
| - | return function (a, stride, offset, count, fn, arg) { | -
| - | var i = void 0, | -
| - | l = void 0; | -
| - | if (!stride) { | -
| - | stride = 4; | -
| - | } | -
| - | - | -
| - | if (!offset) { | -
| - | offset = 0; | -
| - | } | -
| - | - | -
| - | if (count) { | -
| - | l = Math.min(count * stride + offset, a.length); | -
| - | } else { | -
| - | l = a.length; | -
| - | } | -
| - | - | -
| - | for (i = offset; i < l; i += stride) { | -
| - | vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];vec[3] = a[i + 3]; | -
| - | fn(vec, vec, arg); | -
| - | a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];a[i + 3] = vec[3]; | -
| - | } | -
| - | - | -
| - | return a; | -
| - | }; | -
| - | }(); | -
| - | - | -
| - | /***/ }), | -
| - | /* 4 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.vec4 = exports.vec3 = exports.vec2 = exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.glMatrix = undefined; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | var _mat = __webpack_require__(5); | -
| - | - | -
| - | var mat2 = _interopRequireWildcard(_mat); | -
| - | - | -
| - | var _mat2d = __webpack_require__(6); | -
| - | - | -
| - | var mat2d = _interopRequireWildcard(_mat2d); | -
| - | - | -
| - | var _mat2 = __webpack_require__(1); | -
| - | - | -
| - | var mat3 = _interopRequireWildcard(_mat2); | -
| - | - | -
| - | var _mat3 = __webpack_require__(7); | -
| - | - | -
| - | var mat4 = _interopRequireWildcard(_mat3); | -
| - | - | -
| - | var _quat = __webpack_require__(8); | -
| - | - | -
| - | var quat = _interopRequireWildcard(_quat); | -
| - | - | -
| - | var _vec = __webpack_require__(9); | -
| - | - | -
| - | var vec2 = _interopRequireWildcard(_vec); | -
| - | - | -
| - | var _vec2 = __webpack_require__(2); | -
| - | - | -
| - | var vec3 = _interopRequireWildcard(_vec2); | -
| - | - | -
| - | var _vec3 = __webpack_require__(3); | -
| - | - | -
| - | var vec4 = _interopRequireWildcard(_vec3); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | exports.glMatrix = glMatrix; | -
| - | exports.mat2 = mat2; | -
| - | exports.mat2d = mat2d; | -
| - | exports.mat3 = mat3; | -
| - | exports.mat4 = mat4; | -
| - | exports.quat = quat; | -
| - | exports.vec2 = vec2; | -
| - | exports.vec3 = vec3; | -
| - | exports.vec4 = vec4; /** | -
| - | * @fileoverview gl-matrix - High performance matrix and vector operations | -
| - | * @author Brandon Jones | -
| - | * @author Colin MacKenzie IV | -
| - | * @version 2.4.0 | -
| - | */ | -
| - | - | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | // END HEADER | -
| - | - | -
| - | /***/ }), | -
| - | /* 5 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.sub = exports.mul = undefined; | -
| - | exports.create = create; | -
| - | exports.clone = clone; | -
| - | exports.copy = copy; | -
| - | exports.identity = identity; | -
| - | exports.fromValues = fromValues; | -
| - | exports.set = set; | -
| - | exports.transpose = transpose; | -
| - | exports.invert = invert; | -
| - | exports.adjoint = adjoint; | -
| - | exports.determinant = determinant; | -
| - | exports.multiply = multiply; | -
| - | exports.rotate = rotate; | -
| - | exports.scale = scale; | -
| - | exports.fromRotation = fromRotation; | -
| - | exports.fromScaling = fromScaling; | -
| - | exports.str = str; | -
| - | exports.frob = frob; | -
| - | exports.LDU = LDU; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | exports.multiplyScalar = multiplyScalar; | -
| - | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 2x2 Matrix | -
| - | * @module mat2 | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new identity mat2 | -
| - | * | -
| - | * @returns {mat2} a new 2x2 matrix | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new mat2 initialized with values from an existing matrix | -
| - | * | -
| - | * @param {mat2} a matrix to clone | -
| - | * @returns {mat2} a new 2x2 matrix | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one mat2 to another | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the source matrix | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set a mat2 to the identity matrix | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function identity(out) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Create a new mat2 with the given values | -
| - | * | -
| - | * @param {Number} m00 Component in column 0, row 0 position (index 0) | -
| - | * @param {Number} m01 Component in column 0, row 1 position (index 1) | -
| - | * @param {Number} m10 Component in column 1, row 0 position (index 2) | -
| - | * @param {Number} m11 Component in column 1, row 1 position (index 3) | -
| - | * @returns {mat2} out A new 2x2 matrix | -
| - | */ | -
| - | function fromValues(m00, m01, m10, m11) { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = m00; | -
| - | out[1] = m01; | -
| - | out[2] = m10; | -
| - | out[3] = m11; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a mat2 to the given values | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {Number} m00 Component in column 0, row 0 position (index 0) | -
| - | * @param {Number} m01 Component in column 0, row 1 position (index 1) | -
| - | * @param {Number} m10 Component in column 1, row 0 position (index 2) | -
| - | * @param {Number} m11 Component in column 1, row 1 position (index 3) | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function set(out, m00, m01, m10, m11) { | -
| - | out[0] = m00; | -
| - | out[1] = m01; | -
| - | out[2] = m10; | -
| - | out[3] = m11; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transpose the values of a mat2 | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the source matrix | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function transpose(out, a) { | -
| - | // If we are transposing ourselves we can skip a few steps but have to cache | -
| - | // some values | -
| - | if (out === a) { | -
| - | var a1 = a[1]; | -
| - | out[1] = a[2]; | -
| - | out[2] = a1; | -
| - | } else { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[2]; | -
| - | out[2] = a[1]; | -
| - | out[3] = a[3]; | -
| - | } | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Inverts a mat2 | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the source matrix | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function invert(out, a) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | - | -
| - | // Calculate the determinant | -
| - | var det = a0 * a3 - a2 * a1; | -
| - | - | -
| - | if (!det) { | -
| - | return null; | -
| - | } | -
| - | det = 1.0 / det; | -
| - | - | -
| - | out[0] = a3 * det; | -
| - | out[1] = -a1 * det; | -
| - | out[2] = -a2 * det; | -
| - | out[3] = a0 * det; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the adjugate of a mat2 | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the source matrix | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function adjoint(out, a) { | -
| - | // Caching this value is nessecary if out == a | -
| - | var a0 = a[0]; | -
| - | out[0] = a[3]; | -
| - | out[1] = -a[1]; | -
| - | out[2] = -a[2]; | -
| - | out[3] = a0; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the determinant of a mat2 | -
| - | * | -
| - | * @param {mat2} a the source matrix | -
| - | * @returns {Number} determinant of a | -
| - | */ | -
| - | function determinant(a) { | -
| - | return a[0] * a[3] - a[2] * a[1]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two mat2's | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the first operand | -
| - | * @param {mat2} b the second operand | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3]; | -
| - | out[0] = a0 * b0 + a2 * b1; | -
| - | out[1] = a1 * b0 + a3 * b1; | -
| - | out[2] = a0 * b2 + a2 * b3; | -
| - | out[3] = a1 * b2 + a3 * b3; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a mat2 by the given angle | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function rotate(out, a, rad) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | out[0] = a0 * c + a2 * s; | -
| - | out[1] = a1 * c + a3 * s; | -
| - | out[2] = a0 * -s + a2 * c; | -
| - | out[3] = a1 * -s + a3 * c; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Scales the mat2 by the dimensions in the given vec2 | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the matrix to rotate | -
| - | * @param {vec2} v the vec2 to scale the matrix by | -
| - | * @returns {mat2} out | -
| - | **/ | -
| - | function scale(out, a, v) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var v0 = v[0], | -
| - | v1 = v[1]; | -
| - | out[0] = a0 * v0; | -
| - | out[1] = a1 * v0; | -
| - | out[2] = a2 * v1; | -
| - | out[3] = a3 * v1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a given angle | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat2.identity(dest); | -
| - | * mat2.rotate(dest, dest, rad); | -
| - | * | -
| - | * @param {mat2} out mat2 receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function fromRotation(out, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | out[0] = c; | -
| - | out[1] = s; | -
| - | out[2] = -s; | -
| - | out[3] = c; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector scaling | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat2.identity(dest); | -
| - | * mat2.scale(dest, dest, vec); | -
| - | * | -
| - | * @param {mat2} out mat2 receiving operation result | -
| - | * @param {vec2} v Scaling vector | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function fromScaling(out, v) { | -
| - | out[0] = v[0]; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = v[1]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a mat2 | -
| - | * | -
| - | * @param {mat2} a matrix to represent as a string | -
| - | * @returns {String} string representation of the matrix | -
| - | */ | -
| - | function str(a) { | -
| - | return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns Frobenius norm of a mat2 | -
| - | * | -
| - | * @param {mat2} a the matrix to calculate Frobenius norm of | -
| - | * @returns {Number} Frobenius norm | -
| - | */ | -
| - | function frob(a) { | -
| - | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix | -
| - | * @param {mat2} L the lower triangular matrix | -
| - | * @param {mat2} D the diagonal matrix | -
| - | * @param {mat2} U the upper triangular matrix | -
| - | * @param {mat2} a the input matrix to factorize | -
| - | */ | -
| - | - | -
| - | function LDU(L, D, U, a) { | -
| - | L[2] = a[2] / a[0]; | -
| - | U[0] = a[0]; | -
| - | U[1] = a[1]; | -
| - | U[3] = a[3] - L[2] * U[1]; | -
| - | return [L, D, U]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat2's | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the first operand | -
| - | * @param {mat2} b the second operand | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | out[2] = a[2] + b[2]; | -
| - | out[3] = a[3] + b[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts matrix b from matrix a | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the first operand | -
| - | * @param {mat2} b the second operand | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | out[2] = a[2] - b[2]; | -
| - | out[3] = a[3] - b[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {mat2} a The first matrix. | -
| - | * @param {mat2} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {mat2} a The first matrix. | -
| - | * @param {mat2} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3]; | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiply each element of the matrix by a scalar. | -
| - | * | -
| - | * @param {mat2} out the receiving matrix | -
| - | * @param {mat2} a the matrix to scale | -
| - | * @param {Number} b amount to scale the matrix's elements by | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function multiplyScalar(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | out[2] = a[2] * b; | -
| - | out[3] = a[3] * b; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat2's after multiplying each element of the second operand by a scalar value. | -
| - | * | -
| - | * @param {mat2} out the receiving vector | -
| - | * @param {mat2} a the first operand | -
| - | * @param {mat2} b the second operand | -
| - | * @param {Number} scale the amount to scale b's elements by before adding | -
| - | * @returns {mat2} out | -
| - | */ | -
| - | function multiplyScalarAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | out[2] = a[2] + b[2] * scale; | -
| - | out[3] = a[3] + b[3] * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat2.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat2.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /***/ }), | -
| - | /* 6 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.sub = exports.mul = undefined; | -
| - | exports.create = create; | -
| - | exports.clone = clone; | -
| - | exports.copy = copy; | -
| - | exports.identity = identity; | -
| - | exports.fromValues = fromValues; | -
| - | exports.set = set; | -
| - | exports.invert = invert; | -
| - | exports.determinant = determinant; | -
| - | exports.multiply = multiply; | -
| - | exports.rotate = rotate; | -
| - | exports.scale = scale; | -
| - | exports.translate = translate; | -
| - | exports.fromRotation = fromRotation; | -
| - | exports.fromScaling = fromScaling; | -
| - | exports.fromTranslation = fromTranslation; | -
| - | exports.str = str; | -
| - | exports.frob = frob; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.multiplyScalar = multiplyScalar; | -
| - | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 2x3 Matrix | -
| - | * @module mat2d | -
| - | * | -
| - | * @description | -
| - | * A mat2d contains six elements defined as: | -
| - | * <pre> | -
| - | * [a, c, tx, | -
| - | * b, d, ty] | -
| - | * </pre> | -
| - | * This is a short form for the 3x3 matrix: | -
| - | * <pre> | -
| - | * [a, c, tx, | -
| - | * b, d, ty, | -
| - | * 0, 0, 1] | -
| - | * </pre> | -
| - | * The last row is ignored so the array is shorter and operations are faster. | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new identity mat2d | -
| - | * | -
| - | * @returns {mat2d} a new 2x3 matrix | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(6); | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | out[4] = 0; | -
| - | out[5] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new mat2d initialized with values from an existing matrix | -
| - | * | -
| - | * @param {mat2d} a matrix to clone | -
| - | * @returns {mat2d} a new 2x3 matrix | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(6); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one mat2d to another | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the source matrix | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set a mat2d to the identity matrix | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function identity(out) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | out[4] = 0; | -
| - | out[5] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Create a new mat2d with the given values | -
| - | * | -
| - | * @param {Number} a Component A (index 0) | -
| - | * @param {Number} b Component B (index 1) | -
| - | * @param {Number} c Component C (index 2) | -
| - | * @param {Number} d Component D (index 3) | -
| - | * @param {Number} tx Component TX (index 4) | -
| - | * @param {Number} ty Component TY (index 5) | -
| - | * @returns {mat2d} A new mat2d | -
| - | */ | -
| - | function fromValues(a, b, c, d, tx, ty) { | -
| - | var out = new glMatrix.ARRAY_TYPE(6); | -
| - | out[0] = a; | -
| - | out[1] = b; | -
| - | out[2] = c; | -
| - | out[3] = d; | -
| - | out[4] = tx; | -
| - | out[5] = ty; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a mat2d to the given values | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {Number} a Component A (index 0) | -
| - | * @param {Number} b Component B (index 1) | -
| - | * @param {Number} c Component C (index 2) | -
| - | * @param {Number} d Component D (index 3) | -
| - | * @param {Number} tx Component TX (index 4) | -
| - | * @param {Number} ty Component TY (index 5) | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function set(out, a, b, c, d, tx, ty) { | -
| - | out[0] = a; | -
| - | out[1] = b; | -
| - | out[2] = c; | -
| - | out[3] = d; | -
| - | out[4] = tx; | -
| - | out[5] = ty; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Inverts a mat2d | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the source matrix | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function invert(out, a) { | -
| - | var aa = a[0], | -
| - | ab = a[1], | -
| - | ac = a[2], | -
| - | ad = a[3]; | -
| - | var atx = a[4], | -
| - | aty = a[5]; | -
| - | - | -
| - | var det = aa * ad - ab * ac; | -
| - | if (!det) { | -
| - | return null; | -
| - | } | -
| - | det = 1.0 / det; | -
| - | - | -
| - | out[0] = ad * det; | -
| - | out[1] = -ab * det; | -
| - | out[2] = -ac * det; | -
| - | out[3] = aa * det; | -
| - | out[4] = (ac * aty - ad * atx) * det; | -
| - | out[5] = (ab * atx - aa * aty) * det; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the determinant of a mat2d | -
| - | * | -
| - | * @param {mat2d} a the source matrix | -
| - | * @returns {Number} determinant of a | -
| - | */ | -
| - | function determinant(a) { | -
| - | return a[0] * a[3] - a[1] * a[2]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two mat2d's | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the first operand | -
| - | * @param {mat2d} b the second operand | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3], | -
| - | a4 = a[4], | -
| - | a5 = a[5]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3], | -
| - | b4 = b[4], | -
| - | b5 = b[5]; | -
| - | out[0] = a0 * b0 + a2 * b1; | -
| - | out[1] = a1 * b0 + a3 * b1; | -
| - | out[2] = a0 * b2 + a2 * b3; | -
| - | out[3] = a1 * b2 + a3 * b3; | -
| - | out[4] = a0 * b4 + a2 * b5 + a4; | -
| - | out[5] = a1 * b4 + a3 * b5 + a5; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a mat2d by the given angle | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function rotate(out, a, rad) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3], | -
| - | a4 = a[4], | -
| - | a5 = a[5]; | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | out[0] = a0 * c + a2 * s; | -
| - | out[1] = a1 * c + a3 * s; | -
| - | out[2] = a0 * -s + a2 * c; | -
| - | out[3] = a1 * -s + a3 * c; | -
| - | out[4] = a4; | -
| - | out[5] = a5; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Scales the mat2d by the dimensions in the given vec2 | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the matrix to translate | -
| - | * @param {vec2} v the vec2 to scale the matrix by | -
| - | * @returns {mat2d} out | -
| - | **/ | -
| - | function scale(out, a, v) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3], | -
| - | a4 = a[4], | -
| - | a5 = a[5]; | -
| - | var v0 = v[0], | -
| - | v1 = v[1]; | -
| - | out[0] = a0 * v0; | -
| - | out[1] = a1 * v0; | -
| - | out[2] = a2 * v1; | -
| - | out[3] = a3 * v1; | -
| - | out[4] = a4; | -
| - | out[5] = a5; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Translates the mat2d by the dimensions in the given vec2 | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the matrix to translate | -
| - | * @param {vec2} v the vec2 to translate the matrix by | -
| - | * @returns {mat2d} out | -
| - | **/ | -
| - | function translate(out, a, v) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3], | -
| - | a4 = a[4], | -
| - | a5 = a[5]; | -
| - | var v0 = v[0], | -
| - | v1 = v[1]; | -
| - | out[0] = a0; | -
| - | out[1] = a1; | -
| - | out[2] = a2; | -
| - | out[3] = a3; | -
| - | out[4] = a0 * v0 + a2 * v1 + a4; | -
| - | out[5] = a1 * v0 + a3 * v1 + a5; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a given angle | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat2d.identity(dest); | -
| - | * mat2d.rotate(dest, dest, rad); | -
| - | * | -
| - | * @param {mat2d} out mat2d receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function fromRotation(out, rad) { | -
| - | var s = Math.sin(rad), | -
| - | c = Math.cos(rad); | -
| - | out[0] = c; | -
| - | out[1] = s; | -
| - | out[2] = -s; | -
| - | out[3] = c; | -
| - | out[4] = 0; | -
| - | out[5] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector scaling | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat2d.identity(dest); | -
| - | * mat2d.scale(dest, dest, vec); | -
| - | * | -
| - | * @param {mat2d} out mat2d receiving operation result | -
| - | * @param {vec2} v Scaling vector | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function fromScaling(out, v) { | -
| - | out[0] = v[0]; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = v[1]; | -
| - | out[4] = 0; | -
| - | out[5] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector translation | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat2d.identity(dest); | -
| - | * mat2d.translate(dest, dest, vec); | -
| - | * | -
| - | * @param {mat2d} out mat2d receiving operation result | -
| - | * @param {vec2} v Translation vector | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function fromTranslation(out, v) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | out[4] = v[0]; | -
| - | out[5] = v[1]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a mat2d | -
| - | * | -
| - | * @param {mat2d} a matrix to represent as a string | -
| - | * @returns {String} string representation of the matrix | -
| - | */ | -
| - | function str(a) { | -
| - | return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns Frobenius norm of a mat2d | -
| - | * | -
| - | * @param {mat2d} a the matrix to calculate Frobenius norm of | -
| - | * @returns {Number} Frobenius norm | -
| - | */ | -
| - | function frob(a) { | -
| - | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat2d's | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the first operand | -
| - | * @param {mat2d} b the second operand | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | out[2] = a[2] + b[2]; | -
| - | out[3] = a[3] + b[3]; | -
| - | out[4] = a[4] + b[4]; | -
| - | out[5] = a[5] + b[5]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts matrix b from matrix a | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the first operand | -
| - | * @param {mat2d} b the second operand | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | out[2] = a[2] - b[2]; | -
| - | out[3] = a[3] - b[3]; | -
| - | out[4] = a[4] - b[4]; | -
| - | out[5] = a[5] - b[5]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiply each element of the matrix by a scalar. | -
| - | * | -
| - | * @param {mat2d} out the receiving matrix | -
| - | * @param {mat2d} a the matrix to scale | -
| - | * @param {Number} b amount to scale the matrix's elements by | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function multiplyScalar(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | out[2] = a[2] * b; | -
| - | out[3] = a[3] * b; | -
| - | out[4] = a[4] * b; | -
| - | out[5] = a[5] * b; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat2d's after multiplying each element of the second operand by a scalar value. | -
| - | * | -
| - | * @param {mat2d} out the receiving vector | -
| - | * @param {mat2d} a the first operand | -
| - | * @param {mat2d} b the second operand | -
| - | * @param {Number} scale the amount to scale b's elements by before adding | -
| - | * @returns {mat2d} out | -
| - | */ | -
| - | function multiplyScalarAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | out[2] = a[2] + b[2] * scale; | -
| - | out[3] = a[3] + b[3] * scale; | -
| - | out[4] = a[4] + b[4] * scale; | -
| - | out[5] = a[5] + b[5] * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {mat2d} a The first matrix. | -
| - | * @param {mat2d} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {mat2d} a The first matrix. | -
| - | * @param {mat2d} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3], | -
| - | a4 = a[4], | -
| - | a5 = a[5]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3], | -
| - | b4 = b[4], | -
| - | b5 = b[5]; | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat2d.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat2d.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /***/ }), | -
| - | /* 7 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.sub = exports.mul = undefined; | -
| - | exports.create = create; | -
| - | exports.clone = clone; | -
| - | exports.copy = copy; | -
| - | exports.fromValues = fromValues; | -
| - | exports.set = set; | -
| - | exports.identity = identity; | -
| - | exports.transpose = transpose; | -
| - | exports.invert = invert; | -
| - | exports.adjoint = adjoint; | -
| - | exports.determinant = determinant; | -
| - | exports.multiply = multiply; | -
| - | exports.translate = translate; | -
| - | exports.scale = scale; | -
| - | exports.rotate = rotate; | -
| - | exports.rotateX = rotateX; | -
| - | exports.rotateY = rotateY; | -
| - | exports.rotateZ = rotateZ; | -
| - | exports.fromTranslation = fromTranslation; | -
| - | exports.fromScaling = fromScaling; | -
| - | exports.fromRotation = fromRotation; | -
| - | exports.fromXRotation = fromXRotation; | -
| - | exports.fromYRotation = fromYRotation; | -
| - | exports.fromZRotation = fromZRotation; | -
| - | exports.fromRotationTranslation = fromRotationTranslation; | -
| - | exports.getTranslation = getTranslation; | -
| - | exports.getScaling = getScaling; | -
| - | exports.getRotation = getRotation; | -
| - | exports.fromRotationTranslationScale = fromRotationTranslationScale; | -
| - | exports.fromRotationTranslationScaleOrigin = fromRotationTranslationScaleOrigin; | -
| - | exports.fromQuat = fromQuat; | -
| - | exports.frustum = frustum; | -
| - | exports.perspective = perspective; | -
| - | exports.perspectiveFromFieldOfView = perspectiveFromFieldOfView; | -
| - | exports.ortho = ortho; | -
| - | exports.lookAt = lookAt; | -
| - | exports.targetTo = targetTo; | -
| - | exports.str = str; | -
| - | exports.frob = frob; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.multiplyScalar = multiplyScalar; | -
| - | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 4x4 Matrix | -
| - | * @module mat4 | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new identity mat4 | -
| - | * | -
| - | * @returns {mat4} a new 4x4 matrix | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(16); | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = 1; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = 1; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new mat4 initialized with values from an existing matrix | -
| - | * | -
| - | * @param {mat4} a matrix to clone | -
| - | * @returns {mat4} a new 4x4 matrix | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(16); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | out[6] = a[6]; | -
| - | out[7] = a[7]; | -
| - | out[8] = a[8]; | -
| - | out[9] = a[9]; | -
| - | out[10] = a[10]; | -
| - | out[11] = a[11]; | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one mat4 to another | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the source matrix | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | out[6] = a[6]; | -
| - | out[7] = a[7]; | -
| - | out[8] = a[8]; | -
| - | out[9] = a[9]; | -
| - | out[10] = a[10]; | -
| - | out[11] = a[11]; | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Create a new mat4 with the given values | -
| - | * | -
| - | * @param {Number} m00 Component in column 0, row 0 position (index 0) | -
| - | * @param {Number} m01 Component in column 0, row 1 position (index 1) | -
| - | * @param {Number} m02 Component in column 0, row 2 position (index 2) | -
| - | * @param {Number} m03 Component in column 0, row 3 position (index 3) | -
| - | * @param {Number} m10 Component in column 1, row 0 position (index 4) | -
| - | * @param {Number} m11 Component in column 1, row 1 position (index 5) | -
| - | * @param {Number} m12 Component in column 1, row 2 position (index 6) | -
| - | * @param {Number} m13 Component in column 1, row 3 position (index 7) | -
| - | * @param {Number} m20 Component in column 2, row 0 position (index 8) | -
| - | * @param {Number} m21 Component in column 2, row 1 position (index 9) | -
| - | * @param {Number} m22 Component in column 2, row 2 position (index 10) | -
| - | * @param {Number} m23 Component in column 2, row 3 position (index 11) | -
| - | * @param {Number} m30 Component in column 3, row 0 position (index 12) | -
| - | * @param {Number} m31 Component in column 3, row 1 position (index 13) | -
| - | * @param {Number} m32 Component in column 3, row 2 position (index 14) | -
| - | * @param {Number} m33 Component in column 3, row 3 position (index 15) | -
| - | * @returns {mat4} A new mat4 | -
| - | */ | -
| - | function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { | -
| - | var out = new glMatrix.ARRAY_TYPE(16); | -
| - | out[0] = m00; | -
| - | out[1] = m01; | -
| - | out[2] = m02; | -
| - | out[3] = m03; | -
| - | out[4] = m10; | -
| - | out[5] = m11; | -
| - | out[6] = m12; | -
| - | out[7] = m13; | -
| - | out[8] = m20; | -
| - | out[9] = m21; | -
| - | out[10] = m22; | -
| - | out[11] = m23; | -
| - | out[12] = m30; | -
| - | out[13] = m31; | -
| - | out[14] = m32; | -
| - | out[15] = m33; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a mat4 to the given values | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {Number} m00 Component in column 0, row 0 position (index 0) | -
| - | * @param {Number} m01 Component in column 0, row 1 position (index 1) | -
| - | * @param {Number} m02 Component in column 0, row 2 position (index 2) | -
| - | * @param {Number} m03 Component in column 0, row 3 position (index 3) | -
| - | * @param {Number} m10 Component in column 1, row 0 position (index 4) | -
| - | * @param {Number} m11 Component in column 1, row 1 position (index 5) | -
| - | * @param {Number} m12 Component in column 1, row 2 position (index 6) | -
| - | * @param {Number} m13 Component in column 1, row 3 position (index 7) | -
| - | * @param {Number} m20 Component in column 2, row 0 position (index 8) | -
| - | * @param {Number} m21 Component in column 2, row 1 position (index 9) | -
| - | * @param {Number} m22 Component in column 2, row 2 position (index 10) | -
| - | * @param {Number} m23 Component in column 2, row 3 position (index 11) | -
| - | * @param {Number} m30 Component in column 3, row 0 position (index 12) | -
| - | * @param {Number} m31 Component in column 3, row 1 position (index 13) | -
| - | * @param {Number} m32 Component in column 3, row 2 position (index 14) | -
| - | * @param {Number} m33 Component in column 3, row 3 position (index 15) | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { | -
| - | out[0] = m00; | -
| - | out[1] = m01; | -
| - | out[2] = m02; | -
| - | out[3] = m03; | -
| - | out[4] = m10; | -
| - | out[5] = m11; | -
| - | out[6] = m12; | -
| - | out[7] = m13; | -
| - | out[8] = m20; | -
| - | out[9] = m21; | -
| - | out[10] = m22; | -
| - | out[11] = m23; | -
| - | out[12] = m30; | -
| - | out[13] = m31; | -
| - | out[14] = m32; | -
| - | out[15] = m33; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set a mat4 to the identity matrix | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function identity(out) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = 1; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = 1; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Transpose the values of a mat4 | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the source matrix | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function transpose(out, a) { | -
| - | // If we are transposing ourselves we can skip a few steps but have to cache some values | -
| - | if (out === a) { | -
| - | var a01 = a[1], | -
| - | a02 = a[2], | -
| - | a03 = a[3]; | -
| - | var a12 = a[6], | -
| - | a13 = a[7]; | -
| - | var a23 = a[11]; | -
| - | - | -
| - | out[1] = a[4]; | -
| - | out[2] = a[8]; | -
| - | out[3] = a[12]; | -
| - | out[4] = a01; | -
| - | out[6] = a[9]; | -
| - | out[7] = a[13]; | -
| - | out[8] = a02; | -
| - | out[9] = a12; | -
| - | out[11] = a[14]; | -
| - | out[12] = a03; | -
| - | out[13] = a13; | -
| - | out[14] = a23; | -
| - | } else { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[4]; | -
| - | out[2] = a[8]; | -
| - | out[3] = a[12]; | -
| - | out[4] = a[1]; | -
| - | out[5] = a[5]; | -
| - | out[6] = a[9]; | -
| - | out[7] = a[13]; | -
| - | out[8] = a[2]; | -
| - | out[9] = a[6]; | -
| - | out[10] = a[10]; | -
| - | out[11] = a[14]; | -
| - | out[12] = a[3]; | -
| - | out[13] = a[7]; | -
| - | out[14] = a[11]; | -
| - | out[15] = a[15]; | -
| - | } | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Inverts a mat4 | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the source matrix | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function invert(out, a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a03 = a[3]; | -
| - | var a10 = a[4], | -
| - | a11 = a[5], | -
| - | a12 = a[6], | -
| - | a13 = a[7]; | -
| - | var a20 = a[8], | -
| - | a21 = a[9], | -
| - | a22 = a[10], | -
| - | a23 = a[11]; | -
| - | var a30 = a[12], | -
| - | a31 = a[13], | -
| - | a32 = a[14], | -
| - | a33 = a[15]; | -
| - | - | -
| - | var b00 = a00 * a11 - a01 * a10; | -
| - | var b01 = a00 * a12 - a02 * a10; | -
| - | var b02 = a00 * a13 - a03 * a10; | -
| - | var b03 = a01 * a12 - a02 * a11; | -
| - | var b04 = a01 * a13 - a03 * a11; | -
| - | var b05 = a02 * a13 - a03 * a12; | -
| - | var b06 = a20 * a31 - a21 * a30; | -
| - | var b07 = a20 * a32 - a22 * a30; | -
| - | var b08 = a20 * a33 - a23 * a30; | -
| - | var b09 = a21 * a32 - a22 * a31; | -
| - | var b10 = a21 * a33 - a23 * a31; | -
| - | var b11 = a22 * a33 - a23 * a32; | -
| - | - | -
| - | // Calculate the determinant | -
| - | var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | -
| - | - | -
| - | if (!det) { | -
| - | return null; | -
| - | } | -
| - | det = 1.0 / det; | -
| - | - | -
| - | out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; | -
| - | out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; | -
| - | out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; | -
| - | out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; | -
| - | out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; | -
| - | out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; | -
| - | out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; | -
| - | out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; | -
| - | out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; | -
| - | out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; | -
| - | out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; | -
| - | out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; | -
| - | out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; | -
| - | out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; | -
| - | out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; | -
| - | out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the adjugate of a mat4 | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the source matrix | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function adjoint(out, a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a03 = a[3]; | -
| - | var a10 = a[4], | -
| - | a11 = a[5], | -
| - | a12 = a[6], | -
| - | a13 = a[7]; | -
| - | var a20 = a[8], | -
| - | a21 = a[9], | -
| - | a22 = a[10], | -
| - | a23 = a[11]; | -
| - | var a30 = a[12], | -
| - | a31 = a[13], | -
| - | a32 = a[14], | -
| - | a33 = a[15]; | -
| - | - | -
| - | out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22); | -
| - | out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22)); | -
| - | out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12); | -
| - | out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12)); | -
| - | out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22)); | -
| - | out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22); | -
| - | out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12)); | -
| - | out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12); | -
| - | out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21); | -
| - | out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21)); | -
| - | out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11); | -
| - | out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11)); | -
| - | out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21)); | -
| - | out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21); | -
| - | out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11)); | -
| - | out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the determinant of a mat4 | -
| - | * | -
| - | * @param {mat4} a the source matrix | -
| - | * @returns {Number} determinant of a | -
| - | */ | -
| - | function determinant(a) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a03 = a[3]; | -
| - | var a10 = a[4], | -
| - | a11 = a[5], | -
| - | a12 = a[6], | -
| - | a13 = a[7]; | -
| - | var a20 = a[8], | -
| - | a21 = a[9], | -
| - | a22 = a[10], | -
| - | a23 = a[11]; | -
| - | var a30 = a[12], | -
| - | a31 = a[13], | -
| - | a32 = a[14], | -
| - | a33 = a[15]; | -
| - | - | -
| - | var b00 = a00 * a11 - a01 * a10; | -
| - | var b01 = a00 * a12 - a02 * a10; | -
| - | var b02 = a00 * a13 - a03 * a10; | -
| - | var b03 = a01 * a12 - a02 * a11; | -
| - | var b04 = a01 * a13 - a03 * a11; | -
| - | var b05 = a02 * a13 - a03 * a12; | -
| - | var b06 = a20 * a31 - a21 * a30; | -
| - | var b07 = a20 * a32 - a22 * a30; | -
| - | var b08 = a20 * a33 - a23 * a30; | -
| - | var b09 = a21 * a32 - a22 * a31; | -
| - | var b10 = a21 * a33 - a23 * a31; | -
| - | var b11 = a22 * a33 - a23 * a32; | -
| - | - | -
| - | // Calculate the determinant | -
| - | return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two mat4s | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the first operand | -
| - | * @param {mat4} b the second operand | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | var a00 = a[0], | -
| - | a01 = a[1], | -
| - | a02 = a[2], | -
| - | a03 = a[3]; | -
| - | var a10 = a[4], | -
| - | a11 = a[5], | -
| - | a12 = a[6], | -
| - | a13 = a[7]; | -
| - | var a20 = a[8], | -
| - | a21 = a[9], | -
| - | a22 = a[10], | -
| - | a23 = a[11]; | -
| - | var a30 = a[12], | -
| - | a31 = a[13], | -
| - | a32 = a[14], | -
| - | a33 = a[15]; | -
| - | - | -
| - | // Cache only the current line of the second matrix | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3]; | -
| - | out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | -
| - | out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | -
| - | out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | -
| - | out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | -
| - | - | -
| - | b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7]; | -
| - | out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | -
| - | out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | -
| - | out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | -
| - | out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | -
| - | - | -
| - | b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11]; | -
| - | out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | -
| - | out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | -
| - | out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | -
| - | out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | -
| - | - | -
| - | b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15]; | -
| - | out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | -
| - | out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | -
| - | out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | -
| - | out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Translate a mat4 by the given vector | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to translate | -
| - | * @param {vec3} v vector to translate by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function translate(out, a, v) { | -
| - | var x = v[0], | -
| - | y = v[1], | -
| - | z = v[2]; | -
| - | var a00 = void 0, | -
| - | a01 = void 0, | -
| - | a02 = void 0, | -
| - | a03 = void 0; | -
| - | var a10 = void 0, | -
| - | a11 = void 0, | -
| - | a12 = void 0, | -
| - | a13 = void 0; | -
| - | var a20 = void 0, | -
| - | a21 = void 0, | -
| - | a22 = void 0, | -
| - | a23 = void 0; | -
| - | - | -
| - | if (a === out) { | -
| - | out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; | -
| - | out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; | -
| - | out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; | -
| - | out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; | -
| - | } else { | -
| - | a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3]; | -
| - | a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7]; | -
| - | a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11]; | -
| - | - | -
| - | out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03; | -
| - | out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13; | -
| - | out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23; | -
| - | - | -
| - | out[12] = a00 * x + a10 * y + a20 * z + a[12]; | -
| - | out[13] = a01 * x + a11 * y + a21 * z + a[13]; | -
| - | out[14] = a02 * x + a12 * y + a22 * z + a[14]; | -
| - | out[15] = a03 * x + a13 * y + a23 * z + a[15]; | -
| - | } | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Scales the mat4 by the dimensions in the given vec3 not using vectorization | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to scale | -
| - | * @param {vec3} v the vec3 to scale the matrix by | -
| - | * @returns {mat4} out | -
| - | **/ | -
| - | function scale(out, a, v) { | -
| - | var x = v[0], | -
| - | y = v[1], | -
| - | z = v[2]; | -
| - | - | -
| - | out[0] = a[0] * x; | -
| - | out[1] = a[1] * x; | -
| - | out[2] = a[2] * x; | -
| - | out[3] = a[3] * x; | -
| - | out[4] = a[4] * y; | -
| - | out[5] = a[5] * y; | -
| - | out[6] = a[6] * y; | -
| - | out[7] = a[7] * y; | -
| - | out[8] = a[8] * z; | -
| - | out[9] = a[9] * z; | -
| - | out[10] = a[10] * z; | -
| - | out[11] = a[11] * z; | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a mat4 by the given angle around the given axis | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @param {vec3} axis the axis to rotate around | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function rotate(out, a, rad, axis) { | -
| - | var x = axis[0], | -
| - | y = axis[1], | -
| - | z = axis[2]; | -
| - | var len = Math.sqrt(x * x + y * y + z * z); | -
| - | var s = void 0, | -
| - | c = void 0, | -
| - | t = void 0; | -
| - | var a00 = void 0, | -
| - | a01 = void 0, | -
| - | a02 = void 0, | -
| - | a03 = void 0; | -
| - | var a10 = void 0, | -
| - | a11 = void 0, | -
| - | a12 = void 0, | -
| - | a13 = void 0; | -
| - | var a20 = void 0, | -
| - | a21 = void 0, | -
| - | a22 = void 0, | -
| - | a23 = void 0; | -
| - | var b00 = void 0, | -
| - | b01 = void 0, | -
| - | b02 = void 0; | -
| - | var b10 = void 0, | -
| - | b11 = void 0, | -
| - | b12 = void 0; | -
| - | var b20 = void 0, | -
| - | b21 = void 0, | -
| - | b22 = void 0; | -
| - | - | -
| - | if (Math.abs(len) < glMatrix.EPSILON) { | -
| - | return null; | -
| - | } | -
| - | - | -
| - | len = 1 / len; | -
| - | x *= len; | -
| - | y *= len; | -
| - | z *= len; | -
| - | - | -
| - | s = Math.sin(rad); | -
| - | c = Math.cos(rad); | -
| - | t = 1 - c; | -
| - | - | -
| - | a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3]; | -
| - | a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7]; | -
| - | a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11]; | -
| - | - | -
| - | // Construct the elements of the rotation matrix | -
| - | b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s; | -
| - | b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s; | -
| - | b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c; | -
| - | - | -
| - | // Perform rotation-specific matrix multiplication | -
| - | out[0] = a00 * b00 + a10 * b01 + a20 * b02; | -
| - | out[1] = a01 * b00 + a11 * b01 + a21 * b02; | -
| - | out[2] = a02 * b00 + a12 * b01 + a22 * b02; | -
| - | out[3] = a03 * b00 + a13 * b01 + a23 * b02; | -
| - | out[4] = a00 * b10 + a10 * b11 + a20 * b12; | -
| - | out[5] = a01 * b10 + a11 * b11 + a21 * b12; | -
| - | out[6] = a02 * b10 + a12 * b11 + a22 * b12; | -
| - | out[7] = a03 * b10 + a13 * b11 + a23 * b12; | -
| - | out[8] = a00 * b20 + a10 * b21 + a20 * b22; | -
| - | out[9] = a01 * b20 + a11 * b21 + a21 * b22; | -
| - | out[10] = a02 * b20 + a12 * b21 + a22 * b22; | -
| - | out[11] = a03 * b20 + a13 * b21 + a23 * b22; | -
| - | - | -
| - | if (a !== out) { | -
| - | // If the source and destination differ, copy the unchanged last row | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | } | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a matrix by the given angle around the X axis | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function rotateX(out, a, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | var a10 = a[4]; | -
| - | var a11 = a[5]; | -
| - | var a12 = a[6]; | -
| - | var a13 = a[7]; | -
| - | var a20 = a[8]; | -
| - | var a21 = a[9]; | -
| - | var a22 = a[10]; | -
| - | var a23 = a[11]; | -
| - | - | -
| - | if (a !== out) { | -
| - | // If the source and destination differ, copy the unchanged rows | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | out[2] = a[2]; | -
| - | out[3] = a[3]; | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | } | -
| - | - | -
| - | // Perform axis-specific matrix multiplication | -
| - | out[4] = a10 * c + a20 * s; | -
| - | out[5] = a11 * c + a21 * s; | -
| - | out[6] = a12 * c + a22 * s; | -
| - | out[7] = a13 * c + a23 * s; | -
| - | out[8] = a20 * c - a10 * s; | -
| - | out[9] = a21 * c - a11 * s; | -
| - | out[10] = a22 * c - a12 * s; | -
| - | out[11] = a23 * c - a13 * s; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a matrix by the given angle around the Y axis | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function rotateY(out, a, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | var a00 = a[0]; | -
| - | var a01 = a[1]; | -
| - | var a02 = a[2]; | -
| - | var a03 = a[3]; | -
| - | var a20 = a[8]; | -
| - | var a21 = a[9]; | -
| - | var a22 = a[10]; | -
| - | var a23 = a[11]; | -
| - | - | -
| - | if (a !== out) { | -
| - | // If the source and destination differ, copy the unchanged rows | -
| - | out[4] = a[4]; | -
| - | out[5] = a[5]; | -
| - | out[6] = a[6]; | -
| - | out[7] = a[7]; | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | } | -
| - | - | -
| - | // Perform axis-specific matrix multiplication | -
| - | out[0] = a00 * c - a20 * s; | -
| - | out[1] = a01 * c - a21 * s; | -
| - | out[2] = a02 * c - a22 * s; | -
| - | out[3] = a03 * c - a23 * s; | -
| - | out[8] = a00 * s + a20 * c; | -
| - | out[9] = a01 * s + a21 * c; | -
| - | out[10] = a02 * s + a22 * c; | -
| - | out[11] = a03 * s + a23 * c; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a matrix by the given angle around the Z axis | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to rotate | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function rotateZ(out, a, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | var a00 = a[0]; | -
| - | var a01 = a[1]; | -
| - | var a02 = a[2]; | -
| - | var a03 = a[3]; | -
| - | var a10 = a[4]; | -
| - | var a11 = a[5]; | -
| - | var a12 = a[6]; | -
| - | var a13 = a[7]; | -
| - | - | -
| - | if (a !== out) { | -
| - | // If the source and destination differ, copy the unchanged last row | -
| - | out[8] = a[8]; | -
| - | out[9] = a[9]; | -
| - | out[10] = a[10]; | -
| - | out[11] = a[11]; | -
| - | out[12] = a[12]; | -
| - | out[13] = a[13]; | -
| - | out[14] = a[14]; | -
| - | out[15] = a[15]; | -
| - | } | -
| - | - | -
| - | // Perform axis-specific matrix multiplication | -
| - | out[0] = a00 * c + a10 * s; | -
| - | out[1] = a01 * c + a11 * s; | -
| - | out[2] = a02 * c + a12 * s; | -
| - | out[3] = a03 * c + a13 * s; | -
| - | out[4] = a10 * c - a00 * s; | -
| - | out[5] = a11 * c - a01 * s; | -
| - | out[6] = a12 * c - a02 * s; | -
| - | out[7] = a13 * c - a03 * s; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector translation | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.translate(dest, dest, vec); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {vec3} v Translation vector | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromTranslation(out, v) { | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = 1; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = 1; | -
| - | out[11] = 0; | -
| - | out[12] = v[0]; | -
| - | out[13] = v[1]; | -
| - | out[14] = v[2]; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a vector scaling | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.scale(dest, dest, vec); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {vec3} v Scaling vector | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromScaling(out, v) { | -
| - | out[0] = v[0]; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = v[1]; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = v[2]; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a given angle around a given axis | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.rotate(dest, dest, rad, axis); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @param {vec3} axis the axis to rotate around | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromRotation(out, rad, axis) { | -
| - | var x = axis[0], | -
| - | y = axis[1], | -
| - | z = axis[2]; | -
| - | var len = Math.sqrt(x * x + y * y + z * z); | -
| - | var s = void 0, | -
| - | c = void 0, | -
| - | t = void 0; | -
| - | - | -
| - | if (Math.abs(len) < glMatrix.EPSILON) { | -
| - | return null; | -
| - | } | -
| - | - | -
| - | len = 1 / len; | -
| - | x *= len; | -
| - | y *= len; | -
| - | z *= len; | -
| - | - | -
| - | s = Math.sin(rad); | -
| - | c = Math.cos(rad); | -
| - | t = 1 - c; | -
| - | - | -
| - | // Perform rotation-specific matrix multiplication | -
| - | out[0] = x * x * t + c; | -
| - | out[1] = y * x * t + z * s; | -
| - | out[2] = z * x * t - y * s; | -
| - | out[3] = 0; | -
| - | out[4] = x * y * t - z * s; | -
| - | out[5] = y * y * t + c; | -
| - | out[6] = z * y * t + x * s; | -
| - | out[7] = 0; | -
| - | out[8] = x * z * t + y * s; | -
| - | out[9] = y * z * t - x * s; | -
| - | out[10] = z * z * t + c; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from the given angle around the X axis | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.rotateX(dest, dest, rad); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromXRotation(out, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | - | -
| - | // Perform axis-specific matrix multiplication | -
| - | out[0] = 1; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = c; | -
| - | out[6] = s; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = -s; | -
| - | out[10] = c; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from the given angle around the Y axis | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.rotateY(dest, dest, rad); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromYRotation(out, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | - | -
| - | // Perform axis-specific matrix multiplication | -
| - | out[0] = c; | -
| - | out[1] = 0; | -
| - | out[2] = -s; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = 1; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = s; | -
| - | out[9] = 0; | -
| - | out[10] = c; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from the given angle around the Z axis | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.rotateZ(dest, dest, rad); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {Number} rad the angle to rotate the matrix by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromZRotation(out, rad) { | -
| - | var s = Math.sin(rad); | -
| - | var c = Math.cos(rad); | -
| - | - | -
| - | // Perform axis-specific matrix multiplication | -
| - | out[0] = c; | -
| - | out[1] = s; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = -s; | -
| - | out[5] = c; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = 1; | -
| - | out[11] = 0; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a quaternion rotation and vector translation | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.translate(dest, vec); | -
| - | * let quatMat = mat4.create(); | -
| - | * quat4.toMat4(quat, quatMat); | -
| - | * mat4.multiply(dest, quatMat); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {quat4} q Rotation quaternion | -
| - | * @param {vec3} v Translation vector | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromRotationTranslation(out, q, v) { | -
| - | // Quaternion math | -
| - | var x = q[0], | -
| - | y = q[1], | -
| - | z = q[2], | -
| - | w = q[3]; | -
| - | var x2 = x + x; | -
| - | var y2 = y + y; | -
| - | var z2 = z + z; | -
| - | - | -
| - | var xx = x * x2; | -
| - | var xy = x * y2; | -
| - | var xz = x * z2; | -
| - | var yy = y * y2; | -
| - | var yz = y * z2; | -
| - | var zz = z * z2; | -
| - | var wx = w * x2; | -
| - | var wy = w * y2; | -
| - | var wz = w * z2; | -
| - | - | -
| - | out[0] = 1 - (yy + zz); | -
| - | out[1] = xy + wz; | -
| - | out[2] = xz - wy; | -
| - | out[3] = 0; | -
| - | out[4] = xy - wz; | -
| - | out[5] = 1 - (xx + zz); | -
| - | out[6] = yz + wx; | -
| - | out[7] = 0; | -
| - | out[8] = xz + wy; | -
| - | out[9] = yz - wx; | -
| - | out[10] = 1 - (xx + yy); | -
| - | out[11] = 0; | -
| - | out[12] = v[0]; | -
| - | out[13] = v[1]; | -
| - | out[14] = v[2]; | -
| - | out[15] = 1; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the translation vector component of a transformation | -
| - | * matrix. If a matrix is built with fromRotationTranslation, | -
| - | * the returned vector will be the same as the translation vector | -
| - | * originally supplied. | -
| - | * @param {vec3} out Vector to receive translation component | -
| - | * @param {mat4} mat Matrix to be decomposed (input) | -
| - | * @return {vec3} out | -
| - | */ | -
| - | function getTranslation(out, mat) { | -
| - | out[0] = mat[12]; | -
| - | out[1] = mat[13]; | -
| - | out[2] = mat[14]; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns the scaling factor component of a transformation | -
| - | * matrix. If a matrix is built with fromRotationTranslationScale | -
| - | * with a normalized Quaternion paramter, the returned vector will be | -
| - | * the same as the scaling vector | -
| - | * originally supplied. | -
| - | * @param {vec3} out Vector to receive scaling factor component | -
| - | * @param {mat4} mat Matrix to be decomposed (input) | -
| - | * @return {vec3} out | -
| - | */ | -
| - | function getScaling(out, mat) { | -
| - | var m11 = mat[0]; | -
| - | var m12 = mat[1]; | -
| - | var m13 = mat[2]; | -
| - | var m21 = mat[4]; | -
| - | var m22 = mat[5]; | -
| - | var m23 = mat[6]; | -
| - | var m31 = mat[8]; | -
| - | var m32 = mat[9]; | -
| - | var m33 = mat[10]; | -
| - | - | -
| - | out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13); | -
| - | out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23); | -
| - | out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33); | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a quaternion representing the rotational component | -
| - | * of a transformation matrix. If a matrix is built with | -
| - | * fromRotationTranslation, the returned quaternion will be the | -
| - | * same as the quaternion originally supplied. | -
| - | * @param {quat} out Quaternion to receive the rotation component | -
| - | * @param {mat4} mat Matrix to be decomposed (input) | -
| - | * @return {quat} out | -
| - | */ | -
| - | function getRotation(out, mat) { | -
| - | // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm | -
| - | var trace = mat[0] + mat[5] + mat[10]; | -
| - | var S = 0; | -
| - | - | -
| - | if (trace > 0) { | -
| - | S = Math.sqrt(trace + 1.0) * 2; | -
| - | out[3] = 0.25 * S; | -
| - | out[0] = (mat[6] - mat[9]) / S; | -
| - | out[1] = (mat[8] - mat[2]) / S; | -
| - | out[2] = (mat[1] - mat[4]) / S; | -
| - | } else if (mat[0] > mat[5] & mat[0] > mat[10]) { | -
| - | S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2; | -
| - | out[3] = (mat[6] - mat[9]) / S; | -
| - | out[0] = 0.25 * S; | -
| - | out[1] = (mat[1] + mat[4]) / S; | -
| - | out[2] = (mat[8] + mat[2]) / S; | -
| - | } else if (mat[5] > mat[10]) { | -
| - | S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2; | -
| - | out[3] = (mat[8] - mat[2]) / S; | -
| - | out[0] = (mat[1] + mat[4]) / S; | -
| - | out[1] = 0.25 * S; | -
| - | out[2] = (mat[6] + mat[9]) / S; | -
| - | } else { | -
| - | S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2; | -
| - | out[3] = (mat[1] - mat[4]) / S; | -
| - | out[0] = (mat[8] + mat[2]) / S; | -
| - | out[1] = (mat[6] + mat[9]) / S; | -
| - | out[2] = 0.25 * S; | -
| - | } | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a quaternion rotation, vector translation and vector scale | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.translate(dest, vec); | -
| - | * let quatMat = mat4.create(); | -
| - | * quat4.toMat4(quat, quatMat); | -
| - | * mat4.multiply(dest, quatMat); | -
| - | * mat4.scale(dest, scale) | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {quat4} q Rotation quaternion | -
| - | * @param {vec3} v Translation vector | -
| - | * @param {vec3} s Scaling vector | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromRotationTranslationScale(out, q, v, s) { | -
| - | // Quaternion math | -
| - | var x = q[0], | -
| - | y = q[1], | -
| - | z = q[2], | -
| - | w = q[3]; | -
| - | var x2 = x + x; | -
| - | var y2 = y + y; | -
| - | var z2 = z + z; | -
| - | - | -
| - | var xx = x * x2; | -
| - | var xy = x * y2; | -
| - | var xz = x * z2; | -
| - | var yy = y * y2; | -
| - | var yz = y * z2; | -
| - | var zz = z * z2; | -
| - | var wx = w * x2; | -
| - | var wy = w * y2; | -
| - | var wz = w * z2; | -
| - | var sx = s[0]; | -
| - | var sy = s[1]; | -
| - | var sz = s[2]; | -
| - | - | -
| - | out[0] = (1 - (yy + zz)) * sx; | -
| - | out[1] = (xy + wz) * sx; | -
| - | out[2] = (xz - wy) * sx; | -
| - | out[3] = 0; | -
| - | out[4] = (xy - wz) * sy; | -
| - | out[5] = (1 - (xx + zz)) * sy; | -
| - | out[6] = (yz + wx) * sy; | -
| - | out[7] = 0; | -
| - | out[8] = (xz + wy) * sz; | -
| - | out[9] = (yz - wx) * sz; | -
| - | out[10] = (1 - (xx + yy)) * sz; | -
| - | out[11] = 0; | -
| - | out[12] = v[0]; | -
| - | out[13] = v[1]; | -
| - | out[14] = v[2]; | -
| - | out[15] = 1; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin | -
| - | * This is equivalent to (but much faster than): | -
| - | * | -
| - | * mat4.identity(dest); | -
| - | * mat4.translate(dest, vec); | -
| - | * mat4.translate(dest, origin); | -
| - | * let quatMat = mat4.create(); | -
| - | * quat4.toMat4(quat, quatMat); | -
| - | * mat4.multiply(dest, quatMat); | -
| - | * mat4.scale(dest, scale) | -
| - | * mat4.translate(dest, negativeOrigin); | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {quat4} q Rotation quaternion | -
| - | * @param {vec3} v Translation vector | -
| - | * @param {vec3} s Scaling vector | -
| - | * @param {vec3} o The origin vector around which to scale and rotate | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromRotationTranslationScaleOrigin(out, q, v, s, o) { | -
| - | // Quaternion math | -
| - | var x = q[0], | -
| - | y = q[1], | -
| - | z = q[2], | -
| - | w = q[3]; | -
| - | var x2 = x + x; | -
| - | var y2 = y + y; | -
| - | var z2 = z + z; | -
| - | - | -
| - | var xx = x * x2; | -
| - | var xy = x * y2; | -
| - | var xz = x * z2; | -
| - | var yy = y * y2; | -
| - | var yz = y * z2; | -
| - | var zz = z * z2; | -
| - | var wx = w * x2; | -
| - | var wy = w * y2; | -
| - | var wz = w * z2; | -
| - | - | -
| - | var sx = s[0]; | -
| - | var sy = s[1]; | -
| - | var sz = s[2]; | -
| - | - | -
| - | var ox = o[0]; | -
| - | var oy = o[1]; | -
| - | var oz = o[2]; | -
| - | - | -
| - | out[0] = (1 - (yy + zz)) * sx; | -
| - | out[1] = (xy + wz) * sx; | -
| - | out[2] = (xz - wy) * sx; | -
| - | out[3] = 0; | -
| - | out[4] = (xy - wz) * sy; | -
| - | out[5] = (1 - (xx + zz)) * sy; | -
| - | out[6] = (yz + wx) * sy; | -
| - | out[7] = 0; | -
| - | out[8] = (xz + wy) * sz; | -
| - | out[9] = (yz - wx) * sz; | -
| - | out[10] = (1 - (xx + yy)) * sz; | -
| - | out[11] = 0; | -
| - | out[12] = v[0] + ox - (out[0] * ox + out[4] * oy + out[8] * oz); | -
| - | out[13] = v[1] + oy - (out[1] * ox + out[5] * oy + out[9] * oz); | -
| - | out[14] = v[2] + oz - (out[2] * ox + out[6] * oy + out[10] * oz); | -
| - | out[15] = 1; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates a 4x4 matrix from the given quaternion | -
| - | * | -
| - | * @param {mat4} out mat4 receiving operation result | -
| - | * @param {quat} q Quaternion to create matrix from | -
| - | * | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function fromQuat(out, q) { | -
| - | var x = q[0], | -
| - | y = q[1], | -
| - | z = q[2], | -
| - | w = q[3]; | -
| - | var x2 = x + x; | -
| - | var y2 = y + y; | -
| - | var z2 = z + z; | -
| - | - | -
| - | var xx = x * x2; | -
| - | var yx = y * x2; | -
| - | var yy = y * y2; | -
| - | var zx = z * x2; | -
| - | var zy = z * y2; | -
| - | var zz = z * z2; | -
| - | var wx = w * x2; | -
| - | var wy = w * y2; | -
| - | var wz = w * z2; | -
| - | - | -
| - | out[0] = 1 - yy - zz; | -
| - | out[1] = yx + wz; | -
| - | out[2] = zx - wy; | -
| - | out[3] = 0; | -
| - | - | -
| - | out[4] = yx - wz; | -
| - | out[5] = 1 - xx - zz; | -
| - | out[6] = zy + wx; | -
| - | out[7] = 0; | -
| - | - | -
| - | out[8] = zx + wy; | -
| - | out[9] = zy - wx; | -
| - | out[10] = 1 - xx - yy; | -
| - | out[11] = 0; | -
| - | - | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 0; | -
| - | out[15] = 1; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a frustum matrix with the given bounds | -
| - | * | -
| - | * @param {mat4} out mat4 frustum matrix will be written into | -
| - | * @param {Number} left Left bound of the frustum | -
| - | * @param {Number} right Right bound of the frustum | -
| - | * @param {Number} bottom Bottom bound of the frustum | -
| - | * @param {Number} top Top bound of the frustum | -
| - | * @param {Number} near Near bound of the frustum | -
| - | * @param {Number} far Far bound of the frustum | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function frustum(out, left, right, bottom, top, near, far) { | -
| - | var rl = 1 / (right - left); | -
| - | var tb = 1 / (top - bottom); | -
| - | var nf = 1 / (near - far); | -
| - | out[0] = near * 2 * rl; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = near * 2 * tb; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = (right + left) * rl; | -
| - | out[9] = (top + bottom) * tb; | -
| - | out[10] = (far + near) * nf; | -
| - | out[11] = -1; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = far * near * 2 * nf; | -
| - | out[15] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a perspective projection matrix with the given bounds | -
| - | * | -
| - | * @param {mat4} out mat4 frustum matrix will be written into | -
| - | * @param {number} fovy Vertical field of view in radians | -
| - | * @param {number} aspect Aspect ratio. typically viewport width/height | -
| - | * @param {number} near Near bound of the frustum | -
| - | * @param {number} far Far bound of the frustum | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function perspective(out, fovy, aspect, near, far) { | -
| - | var f = 1.0 / Math.tan(fovy / 2); | -
| - | var nf = 1 / (near - far); | -
| - | out[0] = f / aspect; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = f; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = (far + near) * nf; | -
| - | out[11] = -1; | -
| - | out[12] = 0; | -
| - | out[13] = 0; | -
| - | out[14] = 2 * far * near * nf; | -
| - | out[15] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a perspective projection matrix with the given field of view. | -
| - | * This is primarily useful for generating projection matrices to be used | -
| - | * with the still experiemental WebVR API. | -
| - | * | -
| - | * @param {mat4} out mat4 frustum matrix will be written into | -
| - | * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees | -
| - | * @param {number} near Near bound of the frustum | -
| - | * @param {number} far Far bound of the frustum | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function perspectiveFromFieldOfView(out, fov, near, far) { | -
| - | var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0); | -
| - | var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0); | -
| - | var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0); | -
| - | var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0); | -
| - | var xScale = 2.0 / (leftTan + rightTan); | -
| - | var yScale = 2.0 / (upTan + downTan); | -
| - | - | -
| - | out[0] = xScale; | -
| - | out[1] = 0.0; | -
| - | out[2] = 0.0; | -
| - | out[3] = 0.0; | -
| - | out[4] = 0.0; | -
| - | out[5] = yScale; | -
| - | out[6] = 0.0; | -
| - | out[7] = 0.0; | -
| - | out[8] = -((leftTan - rightTan) * xScale * 0.5); | -
| - | out[9] = (upTan - downTan) * yScale * 0.5; | -
| - | out[10] = far / (near - far); | -
| - | out[11] = -1.0; | -
| - | out[12] = 0.0; | -
| - | out[13] = 0.0; | -
| - | out[14] = far * near / (near - far); | -
| - | out[15] = 0.0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a orthogonal projection matrix with the given bounds | -
| - | * | -
| - | * @param {mat4} out mat4 frustum matrix will be written into | -
| - | * @param {number} left Left bound of the frustum | -
| - | * @param {number} right Right bound of the frustum | -
| - | * @param {number} bottom Bottom bound of the frustum | -
| - | * @param {number} top Top bound of the frustum | -
| - | * @param {number} near Near bound of the frustum | -
| - | * @param {number} far Far bound of the frustum | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function ortho(out, left, right, bottom, top, near, far) { | -
| - | var lr = 1 / (left - right); | -
| - | var bt = 1 / (bottom - top); | -
| - | var nf = 1 / (near - far); | -
| - | out[0] = -2 * lr; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 0; | -
| - | out[4] = 0; | -
| - | out[5] = -2 * bt; | -
| - | out[6] = 0; | -
| - | out[7] = 0; | -
| - | out[8] = 0; | -
| - | out[9] = 0; | -
| - | out[10] = 2 * nf; | -
| - | out[11] = 0; | -
| - | out[12] = (left + right) * lr; | -
| - | out[13] = (top + bottom) * bt; | -
| - | out[14] = (far + near) * nf; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a look-at matrix with the given eye position, focal point, and up axis | -
| - | * | -
| - | * @param {mat4} out mat4 frustum matrix will be written into | -
| - | * @param {vec3} eye Position of the viewer | -
| - | * @param {vec3} center Point the viewer is looking at | -
| - | * @param {vec3} up vec3 pointing up | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function lookAt(out, eye, center, up) { | -
| - | var x0 = void 0, | -
| - | x1 = void 0, | -
| - | x2 = void 0, | -
| - | y0 = void 0, | -
| - | y1 = void 0, | -
| - | y2 = void 0, | -
| - | z0 = void 0, | -
| - | z1 = void 0, | -
| - | z2 = void 0, | -
| - | len = void 0; | -
| - | var eyex = eye[0]; | -
| - | var eyey = eye[1]; | -
| - | var eyez = eye[2]; | -
| - | var upx = up[0]; | -
| - | var upy = up[1]; | -
| - | var upz = up[2]; | -
| - | var centerx = center[0]; | -
| - | var centery = center[1]; | -
| - | var centerz = center[2]; | -
| - | - | -
| - | if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) { | -
| - | return mat4.identity(out); | -
| - | } | -
| - | - | -
| - | z0 = eyex - centerx; | -
| - | z1 = eyey - centery; | -
| - | z2 = eyez - centerz; | -
| - | - | -
| - | len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); | -
| - | z0 *= len; | -
| - | z1 *= len; | -
| - | z2 *= len; | -
| - | - | -
| - | x0 = upy * z2 - upz * z1; | -
| - | x1 = upz * z0 - upx * z2; | -
| - | x2 = upx * z1 - upy * z0; | -
| - | len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); | -
| - | if (!len) { | -
| - | x0 = 0; | -
| - | x1 = 0; | -
| - | x2 = 0; | -
| - | } else { | -
| - | len = 1 / len; | -
| - | x0 *= len; | -
| - | x1 *= len; | -
| - | x2 *= len; | -
| - | } | -
| - | - | -
| - | y0 = z1 * x2 - z2 * x1; | -
| - | y1 = z2 * x0 - z0 * x2; | -
| - | y2 = z0 * x1 - z1 * x0; | -
| - | - | -
| - | len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); | -
| - | if (!len) { | -
| - | y0 = 0; | -
| - | y1 = 0; | -
| - | y2 = 0; | -
| - | } else { | -
| - | len = 1 / len; | -
| - | y0 *= len; | -
| - | y1 *= len; | -
| - | y2 *= len; | -
| - | } | -
| - | - | -
| - | out[0] = x0; | -
| - | out[1] = y0; | -
| - | out[2] = z0; | -
| - | out[3] = 0; | -
| - | out[4] = x1; | -
| - | out[5] = y1; | -
| - | out[6] = z1; | -
| - | out[7] = 0; | -
| - | out[8] = x2; | -
| - | out[9] = y2; | -
| - | out[10] = z2; | -
| - | out[11] = 0; | -
| - | out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); | -
| - | out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); | -
| - | out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); | -
| - | out[15] = 1; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Generates a matrix that makes something look at something else. | -
| - | * | -
| - | * @param {mat4} out mat4 frustum matrix will be written into | -
| - | * @param {vec3} eye Position of the viewer | -
| - | * @param {vec3} center Point the viewer is looking at | -
| - | * @param {vec3} up vec3 pointing up | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function targetTo(out, eye, target, up) { | -
| - | var eyex = eye[0], | -
| - | eyey = eye[1], | -
| - | eyez = eye[2], | -
| - | upx = up[0], | -
| - | upy = up[1], | -
| - | upz = up[2]; | -
| - | - | -
| - | var z0 = eyex - target[0], | -
| - | z1 = eyey - target[1], | -
| - | z2 = eyez - target[2]; | -
| - | - | -
| - | var len = z0 * z0 + z1 * z1 + z2 * z2; | -
| - | if (len > 0) { | -
| - | len = 1 / Math.sqrt(len); | -
| - | z0 *= len; | -
| - | z1 *= len; | -
| - | z2 *= len; | -
| - | } | -
| - | - | -
| - | var x0 = upy * z2 - upz * z1, | -
| - | x1 = upz * z0 - upx * z2, | -
| - | x2 = upx * z1 - upy * z0; | -
| - | - | -
| - | out[0] = x0; | -
| - | out[1] = x1; | -
| - | out[2] = x2; | -
| - | out[3] = 0; | -
| - | out[4] = z1 * x2 - z2 * x1; | -
| - | out[5] = z2 * x0 - z0 * x2; | -
| - | out[6] = z0 * x1 - z1 * x0; | -
| - | out[7] = 0; | -
| - | out[8] = z0; | -
| - | out[9] = z1; | -
| - | out[10] = z2; | -
| - | out[11] = 0; | -
| - | out[12] = eyex; | -
| - | out[13] = eyey; | -
| - | out[14] = eyez; | -
| - | out[15] = 1; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a mat4 | -
| - | * | -
| - | * @param {mat4} a matrix to represent as a string | -
| - | * @returns {String} string representation of the matrix | -
| - | */ | -
| - | function str(a) { | -
| - | return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns Frobenius norm of a mat4 | -
| - | * | -
| - | * @param {mat4} a the matrix to calculate Frobenius norm of | -
| - | * @returns {Number} Frobenius norm | -
| - | */ | -
| - | function frob(a) { | -
| - | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat4's | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the first operand | -
| - | * @param {mat4} b the second operand | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | out[2] = a[2] + b[2]; | -
| - | out[3] = a[3] + b[3]; | -
| - | out[4] = a[4] + b[4]; | -
| - | out[5] = a[5] + b[5]; | -
| - | out[6] = a[6] + b[6]; | -
| - | out[7] = a[7] + b[7]; | -
| - | out[8] = a[8] + b[8]; | -
| - | out[9] = a[9] + b[9]; | -
| - | out[10] = a[10] + b[10]; | -
| - | out[11] = a[11] + b[11]; | -
| - | out[12] = a[12] + b[12]; | -
| - | out[13] = a[13] + b[13]; | -
| - | out[14] = a[14] + b[14]; | -
| - | out[15] = a[15] + b[15]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts matrix b from matrix a | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the first operand | -
| - | * @param {mat4} b the second operand | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | out[2] = a[2] - b[2]; | -
| - | out[3] = a[3] - b[3]; | -
| - | out[4] = a[4] - b[4]; | -
| - | out[5] = a[5] - b[5]; | -
| - | out[6] = a[6] - b[6]; | -
| - | out[7] = a[7] - b[7]; | -
| - | out[8] = a[8] - b[8]; | -
| - | out[9] = a[9] - b[9]; | -
| - | out[10] = a[10] - b[10]; | -
| - | out[11] = a[11] - b[11]; | -
| - | out[12] = a[12] - b[12]; | -
| - | out[13] = a[13] - b[13]; | -
| - | out[14] = a[14] - b[14]; | -
| - | out[15] = a[15] - b[15]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiply each element of the matrix by a scalar. | -
| - | * | -
| - | * @param {mat4} out the receiving matrix | -
| - | * @param {mat4} a the matrix to scale | -
| - | * @param {Number} b amount to scale the matrix's elements by | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function multiplyScalar(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | out[2] = a[2] * b; | -
| - | out[3] = a[3] * b; | -
| - | out[4] = a[4] * b; | -
| - | out[5] = a[5] * b; | -
| - | out[6] = a[6] * b; | -
| - | out[7] = a[7] * b; | -
| - | out[8] = a[8] * b; | -
| - | out[9] = a[9] * b; | -
| - | out[10] = a[10] * b; | -
| - | out[11] = a[11] * b; | -
| - | out[12] = a[12] * b; | -
| - | out[13] = a[13] * b; | -
| - | out[14] = a[14] * b; | -
| - | out[15] = a[15] * b; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two mat4's after multiplying each element of the second operand by a scalar value. | -
| - | * | -
| - | * @param {mat4} out the receiving vector | -
| - | * @param {mat4} a the first operand | -
| - | * @param {mat4} b the second operand | -
| - | * @param {Number} scale the amount to scale b's elements by before adding | -
| - | * @returns {mat4} out | -
| - | */ | -
| - | function multiplyScalarAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | out[2] = a[2] + b[2] * scale; | -
| - | out[3] = a[3] + b[3] * scale; | -
| - | out[4] = a[4] + b[4] * scale; | -
| - | out[5] = a[5] + b[5] * scale; | -
| - | out[6] = a[6] + b[6] * scale; | -
| - | out[7] = a[7] + b[7] * scale; | -
| - | out[8] = a[8] + b[8] * scale; | -
| - | out[9] = a[9] + b[9] * scale; | -
| - | out[10] = a[10] + b[10] * scale; | -
| - | out[11] = a[11] + b[11] * scale; | -
| - | out[12] = a[12] + b[12] * scale; | -
| - | out[13] = a[13] + b[13] * scale; | -
| - | out[14] = a[14] + b[14] * scale; | -
| - | out[15] = a[15] + b[15] * scale; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {mat4} a The first matrix. | -
| - | * @param {mat4} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the matrices have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {mat4} a The first matrix. | -
| - | * @param {mat4} b The second matrix. | -
| - | * @returns {Boolean} True if the matrices are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var a4 = a[4], | -
| - | a5 = a[5], | -
| - | a6 = a[6], | -
| - | a7 = a[7]; | -
| - | var a8 = a[8], | -
| - | a9 = a[9], | -
| - | a10 = a[10], | -
| - | a11 = a[11]; | -
| - | var a12 = a[12], | -
| - | a13 = a[13], | -
| - | a14 = a[14], | -
| - | a15 = a[15]; | -
| - | - | -
| - | var b0 = b[0], | -
| - | b1 = b[1], | -
| - | b2 = b[2], | -
| - | b3 = b[3]; | -
| - | var b4 = b[4], | -
| - | b5 = b[5], | -
| - | b6 = b[6], | -
| - | b7 = b[7]; | -
| - | var b8 = b[8], | -
| - | b9 = b[9], | -
| - | b10 = b[10], | -
| - | b11 = b[11]; | -
| - | var b12 = b[12], | -
| - | b13 = b[13], | -
| - | b14 = b[14], | -
| - | b15 = b[15]; | -
| - | - | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat4.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link mat4.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /***/ }), | -
| - | /* 8 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.setAxes = exports.sqlerp = exports.rotationTo = exports.equals = exports.exactEquals = exports.normalize = exports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.lerp = exports.dot = exports.scale = exports.mul = exports.add = exports.set = exports.copy = exports.fromValues = exports.clone = undefined; | -
| - | exports.create = create; | -
| - | exports.identity = identity; | -
| - | exports.setAxisAngle = setAxisAngle; | -
| - | exports.getAxisAngle = getAxisAngle; | -
| - | exports.multiply = multiply; | -
| - | exports.rotateX = rotateX; | -
| - | exports.rotateY = rotateY; | -
| - | exports.rotateZ = rotateZ; | -
| - | exports.calculateW = calculateW; | -
| - | exports.slerp = slerp; | -
| - | exports.invert = invert; | -
| - | exports.conjugate = conjugate; | -
| - | exports.fromMat3 = fromMat3; | -
| - | exports.fromEuler = fromEuler; | -
| - | exports.str = str; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | var _mat = __webpack_require__(1); | -
| - | - | -
| - | var mat3 = _interopRequireWildcard(_mat); | -
| - | - | -
| - | var _vec = __webpack_require__(2); | -
| - | - | -
| - | var vec3 = _interopRequireWildcard(_vec); | -
| - | - | -
| - | var _vec2 = __webpack_require__(3); | -
| - | - | -
| - | var vec4 = _interopRequireWildcard(_vec2); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * Quaternion | -
| - | * @module quat | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new identity quat | -
| - | * | -
| - | * @returns {quat} a new quaternion | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(4); | -
| - | out[0] = 0; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set a quat to the identity quaternion | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function identity(out) { | -
| - | out[0] = 0; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Sets a quat from the given angle and rotation axis, | -
| - | * then returns it. | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {vec3} axis the axis around which to rotate | -
| - | * @param {Number} rad the angle in radians | -
| - | * @returns {quat} out | -
| - | **/ | -
| - | function setAxisAngle(out, axis, rad) { | -
| - | rad = rad * 0.5; | -
| - | var s = Math.sin(rad); | -
| - | out[0] = s * axis[0]; | -
| - | out[1] = s * axis[1]; | -
| - | out[2] = s * axis[2]; | -
| - | out[3] = Math.cos(rad); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Gets the rotation axis and angle for a given | -
| - | * quaternion. If a quaternion is created with | -
| - | * setAxisAngle, this method will return the same | -
| - | * values as providied in the original parameter list | -
| - | * OR functionally equivalent values. | -
| - | * Example: The quaternion formed by axis [0, 0, 1] and | -
| - | * angle -90 is the same as the quaternion formed by | -
| - | * [0, 0, 1] and 270. This method favors the latter. | -
| - | * @param {vec3} out_axis Vector receiving the axis of rotation | -
| - | * @param {quat} q Quaternion to be decomposed | -
| - | * @return {Number} Angle, in radians, of the rotation | -
| - | */ | -
| - | function getAxisAngle(out_axis, q) { | -
| - | var rad = Math.acos(q[3]) * 2.0; | -
| - | var s = Math.sin(rad / 2.0); | -
| - | if (s != 0.0) { | -
| - | out_axis[0] = q[0] / s; | -
| - | out_axis[1] = q[1] / s; | -
| - | out_axis[2] = q[2] / s; | -
| - | } else { | -
| - | // If s is zero, return any axis (no rotation - axis does not matter) | -
| - | out_axis[0] = 1; | -
| - | out_axis[1] = 0; | -
| - | out_axis[2] = 0; | -
| - | } | -
| - | return rad; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two quat's | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a the first operand | -
| - | * @param {quat} b the second operand | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | var ax = a[0], | -
| - | ay = a[1], | -
| - | az = a[2], | -
| - | aw = a[3]; | -
| - | var bx = b[0], | -
| - | by = b[1], | -
| - | bz = b[2], | -
| - | bw = b[3]; | -
| - | - | -
| - | out[0] = ax * bw + aw * bx + ay * bz - az * by; | -
| - | out[1] = ay * bw + aw * by + az * bx - ax * bz; | -
| - | out[2] = az * bw + aw * bz + ax * by - ay * bx; | -
| - | out[3] = aw * bw - ax * bx - ay * by - az * bz; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a quaternion by the given angle about the X axis | -
| - | * | -
| - | * @param {quat} out quat receiving operation result | -
| - | * @param {quat} a quat to rotate | -
| - | * @param {number} rad angle (in radians) to rotate | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function rotateX(out, a, rad) { | -
| - | rad *= 0.5; | -
| - | - | -
| - | var ax = a[0], | -
| - | ay = a[1], | -
| - | az = a[2], | -
| - | aw = a[3]; | -
| - | var bx = Math.sin(rad), | -
| - | bw = Math.cos(rad); | -
| - | - | -
| - | out[0] = ax * bw + aw * bx; | -
| - | out[1] = ay * bw + az * bx; | -
| - | out[2] = az * bw - ay * bx; | -
| - | out[3] = aw * bw - ax * bx; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a quaternion by the given angle about the Y axis | -
| - | * | -
| - | * @param {quat} out quat receiving operation result | -
| - | * @param {quat} a quat to rotate | -
| - | * @param {number} rad angle (in radians) to rotate | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function rotateY(out, a, rad) { | -
| - | rad *= 0.5; | -
| - | - | -
| - | var ax = a[0], | -
| - | ay = a[1], | -
| - | az = a[2], | -
| - | aw = a[3]; | -
| - | var by = Math.sin(rad), | -
| - | bw = Math.cos(rad); | -
| - | - | -
| - | out[0] = ax * bw - az * by; | -
| - | out[1] = ay * bw + aw * by; | -
| - | out[2] = az * bw + ax * by; | -
| - | out[3] = aw * bw - ay * by; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Rotates a quaternion by the given angle about the Z axis | -
| - | * | -
| - | * @param {quat} out quat receiving operation result | -
| - | * @param {quat} a quat to rotate | -
| - | * @param {number} rad angle (in radians) to rotate | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function rotateZ(out, a, rad) { | -
| - | rad *= 0.5; | -
| - | - | -
| - | var ax = a[0], | -
| - | ay = a[1], | -
| - | az = a[2], | -
| - | aw = a[3]; | -
| - | var bz = Math.sin(rad), | -
| - | bw = Math.cos(rad); | -
| - | - | -
| - | out[0] = ax * bw + ay * bz; | -
| - | out[1] = ay * bw - ax * bz; | -
| - | out[2] = az * bw + aw * bz; | -
| - | out[3] = aw * bw - az * bz; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the W component of a quat from the X, Y, and Z components. | -
| - | * Assumes that quaternion is 1 unit in length. | -
| - | * Any existing W component will be ignored. | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a quat to calculate W component of | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function calculateW(out, a) { | -
| - | var x = a[0], | -
| - | y = a[1], | -
| - | z = a[2]; | -
| - | - | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | out[2] = z; | -
| - | out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Performs a spherical linear interpolation between two quat | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a the first operand | -
| - | * @param {quat} b the second operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function slerp(out, a, b, t) { | -
| - | // benchmarks: | -
| - | // http://jsperf.com/quaternion-slerp-implementations | -
| - | var ax = a[0], | -
| - | ay = a[1], | -
| - | az = a[2], | -
| - | aw = a[3]; | -
| - | var bx = b[0], | -
| - | by = b[1], | -
| - | bz = b[2], | -
| - | bw = b[3]; | -
| - | - | -
| - | var omega = void 0, | -
| - | cosom = void 0, | -
| - | sinom = void 0, | -
| - | scale0 = void 0, | -
| - | scale1 = void 0; | -
| - | - | -
| - | // calc cosine | -
| - | cosom = ax * bx + ay * by + az * bz + aw * bw; | -
| - | // adjust signs (if necessary) | -
| - | if (cosom < 0.0) { | -
| - | cosom = -cosom; | -
| - | bx = -bx; | -
| - | by = -by; | -
| - | bz = -bz; | -
| - | bw = -bw; | -
| - | } | -
| - | // calculate coefficients | -
| - | if (1.0 - cosom > 0.000001) { | -
| - | // standard case (slerp) | -
| - | omega = Math.acos(cosom); | -
| - | sinom = Math.sin(omega); | -
| - | scale0 = Math.sin((1.0 - t) * omega) / sinom; | -
| - | scale1 = Math.sin(t * omega) / sinom; | -
| - | } else { | -
| - | // "from" and "to" quaternions are very close | -
| - | // ... so we can do a linear interpolation | -
| - | scale0 = 1.0 - t; | -
| - | scale1 = t; | -
| - | } | -
| - | // calculate final values | -
| - | out[0] = scale0 * ax + scale1 * bx; | -
| - | out[1] = scale0 * ay + scale1 * by; | -
| - | out[2] = scale0 * az + scale1 * bz; | -
| - | out[3] = scale0 * aw + scale1 * bw; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the inverse of a quat | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a quat to calculate inverse of | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function invert(out, a) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1], | -
| - | a2 = a[2], | -
| - | a3 = a[3]; | -
| - | var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3; | -
| - | var invDot = dot ? 1.0 / dot : 0; | -
| - | - | -
| - | // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0 | -
| - | - | -
| - | out[0] = -a0 * invDot; | -
| - | out[1] = -a1 * invDot; | -
| - | out[2] = -a2 * invDot; | -
| - | out[3] = a3 * invDot; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Calculates the conjugate of a quat | -
| - | * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result. | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a quat to calculate conjugate of | -
| - | * @returns {quat} out | -
| - | */ | -
| - | function conjugate(out, a) { | -
| - | out[0] = -a[0]; | -
| - | out[1] = -a[1]; | -
| - | out[2] = -a[2]; | -
| - | out[3] = a[3]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a quaternion from the given 3x3 rotation matrix. | -
| - | * | -
| - | * NOTE: The resultant quaternion is not normalized, so you should be sure | -
| - | * to renormalize the quaternion yourself where necessary. | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {mat3} m rotation matrix | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | function fromMat3(out, m) { | -
| - | // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes | -
| - | // article "Quaternion Calculus and Fast Animation". | -
| - | var fTrace = m[0] + m[4] + m[8]; | -
| - | var fRoot = void 0; | -
| - | - | -
| - | if (fTrace > 0.0) { | -
| - | // |w| > 1/2, may as well choose w > 1/2 | -
| - | fRoot = Math.sqrt(fTrace + 1.0); // 2w | -
| - | out[3] = 0.5 * fRoot; | -
| - | fRoot = 0.5 / fRoot; // 1/(4w) | -
| - | out[0] = (m[5] - m[7]) * fRoot; | -
| - | out[1] = (m[6] - m[2]) * fRoot; | -
| - | out[2] = (m[1] - m[3]) * fRoot; | -
| - | } else { | -
| - | // |w| <= 1/2 | -
| - | var i = 0; | -
| - | if (m[4] > m[0]) i = 1; | -
| - | if (m[8] > m[i * 3 + i]) i = 2; | -
| - | var j = (i + 1) % 3; | -
| - | var k = (i + 2) % 3; | -
| - | - | -
| - | fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0); | -
| - | out[i] = 0.5 * fRoot; | -
| - | fRoot = 0.5 / fRoot; | -
| - | out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot; | -
| - | out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot; | -
| - | out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot; | -
| - | } | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a quaternion from the given euler angle x, y, z. | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {x} Angle to rotate around X axis in degrees. | -
| - | * @param {y} Angle to rotate around Y axis in degrees. | -
| - | * @param {z} Angle to rotate around Z axis in degrees. | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | function fromEuler(out, x, y, z) { | -
| - | var halfToRad = 0.5 * Math.PI / 180.0; | -
| - | x *= halfToRad; | -
| - | y *= halfToRad; | -
| - | z *= halfToRad; | -
| - | - | -
| - | var sx = Math.sin(x); | -
| - | var cx = Math.cos(x); | -
| - | var sy = Math.sin(y); | -
| - | var cy = Math.cos(y); | -
| - | var sz = Math.sin(z); | -
| - | var cz = Math.cos(z); | -
| - | - | -
| - | out[0] = sx * cy * cz - cx * sy * sz; | -
| - | out[1] = cx * sy * cz + sx * cy * sz; | -
| - | out[2] = cx * cy * sz - sx * sy * cz; | -
| - | out[3] = cx * cy * cz + sx * sy * sz; | -
| - | - | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a quatenion | -
| - | * | -
| - | * @param {quat} a vector to represent as a string | -
| - | * @returns {String} string representation of the vector | -
| - | */ | -
| - | function str(a) { | -
| - | return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new quat initialized with values from an existing quaternion | -
| - | * | -
| - | * @param {quat} a quaternion to clone | -
| - | * @returns {quat} a new quaternion | -
| - | * @function | -
| - | */ | -
| - | var clone = exports.clone = vec4.clone; | -
| - | - | -
| - | /** | -
| - | * Creates a new quat initialized with the given values | -
| - | * | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @param {Number} z Z component | -
| - | * @param {Number} w W component | -
| - | * @returns {quat} a new quaternion | -
| - | * @function | -
| - | */ | -
| - | var fromValues = exports.fromValues = vec4.fromValues; | -
| - | - | -
| - | /** | -
| - | * Copy the values from one quat to another | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a the source quaternion | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | var copy = exports.copy = vec4.copy; | -
| - | - | -
| - | /** | -
| - | * Set the components of a quat to the given values | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @param {Number} z Z component | -
| - | * @param {Number} w W component | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | var set = exports.set = vec4.set; | -
| - | - | -
| - | /** | -
| - | * Adds two quat's | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a the first operand | -
| - | * @param {quat} b the second operand | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | var add = exports.add = vec4.add; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link quat.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Scales a quat by a scalar number | -
| - | * | -
| - | * @param {quat} out the receiving vector | -
| - | * @param {quat} a the vector to scale | -
| - | * @param {Number} b amount to scale the vector by | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | var scale = exports.scale = vec4.scale; | -
| - | - | -
| - | /** | -
| - | * Calculates the dot product of two quat's | -
| - | * | -
| - | * @param {quat} a the first operand | -
| - | * @param {quat} b the second operand | -
| - | * @returns {Number} dot product of a and b | -
| - | * @function | -
| - | */ | -
| - | var dot = exports.dot = vec4.dot; | -
| - | - | -
| - | /** | -
| - | * Performs a linear interpolation between two quat's | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a the first operand | -
| - | * @param {quat} b the second operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | var lerp = exports.lerp = vec4.lerp; | -
| - | - | -
| - | /** | -
| - | * Calculates the length of a quat | -
| - | * | -
| - | * @param {quat} a vector to calculate length of | -
| - | * @returns {Number} length of a | -
| - | */ | -
| - | var length = exports.length = vec4.length; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link quat.length} | -
| - | * @function | -
| - | */ | -
| - | var len = exports.len = length; | -
| - | - | -
| - | /** | -
| - | * Calculates the squared length of a quat | -
| - | * | -
| - | * @param {quat} a vector to calculate squared length of | -
| - | * @returns {Number} squared length of a | -
| - | * @function | -
| - | */ | -
| - | var squaredLength = exports.squaredLength = vec4.squaredLength; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link quat.squaredLength} | -
| - | * @function | -
| - | */ | -
| - | var sqrLen = exports.sqrLen = squaredLength; | -
| - | - | -
| - | /** | -
| - | * Normalize a quat | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a quaternion to normalize | -
| - | * @returns {quat} out | -
| - | * @function | -
| - | */ | -
| - | var normalize = exports.normalize = vec4.normalize; | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {quat} a The first quaternion. | -
| - | * @param {quat} b The second quaternion. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | var exactEquals = exports.exactEquals = vec4.exactEquals; | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the quaternions have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {quat} a The first vector. | -
| - | * @param {quat} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | var equals = exports.equals = vec4.equals; | -
| - | - | -
| - | /** | -
| - | * Sets a quaternion to represent the shortest rotation from one | -
| - | * vector to another. | -
| - | * | -
| - | * Both vectors are assumed to be unit length. | -
| - | * | -
| - | * @param {quat} out the receiving quaternion. | -
| - | * @param {vec3} a the initial vector | -
| - | * @param {vec3} b the destination vector | -
| - | * @returns {quat} out | -
| - | */ | -
| - | var rotationTo = exports.rotationTo = function () { | -
| - | var tmpvec3 = vec3.create(); | -
| - | var xUnitVec3 = vec3.fromValues(1, 0, 0); | -
| - | var yUnitVec3 = vec3.fromValues(0, 1, 0); | -
| - | - | -
| - | return function (out, a, b) { | -
| - | var dot = vec3.dot(a, b); | -
| - | if (dot < -0.999999) { | -
| - | vec3.cross(tmpvec3, xUnitVec3, a); | -
| - | if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a); | -
| - | vec3.normalize(tmpvec3, tmpvec3); | -
| - | setAxisAngle(out, tmpvec3, Math.PI); | -
| - | return out; | -
| - | } else if (dot > 0.999999) { | -
| - | out[0] = 0; | -
| - | out[1] = 0; | -
| - | out[2] = 0; | -
| - | out[3] = 1; | -
| - | return out; | -
| - | } else { | -
| - | vec3.cross(tmpvec3, a, b); | -
| - | out[0] = tmpvec3[0]; | -
| - | out[1] = tmpvec3[1]; | -
| - | out[2] = tmpvec3[2]; | -
| - | out[3] = 1 + dot; | -
| - | return normalize(out, out); | -
| - | } | -
| - | }; | -
| - | }(); | -
| - | - | -
| - | /** | -
| - | * Performs a spherical linear interpolation with two control points | -
| - | * | -
| - | * @param {quat} out the receiving quaternion | -
| - | * @param {quat} a the first operand | -
| - | * @param {quat} b the second operand | -
| - | * @param {quat} c the third operand | -
| - | * @param {quat} d the fourth operand | -
| - | * @param {Number} t interpolation amount | -
| - | * @returns {quat} out | -
| - | */ | -
| - | var sqlerp = exports.sqlerp = function () { | -
| - | var temp1 = create(); | -
| - | var temp2 = create(); | -
| - | - | -
| - | return function (out, a, b, c, d, t) { | -
| - | slerp(temp1, a, d, t); | -
| - | slerp(temp2, b, c, t); | -
| - | slerp(out, temp1, temp2, 2 * t * (1 - t)); | -
| - | - | -
| - | return out; | -
| - | }; | -
| - | }(); | -
| - | - | -
| - | /** | -
| - | * Sets the specified quaternion with values corresponding to the given | -
| - | * axes. Each axis is a vec3 and is expected to be unit length and | -
| - | * perpendicular to all other specified axes. | -
| - | * | -
| - | * @param {vec3} view the vector representing the viewing direction | -
| - | * @param {vec3} right the vector representing the local "right" direction | -
| - | * @param {vec3} up the vector representing the local "up" direction | -
| - | * @returns {quat} out | -
| - | */ | -
| - | var setAxes = exports.setAxes = function () { | -
| - | var matr = mat3.create(); | -
| - | - | -
| - | return function (out, view, right, up) { | -
| - | matr[0] = right[0]; | -
| - | matr[3] = right[1]; | -
| - | matr[6] = right[2]; | -
| - | - | -
| - | matr[1] = up[0]; | -
| - | matr[4] = up[1]; | -
| - | matr[7] = up[2]; | -
| - | - | -
| - | matr[2] = -view[0]; | -
| - | matr[5] = -view[1]; | -
| - | matr[8] = -view[2]; | -
| - | - | -
| - | return normalize(out, fromMat3(out, matr)); | -
| - | }; | -
| - | }(); | -
| - | - | -
| - | /***/ }), | -
| - | /* 9 */ | -
| - | /***/ (function(module, exports, __webpack_require__) { | -
| - | - | -
| - | "use strict"; | -
| - | - | -
| - | - | -
| - | Object.defineProperty(exports, "__esModule", { | -
| - | value: true | -
| - | }); | -
| - | exports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = undefined; | -
| - | exports.create = create; | -
| - | exports.clone = clone; | -
| - | exports.fromValues = fromValues; | -
| - | exports.copy = copy; | -
| - | exports.set = set; | -
| - | exports.add = add; | -
| - | exports.subtract = subtract; | -
| - | exports.multiply = multiply; | -
| - | exports.divide = divide; | -
| - | exports.ceil = ceil; | -
| - | exports.floor = floor; | -
| - | exports.min = min; | -
| - | exports.max = max; | -
| - | exports.round = round; | -
| - | exports.scale = scale; | -
| - | exports.scaleAndAdd = scaleAndAdd; | -
| - | exports.distance = distance; | -
| - | exports.squaredDistance = squaredDistance; | -
| - | exports.length = length; | -
| - | exports.squaredLength = squaredLength; | -
| - | exports.negate = negate; | -
| - | exports.inverse = inverse; | -
| - | exports.normalize = normalize; | -
| - | exports.dot = dot; | -
| - | exports.cross = cross; | -
| - | exports.lerp = lerp; | -
| - | exports.random = random; | -
| - | exports.transformMat2 = transformMat2; | -
| - | exports.transformMat2d = transformMat2d; | -
| - | exports.transformMat3 = transformMat3; | -
| - | exports.transformMat4 = transformMat4; | -
| - | exports.str = str; | -
| - | exports.exactEquals = exactEquals; | -
| - | exports.equals = equals; | -
| - | - | -
| - | var _common = __webpack_require__(0); | -
| - | - | -
| - | var glMatrix = _interopRequireWildcard(_common); | -
| - | - | -
| - | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | -
| - | - | -
| - | /** | -
| - | * 2 Dimensional Vector | -
| - | * @module vec2 | -
| - | */ | -
| - | - | -
| - | /** | -
| - | * Creates a new, empty vec2 | -
| - | * | -
| - | * @returns {vec2} a new 2D vector | -
| - | */ | -
| - | function create() { | -
| - | var out = new glMatrix.ARRAY_TYPE(2); | -
| - | out[0] = 0; | -
| - | out[1] = 0; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new vec2 initialized with values from an existing vector | -
| - | * | -
| - | * @param {vec2} a vector to clone | -
| - | * @returns {vec2} a new 2D vector | -
| - | */ | -
| - | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | -
| - | - |
| - | Permission is hereby granted, free of charge, to any person obtaining a copy | -
| - | of this software and associated documentation files (the "Software"), to deal | -
| - | in the Software without restriction, including without limitation the rights | -
| - | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | -
| - | copies of the Software, and to permit persons to whom the Software is | -
| - | furnished to do so, subject to the following conditions: | -
| - | - |
| - | The above copyright notice and this permission notice shall be included in | -
| - | all copies or substantial portions of the Software. | -
| - | - |
| - | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | -
| - | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | -
| - | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | -
| - | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | -
| - | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | -
| - | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | -
| - | THE SOFTWARE. */ | -
| - | - | -
| - | function clone(a) { | -
| - | var out = new glMatrix.ARRAY_TYPE(2); | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Creates a new vec2 initialized with the given values | -
| - | * | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @returns {vec2} a new 2D vector | -
| - | */ | -
| - | function fromValues(x, y) { | -
| - | var out = new glMatrix.ARRAY_TYPE(2); | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Copy the values from one vec2 to another | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the source vector | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function copy(out, a) { | -
| - | out[0] = a[0]; | -
| - | out[1] = a[1]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Set the components of a vec2 to the given values | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {Number} x X component | -
| - | * @param {Number} y Y component | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function set(out, x, y) { | -
| - | out[0] = x; | -
| - | out[1] = y; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Adds two vec2's | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function add(out, a, b) { | -
| - | out[0] = a[0] + b[0]; | -
| - | out[1] = a[1] + b[1]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Subtracts vector b from vector a | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function subtract(out, a, b) { | -
| - | out[0] = a[0] - b[0]; | -
| - | out[1] = a[1] - b[1]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Multiplies two vec2's | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function multiply(out, a, b) { | -
| - | out[0] = a[0] * b[0]; | -
| - | out[1] = a[1] * b[1]; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Divides two vec2's | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function divide(out, a, b) { | -
| - | out[0] = a[0] / b[0]; | -
| - | out[1] = a[1] / b[1]; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Math.ceil the components of a vec2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a vector to ceil | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function ceil(out, a) { | -
| - | out[0] = Math.ceil(a[0]); | -
| - | out[1] = Math.ceil(a[1]); | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Math.floor the components of a vec2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a vector to floor | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function floor(out, a) { | -
| - | out[0] = Math.floor(a[0]); | -
| - | out[1] = Math.floor(a[1]); | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Returns the minimum of two vec2's | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function min(out, a, b) { | -
| - | out[0] = Math.min(a[0], b[0]); | -
| - | out[1] = Math.min(a[1], b[1]); | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Returns the maximum of two vec2's | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function max(out, a, b) { | -
| - | out[0] = Math.max(a[0], b[0]); | -
| - | out[1] = Math.max(a[1], b[1]); | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Math.round the components of a vec2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a vector to round | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function round(out, a) { | -
| - | out[0] = Math.round(a[0]); | -
| - | out[1] = Math.round(a[1]); | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Scales a vec2 by a scalar number | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the vector to scale | -
| - | * @param {Number} b amount to scale the vector by | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function scale(out, a, b) { | -
| - | out[0] = a[0] * b; | -
| - | out[1] = a[1] * b; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Adds two vec2's after scaling the second operand by a scalar value | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @param {Number} scale the amount to scale b by before adding | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function scaleAndAdd(out, a, b, scale) { | -
| - | out[0] = a[0] + b[0] * scale; | -
| - | out[1] = a[1] + b[1] * scale; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Calculates the euclidian distance between two vec2's | -
| - | * | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {Number} distance between a and b | -
| - | */ | -
| - | function distance(a, b) { | -
| - | var x = b[0] - a[0], | -
| - | y = b[1] - a[1]; | -
| - | return Math.sqrt(x * x + y * y); | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Calculates the squared euclidian distance between two vec2's | -
| - | * | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {Number} squared distance between a and b | -
| - | */ | -
| - | function squaredDistance(a, b) { | -
| - | var x = b[0] - a[0], | -
| - | y = b[1] - a[1]; | -
| - | return x * x + y * y; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Calculates the length of a vec2 | -
| - | * | -
| - | * @param {vec2} a vector to calculate length of | -
| - | * @returns {Number} length of a | -
| - | */ | -
| - | function length(a) { | -
| - | var x = a[0], | -
| - | y = a[1]; | -
| - | return Math.sqrt(x * x + y * y); | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Calculates the squared length of a vec2 | -
| - | * | -
| - | * @param {vec2} a vector to calculate squared length of | -
| - | * @returns {Number} squared length of a | -
| - | */ | -
| - | function squaredLength(a) { | -
| - | var x = a[0], | -
| - | y = a[1]; | -
| - | return x * x + y * y; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Negates the components of a vec2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a vector to negate | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function negate(out, a) { | -
| - | out[0] = -a[0]; | -
| - | out[1] = -a[1]; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Returns the inverse of the components of a vec2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a vector to invert | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function inverse(out, a) { | -
| - | out[0] = 1.0 / a[0]; | -
| - | out[1] = 1.0 / a[1]; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Normalize a vec2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a vector to normalize | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function normalize(out, a) { | -
| - | var x = a[0], | -
| - | y = a[1]; | -
| - | var len = x * x + y * y; | -
| - | if (len > 0) { | -
| - | //TODO: evaluate use of glm_invsqrt here? | -
| - | len = 1 / Math.sqrt(len); | -
| - | out[0] = a[0] * len; | -
| - | out[1] = a[1] * len; | -
| - | } | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Calculates the dot product of two vec2's | -
| - | * | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {Number} dot product of a and b | -
| - | */ | -
| - | function dot(a, b) { | -
| - | return a[0] * b[0] + a[1] * b[1]; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Computes the cross product of two vec2's | -
| - | * Note that the cross product must by definition produce a 3D vector | -
| - | * | -
| - | * @param {vec3} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @returns {vec3} out | -
| - | */ | -
| - | function cross(out, a, b) { | -
| - | var z = a[0] * b[1] - a[1] * b[0]; | -
| - | out[0] = out[1] = 0; | -
| - | out[2] = z; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Performs a linear interpolation between two vec2's | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the first operand | -
| - | * @param {vec2} b the second operand | -
| - | * @param {Number} t interpolation amount between the two inputs | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function lerp(out, a, b, t) { | -
| - | var ax = a[0], | -
| - | ay = a[1]; | -
| - | out[0] = ax + t * (b[0] - ax); | -
| - | out[1] = ay + t * (b[1] - ay); | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Generates a random vector with the given scale | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function random(out, scale) { | -
| - | scale = scale || 1.0; | -
| - | var r = glMatrix.RANDOM() * 2.0 * Math.PI; | -
| - | out[0] = Math.cos(r) * scale; | -
| - | out[1] = Math.sin(r) * scale; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Transforms the vec2 with a mat2 | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the vector to transform | -
| - | * @param {mat2} m matrix to transform with | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function transformMat2(out, a, m) { | -
| - | var x = a[0], | -
| - | y = a[1]; | -
| - | out[0] = m[0] * x + m[2] * y; | -
| - | out[1] = m[1] * x + m[3] * y; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Transforms the vec2 with a mat2d | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the vector to transform | -
| - | * @param {mat2d} m matrix to transform with | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function transformMat2d(out, a, m) { | -
| - | var x = a[0], | -
| - | y = a[1]; | -
| - | out[0] = m[0] * x + m[2] * y + m[4]; | -
| - | out[1] = m[1] * x + m[3] * y + m[5]; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Transforms the vec2 with a mat3 | -
| - | * 3rd vector component is implicitly '1' | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the vector to transform | -
| - | * @param {mat3} m matrix to transform with | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function transformMat3(out, a, m) { | -
| - | var x = a[0], | -
| - | y = a[1]; | -
| - | out[0] = m[0] * x + m[3] * y + m[6]; | -
| - | out[1] = m[1] * x + m[4] * y + m[7]; | -
| - | return out; | -
| - | }; | -
| - | - | -
| - | /** | -
| - | * Transforms the vec2 with a mat4 | -
| - | * 3rd vector component is implicitly '0' | -
| - | * 4th vector component is implicitly '1' | -
| - | * | -
| - | * @param {vec2} out the receiving vector | -
| - | * @param {vec2} a the vector to transform | -
| - | * @param {mat4} m matrix to transform with | -
| - | * @returns {vec2} out | -
| - | */ | -
| - | function transformMat4(out, a, m) { | -
| - | var x = a[0]; | -
| - | var y = a[1]; | -
| - | out[0] = m[0] * x + m[4] * y + m[12]; | -
| - | out[1] = m[1] * x + m[5] * y + m[13]; | -
| - | return out; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns a string representation of a vector | -
| - | * | -
| - | * @param {vec2} a vector to represent as a string | -
| - | * @returns {String} string representation of the vector | -
| - | */ | -
| - | function str(a) { | -
| - | return 'vec2(' + a[0] + ', ' + a[1] + ')'; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===) | -
| - | * | -
| - | * @param {vec2} a The first vector. | -
| - | * @param {vec2} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | function exactEquals(a, b) { | -
| - | return a[0] === b[0] && a[1] === b[1]; | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Returns whether or not the vectors have approximately the same elements in the same position. | -
| - | * | -
| - | * @param {vec2} a The first vector. | -
| - | * @param {vec2} b The second vector. | -
| - | * @returns {Boolean} True if the vectors are equal, false otherwise. | -
| - | */ | -
| - | function equals(a, b) { | -
| - | var a0 = a[0], | -
| - | a1 = a[1]; | -
| - | var b0 = b[0], | -
| - | b1 = b[1]; | -
| - | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)); | -
| - | } | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.length} | -
| - | * @function | -
| - | */ | -
| - | var len = exports.len = length; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.subtract} | -
| - | * @function | -
| - | */ | -
| - | var sub = exports.sub = subtract; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.multiply} | -
| - | * @function | -
| - | */ | -
| - | var mul = exports.mul = multiply; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.divide} | -
| - | * @function | -
| - | */ | -
| - | var div = exports.div = divide; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.distance} | -
| - | * @function | -
| - | */ | -
| - | var dist = exports.dist = distance; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.squaredDistance} | -
| - | * @function | -
| - | */ | -
| - | var sqrDist = exports.sqrDist = squaredDistance; | -
| - | - | -
| - | /** | -
| - | * Alias for {@link vec2.squaredLength} | -
| - | * @function | -
| - | */ | -
| - | var sqrLen = exports.sqrLen = squaredLength; | -
| - | - | -
| - | /** | -
| - | * Perform some operation over an array of vec2s. | -
| - | * | -
| - | * @param {Array} a the array of vectors to iterate over | -
| - | * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed | -
| - | * @param {Number} offset Number of elements to skip at the beginning of the array | -
| - | * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array | -
| - | * @param {Function} fn Function to call for each vector in the array | -
| - | * @param {Object} [arg] additional argument to pass to fn | -
| - | * @returns {Array} a | -
| - | * @function | -
| - | */ | -
| - | var forEach = exports.forEach = function () { | -
| - | var vec = create(); | -
| - | - | -
| - | return function (a, stride, offset, count, fn, arg) { | -
| - | var i = void 0, | -
| - | l = void 0; | -
| - | if (!stride) { | -
| - | stride = 2; | -
| - | } | -
| - | - | -
| - | if (!offset) { | -
| - | offset = 0; | -
| - | } | -
| - | - | -
| - | if (count) { | -
| - | l = Math.min(count * stride + offset, a.length); | -
| - | } else { | -
| - | l = a.length; | -
| - | } | -
| - | - | -
| - | for (i = offset; i < l; i += stride) { | -
| - | vec[0] = a[i];vec[1] = a[i + 1]; | -
| - | fn(vec, vec, arg); | -
| - | a[i] = vec[0];a[i + 1] = vec[1]; | -
| - | } | -
| - | - | -
| - | return a; | -
| - | }; | -
| - | }(); | -
| - | - | -
| - | /***/ }) | -
| - | /******/ ]); | -
| - | }); | -