+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Permalink
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Join GitHub today
+GitHub is home to over 28 million developers working together to host and review code, manage projects, and build software together.
+ Sign up +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ executable file
+
+ 6888 lines (6259 sloc)
+
+ 170 KB
+
+
+
+
+
+
+
+
+
+ | + | /** | +
| + | * @fileoverview gl-matrix - High performance matrix and vector operations | +
| + | * @author Brandon Jones | +
| + | * @author Colin MacKenzie IV | +
| + | * @version 2.4.0 | +
| + | */ | +
| + | + | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | (function webpackUniversalModuleDefinition(root, factory) { | +
| + | if(typeof exports === 'object' && typeof module === 'object') | +
| + | module.exports = factory(); | +
| + | else if(typeof define === 'function' && define.amd) | +
| + | define([], factory); | +
| + | else { | +
| + | var a = factory(); | +
| + | for(var i in a) (typeof exports === 'object' ? exports : root)[i] = a[i]; | +
| + | } | +
| + | })(this, function() { | +
| + | return /******/ (function(modules) { // webpackBootstrap | +
| + | /******/ // The module cache | +
| + | /******/ var installedModules = {}; | +
| + | /******/ | +
| + | /******/ // The require function | +
| + | /******/ function __webpack_require__(moduleId) { | +
| + | /******/ | +
| + | /******/ // Check if module is in cache | +
| + | /******/ if(installedModules[moduleId]) { | +
| + | /******/ return installedModules[moduleId].exports; | +
| + | /******/ } | +
| + | /******/ // Create a new module (and put it into the cache) | +
| + | /******/ var module = installedModules[moduleId] = { | +
| + | /******/ i: moduleId, | +
| + | /******/ l: false, | +
| + | /******/ exports: {} | +
| + | /******/ }; | +
| + | /******/ | +
| + | /******/ // Execute the module function | +
| + | /******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__); | +
| + | /******/ | +
| + | /******/ // Flag the module as loaded | +
| + | /******/ module.l = true; | +
| + | /******/ | +
| + | /******/ // Return the exports of the module | +
| + | /******/ return module.exports; | +
| + | /******/ } | +
| + | /******/ | +
| + | /******/ | +
| + | /******/ // expose the modules object (__webpack_modules__) | +
| + | /******/ __webpack_require__.m = modules; | +
| + | /******/ | +
| + | /******/ // expose the module cache | +
| + | /******/ __webpack_require__.c = installedModules; | +
| + | /******/ | +
| + | /******/ // define getter function for harmony exports | +
| + | /******/ __webpack_require__.d = function(exports, name, getter) { | +
| + | /******/ if(!__webpack_require__.o(exports, name)) { | +
| + | /******/ Object.defineProperty(exports, name, { | +
| + | /******/ configurable: false, | +
| + | /******/ enumerable: true, | +
| + | /******/ get: getter | +
| + | /******/ }); | +
| + | /******/ } | +
| + | /******/ }; | +
| + | /******/ | +
| + | /******/ // getDefaultExport function for compatibility with non-harmony modules | +
| + | /******/ __webpack_require__.n = function(module) { | +
| + | /******/ var getter = module && module.__esModule ? | +
| + | /******/ function getDefault() { return module['default']; } : | +
| + | /******/ function getModuleExports() { return module; }; | +
| + | /******/ __webpack_require__.d(getter, 'a', getter); | +
| + | /******/ return getter; | +
| + | /******/ }; | +
| + | /******/ | +
| + | /******/ // Object.prototype.hasOwnProperty.call | +
| + | /******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); }; | +
| + | /******/ | +
| + | /******/ // __webpack_public_path__ | +
| + | /******/ __webpack_require__.p = ""; | +
| + | /******/ | +
| + | /******/ // Load entry module and return exports | +
| + | /******/ return __webpack_require__(__webpack_require__.s = 4); | +
| + | /******/ }) | +
| + | /************************************************************************/ | +
| + | /******/ ([ | +
| + | /* 0 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.setMatrixArrayType = setMatrixArrayType; | +
| + | exports.toRadian = toRadian; | +
| + | exports.equals = equals; | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | /** | +
| + | * Common utilities | +
| + | * @module glMatrix | +
| + | */ | +
| + | + | +
| + | // Configuration Constants | +
| + | var EPSILON = exports.EPSILON = 0.000001; | +
| + | var ARRAY_TYPE = exports.ARRAY_TYPE = typeof Float32Array !== 'undefined' ? Float32Array : Array; | +
| + | var RANDOM = exports.RANDOM = Math.random; | +
| + | + | +
| + | /** | +
| + | * Sets the type of array used when creating new vectors and matrices | +
| + | * | +
| + | * @param {Type} type Array type, such as Float32Array or Array | +
| + | */ | +
| + | function setMatrixArrayType(type) { | +
| + | exports.ARRAY_TYPE = ARRAY_TYPE = type; | +
| + | } | +
| + | + | +
| + | var degree = Math.PI / 180; | +
| + | + | +
| + | /** | +
| + | * Convert Degree To Radian | +
| + | * | +
| + | * @param {Number} a Angle in Degrees | +
| + | */ | +
| + | function toRadian(a) { | +
| + | return a * degree; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Tests whether or not the arguments have approximately the same value, within an absolute | +
| + | * or relative tolerance of glMatrix.EPSILON (an absolute tolerance is used for values less | +
| + | * than or equal to 1.0, and a relative tolerance is used for larger values) | +
| + | * | +
| + | * @param {Number} a The first number to test. | +
| + | * @param {Number} b The second number to test. | +
| + | * @returns {Boolean} True if the numbers are approximately equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | return Math.abs(a - b) <= EPSILON * Math.max(1.0, Math.abs(a), Math.abs(b)); | +
| + | } | +
| + | + | +
| + | /***/ }), | +
| + | /* 1 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.sub = exports.mul = undefined; | +
| + | exports.create = create; | +
| + | exports.fromMat4 = fromMat4; | +
| + | exports.clone = clone; | +
| + | exports.copy = copy; | +
| + | exports.fromValues = fromValues; | +
| + | exports.set = set; | +
| + | exports.identity = identity; | +
| + | exports.transpose = transpose; | +
| + | exports.invert = invert; | +
| + | exports.adjoint = adjoint; | +
| + | exports.determinant = determinant; | +
| + | exports.multiply = multiply; | +
| + | exports.translate = translate; | +
| + | exports.rotate = rotate; | +
| + | exports.scale = scale; | +
| + | exports.fromTranslation = fromTranslation; | +
| + | exports.fromRotation = fromRotation; | +
| + | exports.fromScaling = fromScaling; | +
| + | exports.fromMat2d = fromMat2d; | +
| + | exports.fromQuat = fromQuat; | +
| + | exports.normalFromMat4 = normalFromMat4; | +
| + | exports.projection = projection; | +
| + | exports.str = str; | +
| + | exports.frob = frob; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.multiplyScalar = multiplyScalar; | +
| + | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 3x3 Matrix | +
| + | * @module mat3 | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new identity mat3 | +
| + | * | +
| + | * @returns {mat3} a new 3x3 matrix | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(9); | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 1; | +
| + | out[5] = 0; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copies the upper-left 3x3 values into the given mat3. | +
| + | * | +
| + | * @param {mat3} out the receiving 3x3 matrix | +
| + | * @param {mat4} a the source 4x4 matrix | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function fromMat4(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[4]; | +
| + | out[4] = a[5]; | +
| + | out[5] = a[6]; | +
| + | out[6] = a[8]; | +
| + | out[7] = a[9]; | +
| + | out[8] = a[10]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new mat3 initialized with values from an existing matrix | +
| + | * | +
| + | * @param {mat3} a matrix to clone | +
| + | * @returns {mat3} a new 3x3 matrix | +
| + | */ | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(9); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | out[6] = a[6]; | +
| + | out[7] = a[7]; | +
| + | out[8] = a[8]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one mat3 to another | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the source matrix | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | out[6] = a[6]; | +
| + | out[7] = a[7]; | +
| + | out[8] = a[8]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Create a new mat3 with the given values | +
| + | * | +
| + | * @param {Number} m00 Component in column 0, row 0 position (index 0) | +
| + | * @param {Number} m01 Component in column 0, row 1 position (index 1) | +
| + | * @param {Number} m02 Component in column 0, row 2 position (index 2) | +
| + | * @param {Number} m10 Component in column 1, row 0 position (index 3) | +
| + | * @param {Number} m11 Component in column 1, row 1 position (index 4) | +
| + | * @param {Number} m12 Component in column 1, row 2 position (index 5) | +
| + | * @param {Number} m20 Component in column 2, row 0 position (index 6) | +
| + | * @param {Number} m21 Component in column 2, row 1 position (index 7) | +
| + | * @param {Number} m22 Component in column 2, row 2 position (index 8) | +
| + | * @returns {mat3} A new mat3 | +
| + | */ | +
| + | function fromValues(m00, m01, m02, m10, m11, m12, m20, m21, m22) { | +
| + | var out = new glMatrix.ARRAY_TYPE(9); | +
| + | out[0] = m00; | +
| + | out[1] = m01; | +
| + | out[2] = m02; | +
| + | out[3] = m10; | +
| + | out[4] = m11; | +
| + | out[5] = m12; | +
| + | out[6] = m20; | +
| + | out[7] = m21; | +
| + | out[8] = m22; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a mat3 to the given values | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {Number} m00 Component in column 0, row 0 position (index 0) | +
| + | * @param {Number} m01 Component in column 0, row 1 position (index 1) | +
| + | * @param {Number} m02 Component in column 0, row 2 position (index 2) | +
| + | * @param {Number} m10 Component in column 1, row 0 position (index 3) | +
| + | * @param {Number} m11 Component in column 1, row 1 position (index 4) | +
| + | * @param {Number} m12 Component in column 1, row 2 position (index 5) | +
| + | * @param {Number} m20 Component in column 2, row 0 position (index 6) | +
| + | * @param {Number} m21 Component in column 2, row 1 position (index 7) | +
| + | * @param {Number} m22 Component in column 2, row 2 position (index 8) | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function set(out, m00, m01, m02, m10, m11, m12, m20, m21, m22) { | +
| + | out[0] = m00; | +
| + | out[1] = m01; | +
| + | out[2] = m02; | +
| + | out[3] = m10; | +
| + | out[4] = m11; | +
| + | out[5] = m12; | +
| + | out[6] = m20; | +
| + | out[7] = m21; | +
| + | out[8] = m22; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set a mat3 to the identity matrix | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function identity(out) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 1; | +
| + | out[5] = 0; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transpose the values of a mat3 | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the source matrix | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function transpose(out, a) { | +
| + | // If we are transposing ourselves we can skip a few steps but have to cache some values | +
| + | if (out === a) { | +
| + | var a01 = a[1], | +
| + | a02 = a[2], | +
| + | a12 = a[5]; | +
| + | out[1] = a[3]; | +
| + | out[2] = a[6]; | +
| + | out[3] = a01; | +
| + | out[5] = a[7]; | +
| + | out[6] = a02; | +
| + | out[7] = a12; | +
| + | } else { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[3]; | +
| + | out[2] = a[6]; | +
| + | out[3] = a[1]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[7]; | +
| + | out[6] = a[2]; | +
| + | out[7] = a[5]; | +
| + | out[8] = a[8]; | +
| + | } | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Inverts a mat3 | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the source matrix | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function invert(out, a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2]; | +
| + | var a10 = a[3], | +
| + | a11 = a[4], | +
| + | a12 = a[5]; | +
| + | var a20 = a[6], | +
| + | a21 = a[7], | +
| + | a22 = a[8]; | +
| + | + | +
| + | var b01 = a22 * a11 - a12 * a21; | +
| + | var b11 = -a22 * a10 + a12 * a20; | +
| + | var b21 = a21 * a10 - a11 * a20; | +
| + | + | +
| + | // Calculate the determinant | +
| + | var det = a00 * b01 + a01 * b11 + a02 * b21; | +
| + | + | +
| + | if (!det) { | +
| + | return null; | +
| + | } | +
| + | det = 1.0 / det; | +
| + | + | +
| + | out[0] = b01 * det; | +
| + | out[1] = (-a22 * a01 + a02 * a21) * det; | +
| + | out[2] = (a12 * a01 - a02 * a11) * det; | +
| + | out[3] = b11 * det; | +
| + | out[4] = (a22 * a00 - a02 * a20) * det; | +
| + | out[5] = (-a12 * a00 + a02 * a10) * det; | +
| + | out[6] = b21 * det; | +
| + | out[7] = (-a21 * a00 + a01 * a20) * det; | +
| + | out[8] = (a11 * a00 - a01 * a10) * det; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the adjugate of a mat3 | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the source matrix | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function adjoint(out, a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2]; | +
| + | var a10 = a[3], | +
| + | a11 = a[4], | +
| + | a12 = a[5]; | +
| + | var a20 = a[6], | +
| + | a21 = a[7], | +
| + | a22 = a[8]; | +
| + | + | +
| + | out[0] = a11 * a22 - a12 * a21; | +
| + | out[1] = a02 * a21 - a01 * a22; | +
| + | out[2] = a01 * a12 - a02 * a11; | +
| + | out[3] = a12 * a20 - a10 * a22; | +
| + | out[4] = a00 * a22 - a02 * a20; | +
| + | out[5] = a02 * a10 - a00 * a12; | +
| + | out[6] = a10 * a21 - a11 * a20; | +
| + | out[7] = a01 * a20 - a00 * a21; | +
| + | out[8] = a00 * a11 - a01 * a10; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the determinant of a mat3 | +
| + | * | +
| + | * @param {mat3} a the source matrix | +
| + | * @returns {Number} determinant of a | +
| + | */ | +
| + | function determinant(a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2]; | +
| + | var a10 = a[3], | +
| + | a11 = a[4], | +
| + | a12 = a[5]; | +
| + | var a20 = a[6], | +
| + | a21 = a[7], | +
| + | a22 = a[8]; | +
| + | + | +
| + | return a00 * (a22 * a11 - a12 * a21) + a01 * (-a22 * a10 + a12 * a20) + a02 * (a21 * a10 - a11 * a20); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two mat3's | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the first operand | +
| + | * @param {mat3} b the second operand | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2]; | +
| + | var a10 = a[3], | +
| + | a11 = a[4], | +
| + | a12 = a[5]; | +
| + | var a20 = a[6], | +
| + | a21 = a[7], | +
| + | a22 = a[8]; | +
| + | + | +
| + | var b00 = b[0], | +
| + | b01 = b[1], | +
| + | b02 = b[2]; | +
| + | var b10 = b[3], | +
| + | b11 = b[4], | +
| + | b12 = b[5]; | +
| + | var b20 = b[6], | +
| + | b21 = b[7], | +
| + | b22 = b[8]; | +
| + | + | +
| + | out[0] = b00 * a00 + b01 * a10 + b02 * a20; | +
| + | out[1] = b00 * a01 + b01 * a11 + b02 * a21; | +
| + | out[2] = b00 * a02 + b01 * a12 + b02 * a22; | +
| + | + | +
| + | out[3] = b10 * a00 + b11 * a10 + b12 * a20; | +
| + | out[4] = b10 * a01 + b11 * a11 + b12 * a21; | +
| + | out[5] = b10 * a02 + b11 * a12 + b12 * a22; | +
| + | + | +
| + | out[6] = b20 * a00 + b21 * a10 + b22 * a20; | +
| + | out[7] = b20 * a01 + b21 * a11 + b22 * a21; | +
| + | out[8] = b20 * a02 + b21 * a12 + b22 * a22; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Translate a mat3 by the given vector | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the matrix to translate | +
| + | * @param {vec2} v vector to translate by | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function translate(out, a, v) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a10 = a[3], | +
| + | a11 = a[4], | +
| + | a12 = a[5], | +
| + | a20 = a[6], | +
| + | a21 = a[7], | +
| + | a22 = a[8], | +
| + | x = v[0], | +
| + | y = v[1]; | +
| + | + | +
| + | out[0] = a00; | +
| + | out[1] = a01; | +
| + | out[2] = a02; | +
| + | + | +
| + | out[3] = a10; | +
| + | out[4] = a11; | +
| + | out[5] = a12; | +
| + | + | +
| + | out[6] = x * a00 + y * a10 + a20; | +
| + | out[7] = x * a01 + y * a11 + a21; | +
| + | out[8] = x * a02 + y * a12 + a22; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a mat3 by the given angle | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function rotate(out, a, rad) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a10 = a[3], | +
| + | a11 = a[4], | +
| + | a12 = a[5], | +
| + | a20 = a[6], | +
| + | a21 = a[7], | +
| + | a22 = a[8], | +
| + | s = Math.sin(rad), | +
| + | c = Math.cos(rad); | +
| + | + | +
| + | out[0] = c * a00 + s * a10; | +
| + | out[1] = c * a01 + s * a11; | +
| + | out[2] = c * a02 + s * a12; | +
| + | + | +
| + | out[3] = c * a10 - s * a00; | +
| + | out[4] = c * a11 - s * a01; | +
| + | out[5] = c * a12 - s * a02; | +
| + | + | +
| + | out[6] = a20; | +
| + | out[7] = a21; | +
| + | out[8] = a22; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Scales the mat3 by the dimensions in the given vec2 | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the matrix to rotate | +
| + | * @param {vec2} v the vec2 to scale the matrix by | +
| + | * @returns {mat3} out | +
| + | **/ | +
| + | function scale(out, a, v) { | +
| + | var x = v[0], | +
| + | y = v[1]; | +
| + | + | +
| + | out[0] = x * a[0]; | +
| + | out[1] = x * a[1]; | +
| + | out[2] = x * a[2]; | +
| + | + | +
| + | out[3] = y * a[3]; | +
| + | out[4] = y * a[4]; | +
| + | out[5] = y * a[5]; | +
| + | + | +
| + | out[6] = a[6]; | +
| + | out[7] = a[7]; | +
| + | out[8] = a[8]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector translation | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat3.identity(dest); | +
| + | * mat3.translate(dest, dest, vec); | +
| + | * | +
| + | * @param {mat3} out mat3 receiving operation result | +
| + | * @param {vec2} v Translation vector | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function fromTranslation(out, v) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 1; | +
| + | out[5] = 0; | +
| + | out[6] = v[0]; | +
| + | out[7] = v[1]; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a given angle | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat3.identity(dest); | +
| + | * mat3.rotate(dest, dest, rad); | +
| + | * | +
| + | * @param {mat3} out mat3 receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function fromRotation(out, rad) { | +
| + | var s = Math.sin(rad), | +
| + | c = Math.cos(rad); | +
| + | + | +
| + | out[0] = c; | +
| + | out[1] = s; | +
| + | out[2] = 0; | +
| + | + | +
| + | out[3] = -s; | +
| + | out[4] = c; | +
| + | out[5] = 0; | +
| + | + | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector scaling | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat3.identity(dest); | +
| + | * mat3.scale(dest, dest, vec); | +
| + | * | +
| + | * @param {mat3} out mat3 receiving operation result | +
| + | * @param {vec2} v Scaling vector | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function fromScaling(out, v) { | +
| + | out[0] = v[0]; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | + | +
| + | out[3] = 0; | +
| + | out[4] = v[1]; | +
| + | out[5] = 0; | +
| + | + | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copies the values from a mat2d into a mat3 | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat2d} a the matrix to copy | +
| + | * @returns {mat3} out | +
| + | **/ | +
| + | function fromMat2d(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = 0; | +
| + | + | +
| + | out[3] = a[2]; | +
| + | out[4] = a[3]; | +
| + | out[5] = 0; | +
| + | + | +
| + | out[6] = a[4]; | +
| + | out[7] = a[5]; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates a 3x3 matrix from the given quaternion | +
| + | * | +
| + | * @param {mat3} out mat3 receiving operation result | +
| + | * @param {quat} q Quaternion to create matrix from | +
| + | * | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function fromQuat(out, q) { | +
| + | var x = q[0], | +
| + | y = q[1], | +
| + | z = q[2], | +
| + | w = q[3]; | +
| + | var x2 = x + x; | +
| + | var y2 = y + y; | +
| + | var z2 = z + z; | +
| + | + | +
| + | var xx = x * x2; | +
| + | var yx = y * x2; | +
| + | var yy = y * y2; | +
| + | var zx = z * x2; | +
| + | var zy = z * y2; | +
| + | var zz = z * z2; | +
| + | var wx = w * x2; | +
| + | var wy = w * y2; | +
| + | var wz = w * z2; | +
| + | + | +
| + | out[0] = 1 - yy - zz; | +
| + | out[3] = yx - wz; | +
| + | out[6] = zx + wy; | +
| + | + | +
| + | out[1] = yx + wz; | +
| + | out[4] = 1 - xx - zz; | +
| + | out[7] = zy - wx; | +
| + | + | +
| + | out[2] = zx - wy; | +
| + | out[5] = zy + wx; | +
| + | out[8] = 1 - xx - yy; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates a 3x3 normal matrix (transpose inverse) from the 4x4 matrix | +
| + | * | +
| + | * @param {mat3} out mat3 receiving operation result | +
| + | * @param {mat4} a Mat4 to derive the normal matrix from | +
| + | * | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function normalFromMat4(out, a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a03 = a[3]; | +
| + | var a10 = a[4], | +
| + | a11 = a[5], | +
| + | a12 = a[6], | +
| + | a13 = a[7]; | +
| + | var a20 = a[8], | +
| + | a21 = a[9], | +
| + | a22 = a[10], | +
| + | a23 = a[11]; | +
| + | var a30 = a[12], | +
| + | a31 = a[13], | +
| + | a32 = a[14], | +
| + | a33 = a[15]; | +
| + | + | +
| + | var b00 = a00 * a11 - a01 * a10; | +
| + | var b01 = a00 * a12 - a02 * a10; | +
| + | var b02 = a00 * a13 - a03 * a10; | +
| + | var b03 = a01 * a12 - a02 * a11; | +
| + | var b04 = a01 * a13 - a03 * a11; | +
| + | var b05 = a02 * a13 - a03 * a12; | +
| + | var b06 = a20 * a31 - a21 * a30; | +
| + | var b07 = a20 * a32 - a22 * a30; | +
| + | var b08 = a20 * a33 - a23 * a30; | +
| + | var b09 = a21 * a32 - a22 * a31; | +
| + | var b10 = a21 * a33 - a23 * a31; | +
| + | var b11 = a22 * a33 - a23 * a32; | +
| + | + | +
| + | // Calculate the determinant | +
| + | var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | +
| + | + | +
| + | if (!det) { | +
| + | return null; | +
| + | } | +
| + | det = 1.0 / det; | +
| + | + | +
| + | out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; | +
| + | out[1] = (a12 * b08 - a10 * b11 - a13 * b07) * det; | +
| + | out[2] = (a10 * b10 - a11 * b08 + a13 * b06) * det; | +
| + | + | +
| + | out[3] = (a02 * b10 - a01 * b11 - a03 * b09) * det; | +
| + | out[4] = (a00 * b11 - a02 * b08 + a03 * b07) * det; | +
| + | out[5] = (a01 * b08 - a00 * b10 - a03 * b06) * det; | +
| + | + | +
| + | out[6] = (a31 * b05 - a32 * b04 + a33 * b03) * det; | +
| + | out[7] = (a32 * b02 - a30 * b05 - a33 * b01) * det; | +
| + | out[8] = (a30 * b04 - a31 * b02 + a33 * b00) * det; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a 2D projection matrix with the given bounds | +
| + | * | +
| + | * @param {mat3} out mat3 frustum matrix will be written into | +
| + | * @param {number} width Width of your gl context | +
| + | * @param {number} height Height of gl context | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function projection(out, width, height) { | +
| + | out[0] = 2 / width; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = -2 / height; | +
| + | out[5] = 0; | +
| + | out[6] = -1; | +
| + | out[7] = 1; | +
| + | out[8] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a mat3 | +
| + | * | +
| + | * @param {mat3} a matrix to represent as a string | +
| + | * @returns {String} string representation of the matrix | +
| + | */ | +
| + | function str(a) { | +
| + | return 'mat3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns Frobenius norm of a mat3 | +
| + | * | +
| + | * @param {mat3} a the matrix to calculate Frobenius norm of | +
| + | * @returns {Number} Frobenius norm | +
| + | */ | +
| + | function frob(a) { | +
| + | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat3's | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the first operand | +
| + | * @param {mat3} b the second operand | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | out[2] = a[2] + b[2]; | +
| + | out[3] = a[3] + b[3]; | +
| + | out[4] = a[4] + b[4]; | +
| + | out[5] = a[5] + b[5]; | +
| + | out[6] = a[6] + b[6]; | +
| + | out[7] = a[7] + b[7]; | +
| + | out[8] = a[8] + b[8]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts matrix b from matrix a | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the first operand | +
| + | * @param {mat3} b the second operand | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | out[2] = a[2] - b[2]; | +
| + | out[3] = a[3] - b[3]; | +
| + | out[4] = a[4] - b[4]; | +
| + | out[5] = a[5] - b[5]; | +
| + | out[6] = a[6] - b[6]; | +
| + | out[7] = a[7] - b[7]; | +
| + | out[8] = a[8] - b[8]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiply each element of the matrix by a scalar. | +
| + | * | +
| + | * @param {mat3} out the receiving matrix | +
| + | * @param {mat3} a the matrix to scale | +
| + | * @param {Number} b amount to scale the matrix's elements by | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function multiplyScalar(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | out[2] = a[2] * b; | +
| + | out[3] = a[3] * b; | +
| + | out[4] = a[4] * b; | +
| + | out[5] = a[5] * b; | +
| + | out[6] = a[6] * b; | +
| + | out[7] = a[7] * b; | +
| + | out[8] = a[8] * b; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat3's after multiplying each element of the second operand by a scalar value. | +
| + | * | +
| + | * @param {mat3} out the receiving vector | +
| + | * @param {mat3} a the first operand | +
| + | * @param {mat3} b the second operand | +
| + | * @param {Number} scale the amount to scale b's elements by before adding | +
| + | * @returns {mat3} out | +
| + | */ | +
| + | function multiplyScalarAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | out[2] = a[2] + b[2] * scale; | +
| + | out[3] = a[3] + b[3] * scale; | +
| + | out[4] = a[4] + b[4] * scale; | +
| + | out[5] = a[5] + b[5] * scale; | +
| + | out[6] = a[6] + b[6] * scale; | +
| + | out[7] = a[7] + b[7] * scale; | +
| + | out[8] = a[8] + b[8] * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {mat3} a The first matrix. | +
| + | * @param {mat3} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {mat3} a The first matrix. | +
| + | * @param {mat3} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3], | +
| + | a4 = a[4], | +
| + | a5 = a[5], | +
| + | a6 = a[6], | +
| + | a7 = a[7], | +
| + | a8 = a[8]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3], | +
| + | b4 = b[4], | +
| + | b5 = b[5], | +
| + | b6 = b[6], | +
| + | b7 = b[7], | +
| + | b8 = b[8]; | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat3.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat3.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /***/ }), | +
| + | /* 2 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined; | +
| + | exports.create = create; | +
| + | exports.clone = clone; | +
| + | exports.length = length; | +
| + | exports.fromValues = fromValues; | +
| + | exports.copy = copy; | +
| + | exports.set = set; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.multiply = multiply; | +
| + | exports.divide = divide; | +
| + | exports.ceil = ceil; | +
| + | exports.floor = floor; | +
| + | exports.min = min; | +
| + | exports.max = max; | +
| + | exports.round = round; | +
| + | exports.scale = scale; | +
| + | exports.scaleAndAdd = scaleAndAdd; | +
| + | exports.distance = distance; | +
| + | exports.squaredDistance = squaredDistance; | +
| + | exports.squaredLength = squaredLength; | +
| + | exports.negate = negate; | +
| + | exports.inverse = inverse; | +
| + | exports.normalize = normalize; | +
| + | exports.dot = dot; | +
| + | exports.cross = cross; | +
| + | exports.lerp = lerp; | +
| + | exports.hermite = hermite; | +
| + | exports.bezier = bezier; | +
| + | exports.random = random; | +
| + | exports.transformMat4 = transformMat4; | +
| + | exports.transformMat3 = transformMat3; | +
| + | exports.transformQuat = transformQuat; | +
| + | exports.rotateX = rotateX; | +
| + | exports.rotateY = rotateY; | +
| + | exports.rotateZ = rotateZ; | +
| + | exports.angle = angle; | +
| + | exports.str = str; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 3 Dimensional Vector | +
| + | * @module vec3 | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new, empty vec3 | +
| + | * | +
| + | * @returns {vec3} a new 3D vector | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(3); | +
| + | out[0] = 0; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new vec3 initialized with values from an existing vector | +
| + | * | +
| + | * @param {vec3} a vector to clone | +
| + | * @returns {vec3} a new 3D vector | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(3); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the length of a vec3 | +
| + | * | +
| + | * @param {vec3} a vector to calculate length of | +
| + | * @returns {Number} length of a | +
| + | */ | +
| + | function length(a) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | var z = a[2]; | +
| + | return Math.sqrt(x * x + y * y + z * z); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new vec3 initialized with the given values | +
| + | * | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @param {Number} z Z component | +
| + | * @returns {vec3} a new 3D vector | +
| + | */ | +
| + | function fromValues(x, y, z) { | +
| + | var out = new glMatrix.ARRAY_TYPE(3); | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | out[2] = z; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one vec3 to another | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the source vector | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a vec3 to the given values | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @param {Number} z Z component | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function set(out, x, y, z) { | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | out[2] = z; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | out[2] = a[2] + b[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts vector b from vector a | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | out[2] = a[2] - b[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | out[0] = a[0] * b[0]; | +
| + | out[1] = a[1] * b[1]; | +
| + | out[2] = a[2] * b[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Divides two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function divide(out, a, b) { | +
| + | out[0] = a[0] / b[0]; | +
| + | out[1] = a[1] / b[1]; | +
| + | out[2] = a[2] / b[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Math.ceil the components of a vec3 | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a vector to ceil | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function ceil(out, a) { | +
| + | out[0] = Math.ceil(a[0]); | +
| + | out[1] = Math.ceil(a[1]); | +
| + | out[2] = Math.ceil(a[2]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Math.floor the components of a vec3 | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a vector to floor | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function floor(out, a) { | +
| + | out[0] = Math.floor(a[0]); | +
| + | out[1] = Math.floor(a[1]); | +
| + | out[2] = Math.floor(a[2]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the minimum of two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function min(out, a, b) { | +
| + | out[0] = Math.min(a[0], b[0]); | +
| + | out[1] = Math.min(a[1], b[1]); | +
| + | out[2] = Math.min(a[2], b[2]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the maximum of two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function max(out, a, b) { | +
| + | out[0] = Math.max(a[0], b[0]); | +
| + | out[1] = Math.max(a[1], b[1]); | +
| + | out[2] = Math.max(a[2], b[2]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Math.round the components of a vec3 | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a vector to round | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function round(out, a) { | +
| + | out[0] = Math.round(a[0]); | +
| + | out[1] = Math.round(a[1]); | +
| + | out[2] = Math.round(a[2]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Scales a vec3 by a scalar number | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the vector to scale | +
| + | * @param {Number} b amount to scale the vector by | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function scale(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | out[2] = a[2] * b; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two vec3's after scaling the second operand by a scalar value | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @param {Number} scale the amount to scale b by before adding | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function scaleAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | out[2] = a[2] + b[2] * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the euclidian distance between two vec3's | +
| + | * | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {Number} distance between a and b | +
| + | */ | +
| + | function distance(a, b) { | +
| + | var x = b[0] - a[0]; | +
| + | var y = b[1] - a[1]; | +
| + | var z = b[2] - a[2]; | +
| + | return Math.sqrt(x * x + y * y + z * z); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the squared euclidian distance between two vec3's | +
| + | * | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {Number} squared distance between a and b | +
| + | */ | +
| + | function squaredDistance(a, b) { | +
| + | var x = b[0] - a[0]; | +
| + | var y = b[1] - a[1]; | +
| + | var z = b[2] - a[2]; | +
| + | return x * x + y * y + z * z; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the squared length of a vec3 | +
| + | * | +
| + | * @param {vec3} a vector to calculate squared length of | +
| + | * @returns {Number} squared length of a | +
| + | */ | +
| + | function squaredLength(a) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | var z = a[2]; | +
| + | return x * x + y * y + z * z; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Negates the components of a vec3 | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a vector to negate | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function negate(out, a) { | +
| + | out[0] = -a[0]; | +
| + | out[1] = -a[1]; | +
| + | out[2] = -a[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the inverse of the components of a vec3 | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a vector to invert | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function inverse(out, a) { | +
| + | out[0] = 1.0 / a[0]; | +
| + | out[1] = 1.0 / a[1]; | +
| + | out[2] = 1.0 / a[2]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Normalize a vec3 | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a vector to normalize | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function normalize(out, a) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | var z = a[2]; | +
| + | var len = x * x + y * y + z * z; | +
| + | if (len > 0) { | +
| + | //TODO: evaluate use of glm_invsqrt here? | +
| + | len = 1 / Math.sqrt(len); | +
| + | out[0] = a[0] * len; | +
| + | out[1] = a[1] * len; | +
| + | out[2] = a[2] * len; | +
| + | } | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the dot product of two vec3's | +
| + | * | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {Number} dot product of a and b | +
| + | */ | +
| + | function dot(a, b) { | +
| + | return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Computes the cross product of two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function cross(out, a, b) { | +
| + | var ax = a[0], | +
| + | ay = a[1], | +
| + | az = a[2]; | +
| + | var bx = b[0], | +
| + | by = b[1], | +
| + | bz = b[2]; | +
| + | + | +
| + | out[0] = ay * bz - az * by; | +
| + | out[1] = az * bx - ax * bz; | +
| + | out[2] = ax * by - ay * bx; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Performs a linear interpolation between two vec3's | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function lerp(out, a, b, t) { | +
| + | var ax = a[0]; | +
| + | var ay = a[1]; | +
| + | var az = a[2]; | +
| + | out[0] = ax + t * (b[0] - ax); | +
| + | out[1] = ay + t * (b[1] - ay); | +
| + | out[2] = az + t * (b[2] - az); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Performs a hermite interpolation with two control points | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @param {vec3} c the third operand | +
| + | * @param {vec3} d the fourth operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function hermite(out, a, b, c, d, t) { | +
| + | var factorTimes2 = t * t; | +
| + | var factor1 = factorTimes2 * (2 * t - 3) + 1; | +
| + | var factor2 = factorTimes2 * (t - 2) + t; | +
| + | var factor3 = factorTimes2 * (t - 1); | +
| + | var factor4 = factorTimes2 * (3 - 2 * t); | +
| + | + | +
| + | out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4; | +
| + | out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4; | +
| + | out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Performs a bezier interpolation with two control points | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the first operand | +
| + | * @param {vec3} b the second operand | +
| + | * @param {vec3} c the third operand | +
| + | * @param {vec3} d the fourth operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function bezier(out, a, b, c, d, t) { | +
| + | var inverseFactor = 1 - t; | +
| + | var inverseFactorTimesTwo = inverseFactor * inverseFactor; | +
| + | var factorTimes2 = t * t; | +
| + | var factor1 = inverseFactorTimesTwo * inverseFactor; | +
| + | var factor2 = 3 * t * inverseFactorTimesTwo; | +
| + | var factor3 = 3 * factorTimes2 * inverseFactor; | +
| + | var factor4 = factorTimes2 * t; | +
| + | + | +
| + | out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4; | +
| + | out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4; | +
| + | out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a random vector with the given scale | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function random(out, scale) { | +
| + | scale = scale || 1.0; | +
| + | + | +
| + | var r = glMatrix.RANDOM() * 2.0 * Math.PI; | +
| + | var z = glMatrix.RANDOM() * 2.0 - 1.0; | +
| + | var zScale = Math.sqrt(1.0 - z * z) * scale; | +
| + | + | +
| + | out[0] = Math.cos(r) * zScale; | +
| + | out[1] = Math.sin(r) * zScale; | +
| + | out[2] = z * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transforms the vec3 with a mat4. | +
| + | * 4th vector component is implicitly '1' | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the vector to transform | +
| + | * @param {mat4} m matrix to transform with | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function transformMat4(out, a, m) { | +
| + | var x = a[0], | +
| + | y = a[1], | +
| + | z = a[2]; | +
| + | var w = m[3] * x + m[7] * y + m[11] * z + m[15]; | +
| + | w = w || 1.0; | +
| + | out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w; | +
| + | out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w; | +
| + | out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transforms the vec3 with a mat3. | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the vector to transform | +
| + | * @param {mat3} m the 3x3 matrix to transform with | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function transformMat3(out, a, m) { | +
| + | var x = a[0], | +
| + | y = a[1], | +
| + | z = a[2]; | +
| + | out[0] = x * m[0] + y * m[3] + z * m[6]; | +
| + | out[1] = x * m[1] + y * m[4] + z * m[7]; | +
| + | out[2] = x * m[2] + y * m[5] + z * m[8]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transforms the vec3 with a quat | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec3} a the vector to transform | +
| + | * @param {quat} q quaternion to transform with | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function transformQuat(out, a, q) { | +
| + | // benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations | +
| + | + | +
| + | var x = a[0], | +
| + | y = a[1], | +
| + | z = a[2]; | +
| + | var qx = q[0], | +
| + | qy = q[1], | +
| + | qz = q[2], | +
| + | qw = q[3]; | +
| + | + | +
| + | // calculate quat * vec | +
| + | var ix = qw * x + qy * z - qz * y; | +
| + | var iy = qw * y + qz * x - qx * z; | +
| + | var iz = qw * z + qx * y - qy * x; | +
| + | var iw = -qx * x - qy * y - qz * z; | +
| + | + | +
| + | // calculate result * inverse quat | +
| + | out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; | +
| + | out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; | +
| + | out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotate a 3D vector around the x-axis | +
| + | * @param {vec3} out The receiving vec3 | +
| + | * @param {vec3} a The vec3 point to rotate | +
| + | * @param {vec3} b The origin of the rotation | +
| + | * @param {Number} c The angle of rotation | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function rotateX(out, a, b, c) { | +
| + | var p = [], | +
| + | r = []; | +
| + | //Translate point to the origin | +
| + | p[0] = a[0] - b[0]; | +
| + | p[1] = a[1] - b[1]; | +
| + | p[2] = a[2] - b[2]; | +
| + | + | +
| + | //perform rotation | +
| + | r[0] = p[0]; | +
| + | r[1] = p[1] * Math.cos(c) - p[2] * Math.sin(c); | +
| + | r[2] = p[1] * Math.sin(c) + p[2] * Math.cos(c); | +
| + | + | +
| + | //translate to correct position | +
| + | out[0] = r[0] + b[0]; | +
| + | out[1] = r[1] + b[1]; | +
| + | out[2] = r[2] + b[2]; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotate a 3D vector around the y-axis | +
| + | * @param {vec3} out The receiving vec3 | +
| + | * @param {vec3} a The vec3 point to rotate | +
| + | * @param {vec3} b The origin of the rotation | +
| + | * @param {Number} c The angle of rotation | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function rotateY(out, a, b, c) { | +
| + | var p = [], | +
| + | r = []; | +
| + | //Translate point to the origin | +
| + | p[0] = a[0] - b[0]; | +
| + | p[1] = a[1] - b[1]; | +
| + | p[2] = a[2] - b[2]; | +
| + | + | +
| + | //perform rotation | +
| + | r[0] = p[2] * Math.sin(c) + p[0] * Math.cos(c); | +
| + | r[1] = p[1]; | +
| + | r[2] = p[2] * Math.cos(c) - p[0] * Math.sin(c); | +
| + | + | +
| + | //translate to correct position | +
| + | out[0] = r[0] + b[0]; | +
| + | out[1] = r[1] + b[1]; | +
| + | out[2] = r[2] + b[2]; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotate a 3D vector around the z-axis | +
| + | * @param {vec3} out The receiving vec3 | +
| + | * @param {vec3} a The vec3 point to rotate | +
| + | * @param {vec3} b The origin of the rotation | +
| + | * @param {Number} c The angle of rotation | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function rotateZ(out, a, b, c) { | +
| + | var p = [], | +
| + | r = []; | +
| + | //Translate point to the origin | +
| + | p[0] = a[0] - b[0]; | +
| + | p[1] = a[1] - b[1]; | +
| + | p[2] = a[2] - b[2]; | +
| + | + | +
| + | //perform rotation | +
| + | r[0] = p[0] * Math.cos(c) - p[1] * Math.sin(c); | +
| + | r[1] = p[0] * Math.sin(c) + p[1] * Math.cos(c); | +
| + | r[2] = p[2]; | +
| + | + | +
| + | //translate to correct position | +
| + | out[0] = r[0] + b[0]; | +
| + | out[1] = r[1] + b[1]; | +
| + | out[2] = r[2] + b[2]; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Get the angle between two 3D vectors | +
| + | * @param {vec3} a The first operand | +
| + | * @param {vec3} b The second operand | +
| + | * @returns {Number} The angle in radians | +
| + | */ | +
| + | function angle(a, b) { | +
| + | var tempA = fromValues(a[0], a[1], a[2]); | +
| + | var tempB = fromValues(b[0], b[1], b[2]); | +
| + | + | +
| + | normalize(tempA, tempA); | +
| + | normalize(tempB, tempB); | +
| + | + | +
| + | var cosine = dot(tempA, tempB); | +
| + | + | +
| + | if (cosine > 1.0) { | +
| + | return 0; | +
| + | } else if (cosine < -1.0) { | +
| + | return Math.PI; | +
| + | } else { | +
| + | return Math.acos(cosine); | +
| + | } | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a vector | +
| + | * | +
| + | * @param {vec3} a vector to represent as a string | +
| + | * @returns {String} string representation of the vector | +
| + | */ | +
| + | function str(a) { | +
| + | return 'vec3(' + a[0] + ', ' + a[1] + ', ' + a[2] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {vec3} a The first vector. | +
| + | * @param {vec3} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the vectors have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {vec3} a The first vector. | +
| + | * @param {vec3} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2]; | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.divide} | +
| + | * @function | +
| + | */ | +
| + | var div = exports.div = divide; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.distance} | +
| + | * @function | +
| + | */ | +
| + | var dist = exports.dist = distance; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.squaredDistance} | +
| + | * @function | +
| + | */ | +
| + | var sqrDist = exports.sqrDist = squaredDistance; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.length} | +
| + | * @function | +
| + | */ | +
| + | var len = exports.len = length; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec3.squaredLength} | +
| + | * @function | +
| + | */ | +
| + | var sqrLen = exports.sqrLen = squaredLength; | +
| + | + | +
| + | /** | +
| + | * Perform some operation over an array of vec3s. | +
| + | * | +
| + | * @param {Array} a the array of vectors to iterate over | +
| + | * @param {Number} stride Number of elements between the start of each vec3. If 0 assumes tightly packed | +
| + | * @param {Number} offset Number of elements to skip at the beginning of the array | +
| + | * @param {Number} count Number of vec3s to iterate over. If 0 iterates over entire array | +
| + | * @param {Function} fn Function to call for each vector in the array | +
| + | * @param {Object} [arg] additional argument to pass to fn | +
| + | * @returns {Array} a | +
| + | * @function | +
| + | */ | +
| + | var forEach = exports.forEach = function () { | +
| + | var vec = create(); | +
| + | + | +
| + | return function (a, stride, offset, count, fn, arg) { | +
| + | var i = void 0, | +
| + | l = void 0; | +
| + | if (!stride) { | +
| + | stride = 3; | +
| + | } | +
| + | + | +
| + | if (!offset) { | +
| + | offset = 0; | +
| + | } | +
| + | + | +
| + | if (count) { | +
| + | l = Math.min(count * stride + offset, a.length); | +
| + | } else { | +
| + | l = a.length; | +
| + | } | +
| + | + | +
| + | for (i = offset; i < l; i += stride) { | +
| + | vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2]; | +
| + | fn(vec, vec, arg); | +
| + | a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2]; | +
| + | } | +
| + | + | +
| + | return a; | +
| + | }; | +
| + | }(); | +
| + | + | +
| + | /***/ }), | +
| + | /* 3 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.forEach = exports.sqrLen = exports.len = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = undefined; | +
| + | exports.create = create; | +
| + | exports.clone = clone; | +
| + | exports.fromValues = fromValues; | +
| + | exports.copy = copy; | +
| + | exports.set = set; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.multiply = multiply; | +
| + | exports.divide = divide; | +
| + | exports.ceil = ceil; | +
| + | exports.floor = floor; | +
| + | exports.min = min; | +
| + | exports.max = max; | +
| + | exports.round = round; | +
| + | exports.scale = scale; | +
| + | exports.scaleAndAdd = scaleAndAdd; | +
| + | exports.distance = distance; | +
| + | exports.squaredDistance = squaredDistance; | +
| + | exports.length = length; | +
| + | exports.squaredLength = squaredLength; | +
| + | exports.negate = negate; | +
| + | exports.inverse = inverse; | +
| + | exports.normalize = normalize; | +
| + | exports.dot = dot; | +
| + | exports.lerp = lerp; | +
| + | exports.random = random; | +
| + | exports.transformMat4 = transformMat4; | +
| + | exports.transformQuat = transformQuat; | +
| + | exports.str = str; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 4 Dimensional Vector | +
| + | * @module vec4 | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new, empty vec4 | +
| + | * | +
| + | * @returns {vec4} a new 4D vector | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = 0; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new vec4 initialized with values from an existing vector | +
| + | * | +
| + | * @param {vec4} a vector to clone | +
| + | * @returns {vec4} a new 4D vector | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new vec4 initialized with the given values | +
| + | * | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @param {Number} z Z component | +
| + | * @param {Number} w W component | +
| + | * @returns {vec4} a new 4D vector | +
| + | */ | +
| + | function fromValues(x, y, z, w) { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | out[2] = z; | +
| + | out[3] = w; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one vec4 to another | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the source vector | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a vec4 to the given values | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @param {Number} z Z component | +
| + | * @param {Number} w W component | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function set(out, x, y, z, w) { | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | out[2] = z; | +
| + | out[3] = w; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two vec4's | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | out[2] = a[2] + b[2]; | +
| + | out[3] = a[3] + b[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts vector b from vector a | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | out[2] = a[2] - b[2]; | +
| + | out[3] = a[3] - b[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two vec4's | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | out[0] = a[0] * b[0]; | +
| + | out[1] = a[1] * b[1]; | +
| + | out[2] = a[2] * b[2]; | +
| + | out[3] = a[3] * b[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Divides two vec4's | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function divide(out, a, b) { | +
| + | out[0] = a[0] / b[0]; | +
| + | out[1] = a[1] / b[1]; | +
| + | out[2] = a[2] / b[2]; | +
| + | out[3] = a[3] / b[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Math.ceil the components of a vec4 | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a vector to ceil | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function ceil(out, a) { | +
| + | out[0] = Math.ceil(a[0]); | +
| + | out[1] = Math.ceil(a[1]); | +
| + | out[2] = Math.ceil(a[2]); | +
| + | out[3] = Math.ceil(a[3]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Math.floor the components of a vec4 | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a vector to floor | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function floor(out, a) { | +
| + | out[0] = Math.floor(a[0]); | +
| + | out[1] = Math.floor(a[1]); | +
| + | out[2] = Math.floor(a[2]); | +
| + | out[3] = Math.floor(a[3]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the minimum of two vec4's | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function min(out, a, b) { | +
| + | out[0] = Math.min(a[0], b[0]); | +
| + | out[1] = Math.min(a[1], b[1]); | +
| + | out[2] = Math.min(a[2], b[2]); | +
| + | out[3] = Math.min(a[3], b[3]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the maximum of two vec4's | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function max(out, a, b) { | +
| + | out[0] = Math.max(a[0], b[0]); | +
| + | out[1] = Math.max(a[1], b[1]); | +
| + | out[2] = Math.max(a[2], b[2]); | +
| + | out[3] = Math.max(a[3], b[3]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Math.round the components of a vec4 | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a vector to round | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function round(out, a) { | +
| + | out[0] = Math.round(a[0]); | +
| + | out[1] = Math.round(a[1]); | +
| + | out[2] = Math.round(a[2]); | +
| + | out[3] = Math.round(a[3]); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Scales a vec4 by a scalar number | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the vector to scale | +
| + | * @param {Number} b amount to scale the vector by | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function scale(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | out[2] = a[2] * b; | +
| + | out[3] = a[3] * b; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two vec4's after scaling the second operand by a scalar value | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @param {Number} scale the amount to scale b by before adding | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function scaleAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | out[2] = a[2] + b[2] * scale; | +
| + | out[3] = a[3] + b[3] * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the euclidian distance between two vec4's | +
| + | * | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {Number} distance between a and b | +
| + | */ | +
| + | function distance(a, b) { | +
| + | var x = b[0] - a[0]; | +
| + | var y = b[1] - a[1]; | +
| + | var z = b[2] - a[2]; | +
| + | var w = b[3] - a[3]; | +
| + | return Math.sqrt(x * x + y * y + z * z + w * w); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the squared euclidian distance between two vec4's | +
| + | * | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {Number} squared distance between a and b | +
| + | */ | +
| + | function squaredDistance(a, b) { | +
| + | var x = b[0] - a[0]; | +
| + | var y = b[1] - a[1]; | +
| + | var z = b[2] - a[2]; | +
| + | var w = b[3] - a[3]; | +
| + | return x * x + y * y + z * z + w * w; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the length of a vec4 | +
| + | * | +
| + | * @param {vec4} a vector to calculate length of | +
| + | * @returns {Number} length of a | +
| + | */ | +
| + | function length(a) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | var z = a[2]; | +
| + | var w = a[3]; | +
| + | return Math.sqrt(x * x + y * y + z * z + w * w); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the squared length of a vec4 | +
| + | * | +
| + | * @param {vec4} a vector to calculate squared length of | +
| + | * @returns {Number} squared length of a | +
| + | */ | +
| + | function squaredLength(a) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | var z = a[2]; | +
| + | var w = a[3]; | +
| + | return x * x + y * y + z * z + w * w; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Negates the components of a vec4 | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a vector to negate | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function negate(out, a) { | +
| + | out[0] = -a[0]; | +
| + | out[1] = -a[1]; | +
| + | out[2] = -a[2]; | +
| + | out[3] = -a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the inverse of the components of a vec4 | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a vector to invert | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function inverse(out, a) { | +
| + | out[0] = 1.0 / a[0]; | +
| + | out[1] = 1.0 / a[1]; | +
| + | out[2] = 1.0 / a[2]; | +
| + | out[3] = 1.0 / a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Normalize a vec4 | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a vector to normalize | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function normalize(out, a) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | var z = a[2]; | +
| + | var w = a[3]; | +
| + | var len = x * x + y * y + z * z + w * w; | +
| + | if (len > 0) { | +
| + | len = 1 / Math.sqrt(len); | +
| + | out[0] = x * len; | +
| + | out[1] = y * len; | +
| + | out[2] = z * len; | +
| + | out[3] = w * len; | +
| + | } | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the dot product of two vec4's | +
| + | * | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @returns {Number} dot product of a and b | +
| + | */ | +
| + | function dot(a, b) { | +
| + | return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Performs a linear interpolation between two vec4's | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the first operand | +
| + | * @param {vec4} b the second operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function lerp(out, a, b, t) { | +
| + | var ax = a[0]; | +
| + | var ay = a[1]; | +
| + | var az = a[2]; | +
| + | var aw = a[3]; | +
| + | out[0] = ax + t * (b[0] - ax); | +
| + | out[1] = ay + t * (b[1] - ay); | +
| + | out[2] = az + t * (b[2] - az); | +
| + | out[3] = aw + t * (b[3] - aw); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a random vector with the given scale | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function random(out, vectorScale) { | +
| + | vectorScale = vectorScale || 1.0; | +
| + | + | +
| + | //TODO: This is a pretty awful way of doing this. Find something better. | +
| + | out[0] = glMatrix.RANDOM(); | +
| + | out[1] = glMatrix.RANDOM(); | +
| + | out[2] = glMatrix.RANDOM(); | +
| + | out[3] = glMatrix.RANDOM(); | +
| + | normalize(out, out); | +
| + | scale(out, out, vectorScale); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transforms the vec4 with a mat4. | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the vector to transform | +
| + | * @param {mat4} m matrix to transform with | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function transformMat4(out, a, m) { | +
| + | var x = a[0], | +
| + | y = a[1], | +
| + | z = a[2], | +
| + | w = a[3]; | +
| + | out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w; | +
| + | out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w; | +
| + | out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w; | +
| + | out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transforms the vec4 with a quat | +
| + | * | +
| + | * @param {vec4} out the receiving vector | +
| + | * @param {vec4} a the vector to transform | +
| + | * @param {quat} q quaternion to transform with | +
| + | * @returns {vec4} out | +
| + | */ | +
| + | function transformQuat(out, a, q) { | +
| + | var x = a[0], | +
| + | y = a[1], | +
| + | z = a[2]; | +
| + | var qx = q[0], | +
| + | qy = q[1], | +
| + | qz = q[2], | +
| + | qw = q[3]; | +
| + | + | +
| + | // calculate quat * vec | +
| + | var ix = qw * x + qy * z - qz * y; | +
| + | var iy = qw * y + qz * x - qx * z; | +
| + | var iz = qw * z + qx * y - qy * x; | +
| + | var iw = -qx * x - qy * y - qz * z; | +
| + | + | +
| + | // calculate result * inverse quat | +
| + | out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy; | +
| + | out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz; | +
| + | out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx; | +
| + | out[3] = a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a vector | +
| + | * | +
| + | * @param {vec4} a vector to represent as a string | +
| + | * @returns {String} string representation of the vector | +
| + | */ | +
| + | function str(a) { | +
| + | return 'vec4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {vec4} a The first vector. | +
| + | * @param {vec4} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the vectors have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {vec4} a The first vector. | +
| + | * @param {vec4} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3]; | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.divide} | +
| + | * @function | +
| + | */ | +
| + | var div = exports.div = divide; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.distance} | +
| + | * @function | +
| + | */ | +
| + | var dist = exports.dist = distance; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.squaredDistance} | +
| + | * @function | +
| + | */ | +
| + | var sqrDist = exports.sqrDist = squaredDistance; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.length} | +
| + | * @function | +
| + | */ | +
| + | var len = exports.len = length; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec4.squaredLength} | +
| + | * @function | +
| + | */ | +
| + | var sqrLen = exports.sqrLen = squaredLength; | +
| + | + | +
| + | /** | +
| + | * Perform some operation over an array of vec4s. | +
| + | * | +
| + | * @param {Array} a the array of vectors to iterate over | +
| + | * @param {Number} stride Number of elements between the start of each vec4. If 0 assumes tightly packed | +
| + | * @param {Number} offset Number of elements to skip at the beginning of the array | +
| + | * @param {Number} count Number of vec4s to iterate over. If 0 iterates over entire array | +
| + | * @param {Function} fn Function to call for each vector in the array | +
| + | * @param {Object} [arg] additional argument to pass to fn | +
| + | * @returns {Array} a | +
| + | * @function | +
| + | */ | +
| + | var forEach = exports.forEach = function () { | +
| + | var vec = create(); | +
| + | + | +
| + | return function (a, stride, offset, count, fn, arg) { | +
| + | var i = void 0, | +
| + | l = void 0; | +
| + | if (!stride) { | +
| + | stride = 4; | +
| + | } | +
| + | + | +
| + | if (!offset) { | +
| + | offset = 0; | +
| + | } | +
| + | + | +
| + | if (count) { | +
| + | l = Math.min(count * stride + offset, a.length); | +
| + | } else { | +
| + | l = a.length; | +
| + | } | +
| + | + | +
| + | for (i = offset; i < l; i += stride) { | +
| + | vec[0] = a[i];vec[1] = a[i + 1];vec[2] = a[i + 2];vec[3] = a[i + 3]; | +
| + | fn(vec, vec, arg); | +
| + | a[i] = vec[0];a[i + 1] = vec[1];a[i + 2] = vec[2];a[i + 3] = vec[3]; | +
| + | } | +
| + | + | +
| + | return a; | +
| + | }; | +
| + | }(); | +
| + | + | +
| + | /***/ }), | +
| + | /* 4 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.vec4 = exports.vec3 = exports.vec2 = exports.quat = exports.mat4 = exports.mat3 = exports.mat2d = exports.mat2 = exports.glMatrix = undefined; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | var _mat = __webpack_require__(5); | +
| + | + | +
| + | var mat2 = _interopRequireWildcard(_mat); | +
| + | + | +
| + | var _mat2d = __webpack_require__(6); | +
| + | + | +
| + | var mat2d = _interopRequireWildcard(_mat2d); | +
| + | + | +
| + | var _mat2 = __webpack_require__(1); | +
| + | + | +
| + | var mat3 = _interopRequireWildcard(_mat2); | +
| + | + | +
| + | var _mat3 = __webpack_require__(7); | +
| + | + | +
| + | var mat4 = _interopRequireWildcard(_mat3); | +
| + | + | +
| + | var _quat = __webpack_require__(8); | +
| + | + | +
| + | var quat = _interopRequireWildcard(_quat); | +
| + | + | +
| + | var _vec = __webpack_require__(9); | +
| + | + | +
| + | var vec2 = _interopRequireWildcard(_vec); | +
| + | + | +
| + | var _vec2 = __webpack_require__(2); | +
| + | + | +
| + | var vec3 = _interopRequireWildcard(_vec2); | +
| + | + | +
| + | var _vec3 = __webpack_require__(3); | +
| + | + | +
| + | var vec4 = _interopRequireWildcard(_vec3); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | exports.glMatrix = glMatrix; | +
| + | exports.mat2 = mat2; | +
| + | exports.mat2d = mat2d; | +
| + | exports.mat3 = mat3; | +
| + | exports.mat4 = mat4; | +
| + | exports.quat = quat; | +
| + | exports.vec2 = vec2; | +
| + | exports.vec3 = vec3; | +
| + | exports.vec4 = vec4; /** | +
| + | * @fileoverview gl-matrix - High performance matrix and vector operations | +
| + | * @author Brandon Jones | +
| + | * @author Colin MacKenzie IV | +
| + | * @version 2.4.0 | +
| + | */ | +
| + | + | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | // END HEADER | +
| + | + | +
| + | /***/ }), | +
| + | /* 5 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.sub = exports.mul = undefined; | +
| + | exports.create = create; | +
| + | exports.clone = clone; | +
| + | exports.copy = copy; | +
| + | exports.identity = identity; | +
| + | exports.fromValues = fromValues; | +
| + | exports.set = set; | +
| + | exports.transpose = transpose; | +
| + | exports.invert = invert; | +
| + | exports.adjoint = adjoint; | +
| + | exports.determinant = determinant; | +
| + | exports.multiply = multiply; | +
| + | exports.rotate = rotate; | +
| + | exports.scale = scale; | +
| + | exports.fromRotation = fromRotation; | +
| + | exports.fromScaling = fromScaling; | +
| + | exports.str = str; | +
| + | exports.frob = frob; | +
| + | exports.LDU = LDU; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | exports.multiplyScalar = multiplyScalar; | +
| + | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 2x2 Matrix | +
| + | * @module mat2 | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new identity mat2 | +
| + | * | +
| + | * @returns {mat2} a new 2x2 matrix | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new mat2 initialized with values from an existing matrix | +
| + | * | +
| + | * @param {mat2} a matrix to clone | +
| + | * @returns {mat2} a new 2x2 matrix | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one mat2 to another | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the source matrix | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set a mat2 to the identity matrix | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function identity(out) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Create a new mat2 with the given values | +
| + | * | +
| + | * @param {Number} m00 Component in column 0, row 0 position (index 0) | +
| + | * @param {Number} m01 Component in column 0, row 1 position (index 1) | +
| + | * @param {Number} m10 Component in column 1, row 0 position (index 2) | +
| + | * @param {Number} m11 Component in column 1, row 1 position (index 3) | +
| + | * @returns {mat2} out A new 2x2 matrix | +
| + | */ | +
| + | function fromValues(m00, m01, m10, m11) { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = m00; | +
| + | out[1] = m01; | +
| + | out[2] = m10; | +
| + | out[3] = m11; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a mat2 to the given values | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {Number} m00 Component in column 0, row 0 position (index 0) | +
| + | * @param {Number} m01 Component in column 0, row 1 position (index 1) | +
| + | * @param {Number} m10 Component in column 1, row 0 position (index 2) | +
| + | * @param {Number} m11 Component in column 1, row 1 position (index 3) | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function set(out, m00, m01, m10, m11) { | +
| + | out[0] = m00; | +
| + | out[1] = m01; | +
| + | out[2] = m10; | +
| + | out[3] = m11; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transpose the values of a mat2 | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the source matrix | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function transpose(out, a) { | +
| + | // If we are transposing ourselves we can skip a few steps but have to cache | +
| + | // some values | +
| + | if (out === a) { | +
| + | var a1 = a[1]; | +
| + | out[1] = a[2]; | +
| + | out[2] = a1; | +
| + | } else { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[2]; | +
| + | out[2] = a[1]; | +
| + | out[3] = a[3]; | +
| + | } | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Inverts a mat2 | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the source matrix | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function invert(out, a) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | + | +
| + | // Calculate the determinant | +
| + | var det = a0 * a3 - a2 * a1; | +
| + | + | +
| + | if (!det) { | +
| + | return null; | +
| + | } | +
| + | det = 1.0 / det; | +
| + | + | +
| + | out[0] = a3 * det; | +
| + | out[1] = -a1 * det; | +
| + | out[2] = -a2 * det; | +
| + | out[3] = a0 * det; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the adjugate of a mat2 | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the source matrix | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function adjoint(out, a) { | +
| + | // Caching this value is nessecary if out == a | +
| + | var a0 = a[0]; | +
| + | out[0] = a[3]; | +
| + | out[1] = -a[1]; | +
| + | out[2] = -a[2]; | +
| + | out[3] = a0; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the determinant of a mat2 | +
| + | * | +
| + | * @param {mat2} a the source matrix | +
| + | * @returns {Number} determinant of a | +
| + | */ | +
| + | function determinant(a) { | +
| + | return a[0] * a[3] - a[2] * a[1]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two mat2's | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the first operand | +
| + | * @param {mat2} b the second operand | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3]; | +
| + | out[0] = a0 * b0 + a2 * b1; | +
| + | out[1] = a1 * b0 + a3 * b1; | +
| + | out[2] = a0 * b2 + a2 * b3; | +
| + | out[3] = a1 * b2 + a3 * b3; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a mat2 by the given angle | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function rotate(out, a, rad) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | out[0] = a0 * c + a2 * s; | +
| + | out[1] = a1 * c + a3 * s; | +
| + | out[2] = a0 * -s + a2 * c; | +
| + | out[3] = a1 * -s + a3 * c; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Scales the mat2 by the dimensions in the given vec2 | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the matrix to rotate | +
| + | * @param {vec2} v the vec2 to scale the matrix by | +
| + | * @returns {mat2} out | +
| + | **/ | +
| + | function scale(out, a, v) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var v0 = v[0], | +
| + | v1 = v[1]; | +
| + | out[0] = a0 * v0; | +
| + | out[1] = a1 * v0; | +
| + | out[2] = a2 * v1; | +
| + | out[3] = a3 * v1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a given angle | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat2.identity(dest); | +
| + | * mat2.rotate(dest, dest, rad); | +
| + | * | +
| + | * @param {mat2} out mat2 receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function fromRotation(out, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | out[0] = c; | +
| + | out[1] = s; | +
| + | out[2] = -s; | +
| + | out[3] = c; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector scaling | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat2.identity(dest); | +
| + | * mat2.scale(dest, dest, vec); | +
| + | * | +
| + | * @param {mat2} out mat2 receiving operation result | +
| + | * @param {vec2} v Scaling vector | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function fromScaling(out, v) { | +
| + | out[0] = v[0]; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = v[1]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a mat2 | +
| + | * | +
| + | * @param {mat2} a matrix to represent as a string | +
| + | * @returns {String} string representation of the matrix | +
| + | */ | +
| + | function str(a) { | +
| + | return 'mat2(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns Frobenius norm of a mat2 | +
| + | * | +
| + | * @param {mat2} a the matrix to calculate Frobenius norm of | +
| + | * @returns {Number} Frobenius norm | +
| + | */ | +
| + | function frob(a) { | +
| + | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns L, D and U matrices (Lower triangular, Diagonal and Upper triangular) by factorizing the input matrix | +
| + | * @param {mat2} L the lower triangular matrix | +
| + | * @param {mat2} D the diagonal matrix | +
| + | * @param {mat2} U the upper triangular matrix | +
| + | * @param {mat2} a the input matrix to factorize | +
| + | */ | +
| + | + | +
| + | function LDU(L, D, U, a) { | +
| + | L[2] = a[2] / a[0]; | +
| + | U[0] = a[0]; | +
| + | U[1] = a[1]; | +
| + | U[3] = a[3] - L[2] * U[1]; | +
| + | return [L, D, U]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat2's | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the first operand | +
| + | * @param {mat2} b the second operand | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | out[2] = a[2] + b[2]; | +
| + | out[3] = a[3] + b[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts matrix b from matrix a | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the first operand | +
| + | * @param {mat2} b the second operand | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | out[2] = a[2] - b[2]; | +
| + | out[3] = a[3] - b[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {mat2} a The first matrix. | +
| + | * @param {mat2} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {mat2} a The first matrix. | +
| + | * @param {mat2} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3]; | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiply each element of the matrix by a scalar. | +
| + | * | +
| + | * @param {mat2} out the receiving matrix | +
| + | * @param {mat2} a the matrix to scale | +
| + | * @param {Number} b amount to scale the matrix's elements by | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function multiplyScalar(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | out[2] = a[2] * b; | +
| + | out[3] = a[3] * b; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat2's after multiplying each element of the second operand by a scalar value. | +
| + | * | +
| + | * @param {mat2} out the receiving vector | +
| + | * @param {mat2} a the first operand | +
| + | * @param {mat2} b the second operand | +
| + | * @param {Number} scale the amount to scale b's elements by before adding | +
| + | * @returns {mat2} out | +
| + | */ | +
| + | function multiplyScalarAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | out[2] = a[2] + b[2] * scale; | +
| + | out[3] = a[3] + b[3] * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat2.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat2.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /***/ }), | +
| + | /* 6 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.sub = exports.mul = undefined; | +
| + | exports.create = create; | +
| + | exports.clone = clone; | +
| + | exports.copy = copy; | +
| + | exports.identity = identity; | +
| + | exports.fromValues = fromValues; | +
| + | exports.set = set; | +
| + | exports.invert = invert; | +
| + | exports.determinant = determinant; | +
| + | exports.multiply = multiply; | +
| + | exports.rotate = rotate; | +
| + | exports.scale = scale; | +
| + | exports.translate = translate; | +
| + | exports.fromRotation = fromRotation; | +
| + | exports.fromScaling = fromScaling; | +
| + | exports.fromTranslation = fromTranslation; | +
| + | exports.str = str; | +
| + | exports.frob = frob; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.multiplyScalar = multiplyScalar; | +
| + | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 2x3 Matrix | +
| + | * @module mat2d | +
| + | * | +
| + | * @description | +
| + | * A mat2d contains six elements defined as: | +
| + | * <pre> | +
| + | * [a, c, tx, | +
| + | * b, d, ty] | +
| + | * </pre> | +
| + | * This is a short form for the 3x3 matrix: | +
| + | * <pre> | +
| + | * [a, c, tx, | +
| + | * b, d, ty, | +
| + | * 0, 0, 1] | +
| + | * </pre> | +
| + | * The last row is ignored so the array is shorter and operations are faster. | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new identity mat2d | +
| + | * | +
| + | * @returns {mat2d} a new 2x3 matrix | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(6); | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | out[4] = 0; | +
| + | out[5] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new mat2d initialized with values from an existing matrix | +
| + | * | +
| + | * @param {mat2d} a matrix to clone | +
| + | * @returns {mat2d} a new 2x3 matrix | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(6); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one mat2d to another | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the source matrix | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set a mat2d to the identity matrix | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function identity(out) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | out[4] = 0; | +
| + | out[5] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Create a new mat2d with the given values | +
| + | * | +
| + | * @param {Number} a Component A (index 0) | +
| + | * @param {Number} b Component B (index 1) | +
| + | * @param {Number} c Component C (index 2) | +
| + | * @param {Number} d Component D (index 3) | +
| + | * @param {Number} tx Component TX (index 4) | +
| + | * @param {Number} ty Component TY (index 5) | +
| + | * @returns {mat2d} A new mat2d | +
| + | */ | +
| + | function fromValues(a, b, c, d, tx, ty) { | +
| + | var out = new glMatrix.ARRAY_TYPE(6); | +
| + | out[0] = a; | +
| + | out[1] = b; | +
| + | out[2] = c; | +
| + | out[3] = d; | +
| + | out[4] = tx; | +
| + | out[5] = ty; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a mat2d to the given values | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {Number} a Component A (index 0) | +
| + | * @param {Number} b Component B (index 1) | +
| + | * @param {Number} c Component C (index 2) | +
| + | * @param {Number} d Component D (index 3) | +
| + | * @param {Number} tx Component TX (index 4) | +
| + | * @param {Number} ty Component TY (index 5) | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function set(out, a, b, c, d, tx, ty) { | +
| + | out[0] = a; | +
| + | out[1] = b; | +
| + | out[2] = c; | +
| + | out[3] = d; | +
| + | out[4] = tx; | +
| + | out[5] = ty; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Inverts a mat2d | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the source matrix | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function invert(out, a) { | +
| + | var aa = a[0], | +
| + | ab = a[1], | +
| + | ac = a[2], | +
| + | ad = a[3]; | +
| + | var atx = a[4], | +
| + | aty = a[5]; | +
| + | + | +
| + | var det = aa * ad - ab * ac; | +
| + | if (!det) { | +
| + | return null; | +
| + | } | +
| + | det = 1.0 / det; | +
| + | + | +
| + | out[0] = ad * det; | +
| + | out[1] = -ab * det; | +
| + | out[2] = -ac * det; | +
| + | out[3] = aa * det; | +
| + | out[4] = (ac * aty - ad * atx) * det; | +
| + | out[5] = (ab * atx - aa * aty) * det; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the determinant of a mat2d | +
| + | * | +
| + | * @param {mat2d} a the source matrix | +
| + | * @returns {Number} determinant of a | +
| + | */ | +
| + | function determinant(a) { | +
| + | return a[0] * a[3] - a[1] * a[2]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two mat2d's | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the first operand | +
| + | * @param {mat2d} b the second operand | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3], | +
| + | a4 = a[4], | +
| + | a5 = a[5]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3], | +
| + | b4 = b[4], | +
| + | b5 = b[5]; | +
| + | out[0] = a0 * b0 + a2 * b1; | +
| + | out[1] = a1 * b0 + a3 * b1; | +
| + | out[2] = a0 * b2 + a2 * b3; | +
| + | out[3] = a1 * b2 + a3 * b3; | +
| + | out[4] = a0 * b4 + a2 * b5 + a4; | +
| + | out[5] = a1 * b4 + a3 * b5 + a5; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a mat2d by the given angle | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function rotate(out, a, rad) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3], | +
| + | a4 = a[4], | +
| + | a5 = a[5]; | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | out[0] = a0 * c + a2 * s; | +
| + | out[1] = a1 * c + a3 * s; | +
| + | out[2] = a0 * -s + a2 * c; | +
| + | out[3] = a1 * -s + a3 * c; | +
| + | out[4] = a4; | +
| + | out[5] = a5; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Scales the mat2d by the dimensions in the given vec2 | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the matrix to translate | +
| + | * @param {vec2} v the vec2 to scale the matrix by | +
| + | * @returns {mat2d} out | +
| + | **/ | +
| + | function scale(out, a, v) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3], | +
| + | a4 = a[4], | +
| + | a5 = a[5]; | +
| + | var v0 = v[0], | +
| + | v1 = v[1]; | +
| + | out[0] = a0 * v0; | +
| + | out[1] = a1 * v0; | +
| + | out[2] = a2 * v1; | +
| + | out[3] = a3 * v1; | +
| + | out[4] = a4; | +
| + | out[5] = a5; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Translates the mat2d by the dimensions in the given vec2 | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the matrix to translate | +
| + | * @param {vec2} v the vec2 to translate the matrix by | +
| + | * @returns {mat2d} out | +
| + | **/ | +
| + | function translate(out, a, v) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3], | +
| + | a4 = a[4], | +
| + | a5 = a[5]; | +
| + | var v0 = v[0], | +
| + | v1 = v[1]; | +
| + | out[0] = a0; | +
| + | out[1] = a1; | +
| + | out[2] = a2; | +
| + | out[3] = a3; | +
| + | out[4] = a0 * v0 + a2 * v1 + a4; | +
| + | out[5] = a1 * v0 + a3 * v1 + a5; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a given angle | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat2d.identity(dest); | +
| + | * mat2d.rotate(dest, dest, rad); | +
| + | * | +
| + | * @param {mat2d} out mat2d receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function fromRotation(out, rad) { | +
| + | var s = Math.sin(rad), | +
| + | c = Math.cos(rad); | +
| + | out[0] = c; | +
| + | out[1] = s; | +
| + | out[2] = -s; | +
| + | out[3] = c; | +
| + | out[4] = 0; | +
| + | out[5] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector scaling | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat2d.identity(dest); | +
| + | * mat2d.scale(dest, dest, vec); | +
| + | * | +
| + | * @param {mat2d} out mat2d receiving operation result | +
| + | * @param {vec2} v Scaling vector | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function fromScaling(out, v) { | +
| + | out[0] = v[0]; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = v[1]; | +
| + | out[4] = 0; | +
| + | out[5] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector translation | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat2d.identity(dest); | +
| + | * mat2d.translate(dest, dest, vec); | +
| + | * | +
| + | * @param {mat2d} out mat2d receiving operation result | +
| + | * @param {vec2} v Translation vector | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function fromTranslation(out, v) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | out[4] = v[0]; | +
| + | out[5] = v[1]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a mat2d | +
| + | * | +
| + | * @param {mat2d} a matrix to represent as a string | +
| + | * @returns {String} string representation of the matrix | +
| + | */ | +
| + | function str(a) { | +
| + | return 'mat2d(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns Frobenius norm of a mat2d | +
| + | * | +
| + | * @param {mat2d} a the matrix to calculate Frobenius norm of | +
| + | * @returns {Number} Frobenius norm | +
| + | */ | +
| + | function frob(a) { | +
| + | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + 1); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat2d's | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the first operand | +
| + | * @param {mat2d} b the second operand | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | out[2] = a[2] + b[2]; | +
| + | out[3] = a[3] + b[3]; | +
| + | out[4] = a[4] + b[4]; | +
| + | out[5] = a[5] + b[5]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts matrix b from matrix a | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the first operand | +
| + | * @param {mat2d} b the second operand | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | out[2] = a[2] - b[2]; | +
| + | out[3] = a[3] - b[3]; | +
| + | out[4] = a[4] - b[4]; | +
| + | out[5] = a[5] - b[5]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiply each element of the matrix by a scalar. | +
| + | * | +
| + | * @param {mat2d} out the receiving matrix | +
| + | * @param {mat2d} a the matrix to scale | +
| + | * @param {Number} b amount to scale the matrix's elements by | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function multiplyScalar(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | out[2] = a[2] * b; | +
| + | out[3] = a[3] * b; | +
| + | out[4] = a[4] * b; | +
| + | out[5] = a[5] * b; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat2d's after multiplying each element of the second operand by a scalar value. | +
| + | * | +
| + | * @param {mat2d} out the receiving vector | +
| + | * @param {mat2d} a the first operand | +
| + | * @param {mat2d} b the second operand | +
| + | * @param {Number} scale the amount to scale b's elements by before adding | +
| + | * @returns {mat2d} out | +
| + | */ | +
| + | function multiplyScalarAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | out[2] = a[2] + b[2] * scale; | +
| + | out[3] = a[3] + b[3] * scale; | +
| + | out[4] = a[4] + b[4] * scale; | +
| + | out[5] = a[5] + b[5] * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {mat2d} a The first matrix. | +
| + | * @param {mat2d} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {mat2d} a The first matrix. | +
| + | * @param {mat2d} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3], | +
| + | a4 = a[4], | +
| + | a5 = a[5]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3], | +
| + | b4 = b[4], | +
| + | b5 = b[5]; | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat2d.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat2d.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /***/ }), | +
| + | /* 7 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.sub = exports.mul = undefined; | +
| + | exports.create = create; | +
| + | exports.clone = clone; | +
| + | exports.copy = copy; | +
| + | exports.fromValues = fromValues; | +
| + | exports.set = set; | +
| + | exports.identity = identity; | +
| + | exports.transpose = transpose; | +
| + | exports.invert = invert; | +
| + | exports.adjoint = adjoint; | +
| + | exports.determinant = determinant; | +
| + | exports.multiply = multiply; | +
| + | exports.translate = translate; | +
| + | exports.scale = scale; | +
| + | exports.rotate = rotate; | +
| + | exports.rotateX = rotateX; | +
| + | exports.rotateY = rotateY; | +
| + | exports.rotateZ = rotateZ; | +
| + | exports.fromTranslation = fromTranslation; | +
| + | exports.fromScaling = fromScaling; | +
| + | exports.fromRotation = fromRotation; | +
| + | exports.fromXRotation = fromXRotation; | +
| + | exports.fromYRotation = fromYRotation; | +
| + | exports.fromZRotation = fromZRotation; | +
| + | exports.fromRotationTranslation = fromRotationTranslation; | +
| + | exports.getTranslation = getTranslation; | +
| + | exports.getScaling = getScaling; | +
| + | exports.getRotation = getRotation; | +
| + | exports.fromRotationTranslationScale = fromRotationTranslationScale; | +
| + | exports.fromRotationTranslationScaleOrigin = fromRotationTranslationScaleOrigin; | +
| + | exports.fromQuat = fromQuat; | +
| + | exports.frustum = frustum; | +
| + | exports.perspective = perspective; | +
| + | exports.perspectiveFromFieldOfView = perspectiveFromFieldOfView; | +
| + | exports.ortho = ortho; | +
| + | exports.lookAt = lookAt; | +
| + | exports.targetTo = targetTo; | +
| + | exports.str = str; | +
| + | exports.frob = frob; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.multiplyScalar = multiplyScalar; | +
| + | exports.multiplyScalarAndAdd = multiplyScalarAndAdd; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 4x4 Matrix | +
| + | * @module mat4 | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new identity mat4 | +
| + | * | +
| + | * @returns {mat4} a new 4x4 matrix | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(16); | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = 1; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = 1; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new mat4 initialized with values from an existing matrix | +
| + | * | +
| + | * @param {mat4} a matrix to clone | +
| + | * @returns {mat4} a new 4x4 matrix | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(16); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | out[6] = a[6]; | +
| + | out[7] = a[7]; | +
| + | out[8] = a[8]; | +
| + | out[9] = a[9]; | +
| + | out[10] = a[10]; | +
| + | out[11] = a[11]; | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one mat4 to another | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the source matrix | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | out[6] = a[6]; | +
| + | out[7] = a[7]; | +
| + | out[8] = a[8]; | +
| + | out[9] = a[9]; | +
| + | out[10] = a[10]; | +
| + | out[11] = a[11]; | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Create a new mat4 with the given values | +
| + | * | +
| + | * @param {Number} m00 Component in column 0, row 0 position (index 0) | +
| + | * @param {Number} m01 Component in column 0, row 1 position (index 1) | +
| + | * @param {Number} m02 Component in column 0, row 2 position (index 2) | +
| + | * @param {Number} m03 Component in column 0, row 3 position (index 3) | +
| + | * @param {Number} m10 Component in column 1, row 0 position (index 4) | +
| + | * @param {Number} m11 Component in column 1, row 1 position (index 5) | +
| + | * @param {Number} m12 Component in column 1, row 2 position (index 6) | +
| + | * @param {Number} m13 Component in column 1, row 3 position (index 7) | +
| + | * @param {Number} m20 Component in column 2, row 0 position (index 8) | +
| + | * @param {Number} m21 Component in column 2, row 1 position (index 9) | +
| + | * @param {Number} m22 Component in column 2, row 2 position (index 10) | +
| + | * @param {Number} m23 Component in column 2, row 3 position (index 11) | +
| + | * @param {Number} m30 Component in column 3, row 0 position (index 12) | +
| + | * @param {Number} m31 Component in column 3, row 1 position (index 13) | +
| + | * @param {Number} m32 Component in column 3, row 2 position (index 14) | +
| + | * @param {Number} m33 Component in column 3, row 3 position (index 15) | +
| + | * @returns {mat4} A new mat4 | +
| + | */ | +
| + | function fromValues(m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { | +
| + | var out = new glMatrix.ARRAY_TYPE(16); | +
| + | out[0] = m00; | +
| + | out[1] = m01; | +
| + | out[2] = m02; | +
| + | out[3] = m03; | +
| + | out[4] = m10; | +
| + | out[5] = m11; | +
| + | out[6] = m12; | +
| + | out[7] = m13; | +
| + | out[8] = m20; | +
| + | out[9] = m21; | +
| + | out[10] = m22; | +
| + | out[11] = m23; | +
| + | out[12] = m30; | +
| + | out[13] = m31; | +
| + | out[14] = m32; | +
| + | out[15] = m33; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a mat4 to the given values | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {Number} m00 Component in column 0, row 0 position (index 0) | +
| + | * @param {Number} m01 Component in column 0, row 1 position (index 1) | +
| + | * @param {Number} m02 Component in column 0, row 2 position (index 2) | +
| + | * @param {Number} m03 Component in column 0, row 3 position (index 3) | +
| + | * @param {Number} m10 Component in column 1, row 0 position (index 4) | +
| + | * @param {Number} m11 Component in column 1, row 1 position (index 5) | +
| + | * @param {Number} m12 Component in column 1, row 2 position (index 6) | +
| + | * @param {Number} m13 Component in column 1, row 3 position (index 7) | +
| + | * @param {Number} m20 Component in column 2, row 0 position (index 8) | +
| + | * @param {Number} m21 Component in column 2, row 1 position (index 9) | +
| + | * @param {Number} m22 Component in column 2, row 2 position (index 10) | +
| + | * @param {Number} m23 Component in column 2, row 3 position (index 11) | +
| + | * @param {Number} m30 Component in column 3, row 0 position (index 12) | +
| + | * @param {Number} m31 Component in column 3, row 1 position (index 13) | +
| + | * @param {Number} m32 Component in column 3, row 2 position (index 14) | +
| + | * @param {Number} m33 Component in column 3, row 3 position (index 15) | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function set(out, m00, m01, m02, m03, m10, m11, m12, m13, m20, m21, m22, m23, m30, m31, m32, m33) { | +
| + | out[0] = m00; | +
| + | out[1] = m01; | +
| + | out[2] = m02; | +
| + | out[3] = m03; | +
| + | out[4] = m10; | +
| + | out[5] = m11; | +
| + | out[6] = m12; | +
| + | out[7] = m13; | +
| + | out[8] = m20; | +
| + | out[9] = m21; | +
| + | out[10] = m22; | +
| + | out[11] = m23; | +
| + | out[12] = m30; | +
| + | out[13] = m31; | +
| + | out[14] = m32; | +
| + | out[15] = m33; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set a mat4 to the identity matrix | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function identity(out) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = 1; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = 1; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Transpose the values of a mat4 | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the source matrix | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function transpose(out, a) { | +
| + | // If we are transposing ourselves we can skip a few steps but have to cache some values | +
| + | if (out === a) { | +
| + | var a01 = a[1], | +
| + | a02 = a[2], | +
| + | a03 = a[3]; | +
| + | var a12 = a[6], | +
| + | a13 = a[7]; | +
| + | var a23 = a[11]; | +
| + | + | +
| + | out[1] = a[4]; | +
| + | out[2] = a[8]; | +
| + | out[3] = a[12]; | +
| + | out[4] = a01; | +
| + | out[6] = a[9]; | +
| + | out[7] = a[13]; | +
| + | out[8] = a02; | +
| + | out[9] = a12; | +
| + | out[11] = a[14]; | +
| + | out[12] = a03; | +
| + | out[13] = a13; | +
| + | out[14] = a23; | +
| + | } else { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[4]; | +
| + | out[2] = a[8]; | +
| + | out[3] = a[12]; | +
| + | out[4] = a[1]; | +
| + | out[5] = a[5]; | +
| + | out[6] = a[9]; | +
| + | out[7] = a[13]; | +
| + | out[8] = a[2]; | +
| + | out[9] = a[6]; | +
| + | out[10] = a[10]; | +
| + | out[11] = a[14]; | +
| + | out[12] = a[3]; | +
| + | out[13] = a[7]; | +
| + | out[14] = a[11]; | +
| + | out[15] = a[15]; | +
| + | } | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Inverts a mat4 | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the source matrix | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function invert(out, a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a03 = a[3]; | +
| + | var a10 = a[4], | +
| + | a11 = a[5], | +
| + | a12 = a[6], | +
| + | a13 = a[7]; | +
| + | var a20 = a[8], | +
| + | a21 = a[9], | +
| + | a22 = a[10], | +
| + | a23 = a[11]; | +
| + | var a30 = a[12], | +
| + | a31 = a[13], | +
| + | a32 = a[14], | +
| + | a33 = a[15]; | +
| + | + | +
| + | var b00 = a00 * a11 - a01 * a10; | +
| + | var b01 = a00 * a12 - a02 * a10; | +
| + | var b02 = a00 * a13 - a03 * a10; | +
| + | var b03 = a01 * a12 - a02 * a11; | +
| + | var b04 = a01 * a13 - a03 * a11; | +
| + | var b05 = a02 * a13 - a03 * a12; | +
| + | var b06 = a20 * a31 - a21 * a30; | +
| + | var b07 = a20 * a32 - a22 * a30; | +
| + | var b08 = a20 * a33 - a23 * a30; | +
| + | var b09 = a21 * a32 - a22 * a31; | +
| + | var b10 = a21 * a33 - a23 * a31; | +
| + | var b11 = a22 * a33 - a23 * a32; | +
| + | + | +
| + | // Calculate the determinant | +
| + | var det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | +
| + | + | +
| + | if (!det) { | +
| + | return null; | +
| + | } | +
| + | det = 1.0 / det; | +
| + | + | +
| + | out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det; | +
| + | out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det; | +
| + | out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det; | +
| + | out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det; | +
| + | out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det; | +
| + | out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det; | +
| + | out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det; | +
| + | out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det; | +
| + | out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det; | +
| + | out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det; | +
| + | out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det; | +
| + | out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det; | +
| + | out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det; | +
| + | out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det; | +
| + | out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det; | +
| + | out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the adjugate of a mat4 | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the source matrix | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function adjoint(out, a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a03 = a[3]; | +
| + | var a10 = a[4], | +
| + | a11 = a[5], | +
| + | a12 = a[6], | +
| + | a13 = a[7]; | +
| + | var a20 = a[8], | +
| + | a21 = a[9], | +
| + | a22 = a[10], | +
| + | a23 = a[11]; | +
| + | var a30 = a[12], | +
| + | a31 = a[13], | +
| + | a32 = a[14], | +
| + | a33 = a[15]; | +
| + | + | +
| + | out[0] = a11 * (a22 * a33 - a23 * a32) - a21 * (a12 * a33 - a13 * a32) + a31 * (a12 * a23 - a13 * a22); | +
| + | out[1] = -(a01 * (a22 * a33 - a23 * a32) - a21 * (a02 * a33 - a03 * a32) + a31 * (a02 * a23 - a03 * a22)); | +
| + | out[2] = a01 * (a12 * a33 - a13 * a32) - a11 * (a02 * a33 - a03 * a32) + a31 * (a02 * a13 - a03 * a12); | +
| + | out[3] = -(a01 * (a12 * a23 - a13 * a22) - a11 * (a02 * a23 - a03 * a22) + a21 * (a02 * a13 - a03 * a12)); | +
| + | out[4] = -(a10 * (a22 * a33 - a23 * a32) - a20 * (a12 * a33 - a13 * a32) + a30 * (a12 * a23 - a13 * a22)); | +
| + | out[5] = a00 * (a22 * a33 - a23 * a32) - a20 * (a02 * a33 - a03 * a32) + a30 * (a02 * a23 - a03 * a22); | +
| + | out[6] = -(a00 * (a12 * a33 - a13 * a32) - a10 * (a02 * a33 - a03 * a32) + a30 * (a02 * a13 - a03 * a12)); | +
| + | out[7] = a00 * (a12 * a23 - a13 * a22) - a10 * (a02 * a23 - a03 * a22) + a20 * (a02 * a13 - a03 * a12); | +
| + | out[8] = a10 * (a21 * a33 - a23 * a31) - a20 * (a11 * a33 - a13 * a31) + a30 * (a11 * a23 - a13 * a21); | +
| + | out[9] = -(a00 * (a21 * a33 - a23 * a31) - a20 * (a01 * a33 - a03 * a31) + a30 * (a01 * a23 - a03 * a21)); | +
| + | out[10] = a00 * (a11 * a33 - a13 * a31) - a10 * (a01 * a33 - a03 * a31) + a30 * (a01 * a13 - a03 * a11); | +
| + | out[11] = -(a00 * (a11 * a23 - a13 * a21) - a10 * (a01 * a23 - a03 * a21) + a20 * (a01 * a13 - a03 * a11)); | +
| + | out[12] = -(a10 * (a21 * a32 - a22 * a31) - a20 * (a11 * a32 - a12 * a31) + a30 * (a11 * a22 - a12 * a21)); | +
| + | out[13] = a00 * (a21 * a32 - a22 * a31) - a20 * (a01 * a32 - a02 * a31) + a30 * (a01 * a22 - a02 * a21); | +
| + | out[14] = -(a00 * (a11 * a32 - a12 * a31) - a10 * (a01 * a32 - a02 * a31) + a30 * (a01 * a12 - a02 * a11)); | +
| + | out[15] = a00 * (a11 * a22 - a12 * a21) - a10 * (a01 * a22 - a02 * a21) + a20 * (a01 * a12 - a02 * a11); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the determinant of a mat4 | +
| + | * | +
| + | * @param {mat4} a the source matrix | +
| + | * @returns {Number} determinant of a | +
| + | */ | +
| + | function determinant(a) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a03 = a[3]; | +
| + | var a10 = a[4], | +
| + | a11 = a[5], | +
| + | a12 = a[6], | +
| + | a13 = a[7]; | +
| + | var a20 = a[8], | +
| + | a21 = a[9], | +
| + | a22 = a[10], | +
| + | a23 = a[11]; | +
| + | var a30 = a[12], | +
| + | a31 = a[13], | +
| + | a32 = a[14], | +
| + | a33 = a[15]; | +
| + | + | +
| + | var b00 = a00 * a11 - a01 * a10; | +
| + | var b01 = a00 * a12 - a02 * a10; | +
| + | var b02 = a00 * a13 - a03 * a10; | +
| + | var b03 = a01 * a12 - a02 * a11; | +
| + | var b04 = a01 * a13 - a03 * a11; | +
| + | var b05 = a02 * a13 - a03 * a12; | +
| + | var b06 = a20 * a31 - a21 * a30; | +
| + | var b07 = a20 * a32 - a22 * a30; | +
| + | var b08 = a20 * a33 - a23 * a30; | +
| + | var b09 = a21 * a32 - a22 * a31; | +
| + | var b10 = a21 * a33 - a23 * a31; | +
| + | var b11 = a22 * a33 - a23 * a32; | +
| + | + | +
| + | // Calculate the determinant | +
| + | return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two mat4s | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the first operand | +
| + | * @param {mat4} b the second operand | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | var a00 = a[0], | +
| + | a01 = a[1], | +
| + | a02 = a[2], | +
| + | a03 = a[3]; | +
| + | var a10 = a[4], | +
| + | a11 = a[5], | +
| + | a12 = a[6], | +
| + | a13 = a[7]; | +
| + | var a20 = a[8], | +
| + | a21 = a[9], | +
| + | a22 = a[10], | +
| + | a23 = a[11]; | +
| + | var a30 = a[12], | +
| + | a31 = a[13], | +
| + | a32 = a[14], | +
| + | a33 = a[15]; | +
| + | + | +
| + | // Cache only the current line of the second matrix | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3]; | +
| + | out[0] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | +
| + | out[1] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | +
| + | out[2] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | +
| + | out[3] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | +
| + | + | +
| + | b0 = b[4];b1 = b[5];b2 = b[6];b3 = b[7]; | +
| + | out[4] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | +
| + | out[5] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | +
| + | out[6] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | +
| + | out[7] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | +
| + | + | +
| + | b0 = b[8];b1 = b[9];b2 = b[10];b3 = b[11]; | +
| + | out[8] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | +
| + | out[9] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | +
| + | out[10] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | +
| + | out[11] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | +
| + | + | +
| + | b0 = b[12];b1 = b[13];b2 = b[14];b3 = b[15]; | +
| + | out[12] = b0 * a00 + b1 * a10 + b2 * a20 + b3 * a30; | +
| + | out[13] = b0 * a01 + b1 * a11 + b2 * a21 + b3 * a31; | +
| + | out[14] = b0 * a02 + b1 * a12 + b2 * a22 + b3 * a32; | +
| + | out[15] = b0 * a03 + b1 * a13 + b2 * a23 + b3 * a33; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Translate a mat4 by the given vector | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to translate | +
| + | * @param {vec3} v vector to translate by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function translate(out, a, v) { | +
| + | var x = v[0], | +
| + | y = v[1], | +
| + | z = v[2]; | +
| + | var a00 = void 0, | +
| + | a01 = void 0, | +
| + | a02 = void 0, | +
| + | a03 = void 0; | +
| + | var a10 = void 0, | +
| + | a11 = void 0, | +
| + | a12 = void 0, | +
| + | a13 = void 0; | +
| + | var a20 = void 0, | +
| + | a21 = void 0, | +
| + | a22 = void 0, | +
| + | a23 = void 0; | +
| + | + | +
| + | if (a === out) { | +
| + | out[12] = a[0] * x + a[4] * y + a[8] * z + a[12]; | +
| + | out[13] = a[1] * x + a[5] * y + a[9] * z + a[13]; | +
| + | out[14] = a[2] * x + a[6] * y + a[10] * z + a[14]; | +
| + | out[15] = a[3] * x + a[7] * y + a[11] * z + a[15]; | +
| + | } else { | +
| + | a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3]; | +
| + | a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7]; | +
| + | a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11]; | +
| + | + | +
| + | out[0] = a00;out[1] = a01;out[2] = a02;out[3] = a03; | +
| + | out[4] = a10;out[5] = a11;out[6] = a12;out[7] = a13; | +
| + | out[8] = a20;out[9] = a21;out[10] = a22;out[11] = a23; | +
| + | + | +
| + | out[12] = a00 * x + a10 * y + a20 * z + a[12]; | +
| + | out[13] = a01 * x + a11 * y + a21 * z + a[13]; | +
| + | out[14] = a02 * x + a12 * y + a22 * z + a[14]; | +
| + | out[15] = a03 * x + a13 * y + a23 * z + a[15]; | +
| + | } | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Scales the mat4 by the dimensions in the given vec3 not using vectorization | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to scale | +
| + | * @param {vec3} v the vec3 to scale the matrix by | +
| + | * @returns {mat4} out | +
| + | **/ | +
| + | function scale(out, a, v) { | +
| + | var x = v[0], | +
| + | y = v[1], | +
| + | z = v[2]; | +
| + | + | +
| + | out[0] = a[0] * x; | +
| + | out[1] = a[1] * x; | +
| + | out[2] = a[2] * x; | +
| + | out[3] = a[3] * x; | +
| + | out[4] = a[4] * y; | +
| + | out[5] = a[5] * y; | +
| + | out[6] = a[6] * y; | +
| + | out[7] = a[7] * y; | +
| + | out[8] = a[8] * z; | +
| + | out[9] = a[9] * z; | +
| + | out[10] = a[10] * z; | +
| + | out[11] = a[11] * z; | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a mat4 by the given angle around the given axis | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @param {vec3} axis the axis to rotate around | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function rotate(out, a, rad, axis) { | +
| + | var x = axis[0], | +
| + | y = axis[1], | +
| + | z = axis[2]; | +
| + | var len = Math.sqrt(x * x + y * y + z * z); | +
| + | var s = void 0, | +
| + | c = void 0, | +
| + | t = void 0; | +
| + | var a00 = void 0, | +
| + | a01 = void 0, | +
| + | a02 = void 0, | +
| + | a03 = void 0; | +
| + | var a10 = void 0, | +
| + | a11 = void 0, | +
| + | a12 = void 0, | +
| + | a13 = void 0; | +
| + | var a20 = void 0, | +
| + | a21 = void 0, | +
| + | a22 = void 0, | +
| + | a23 = void 0; | +
| + | var b00 = void 0, | +
| + | b01 = void 0, | +
| + | b02 = void 0; | +
| + | var b10 = void 0, | +
| + | b11 = void 0, | +
| + | b12 = void 0; | +
| + | var b20 = void 0, | +
| + | b21 = void 0, | +
| + | b22 = void 0; | +
| + | + | +
| + | if (Math.abs(len) < glMatrix.EPSILON) { | +
| + | return null; | +
| + | } | +
| + | + | +
| + | len = 1 / len; | +
| + | x *= len; | +
| + | y *= len; | +
| + | z *= len; | +
| + | + | +
| + | s = Math.sin(rad); | +
| + | c = Math.cos(rad); | +
| + | t = 1 - c; | +
| + | + | +
| + | a00 = a[0];a01 = a[1];a02 = a[2];a03 = a[3]; | +
| + | a10 = a[4];a11 = a[5];a12 = a[6];a13 = a[7]; | +
| + | a20 = a[8];a21 = a[9];a22 = a[10];a23 = a[11]; | +
| + | + | +
| + | // Construct the elements of the rotation matrix | +
| + | b00 = x * x * t + c;b01 = y * x * t + z * s;b02 = z * x * t - y * s; | +
| + | b10 = x * y * t - z * s;b11 = y * y * t + c;b12 = z * y * t + x * s; | +
| + | b20 = x * z * t + y * s;b21 = y * z * t - x * s;b22 = z * z * t + c; | +
| + | + | +
| + | // Perform rotation-specific matrix multiplication | +
| + | out[0] = a00 * b00 + a10 * b01 + a20 * b02; | +
| + | out[1] = a01 * b00 + a11 * b01 + a21 * b02; | +
| + | out[2] = a02 * b00 + a12 * b01 + a22 * b02; | +
| + | out[3] = a03 * b00 + a13 * b01 + a23 * b02; | +
| + | out[4] = a00 * b10 + a10 * b11 + a20 * b12; | +
| + | out[5] = a01 * b10 + a11 * b11 + a21 * b12; | +
| + | out[6] = a02 * b10 + a12 * b11 + a22 * b12; | +
| + | out[7] = a03 * b10 + a13 * b11 + a23 * b12; | +
| + | out[8] = a00 * b20 + a10 * b21 + a20 * b22; | +
| + | out[9] = a01 * b20 + a11 * b21 + a21 * b22; | +
| + | out[10] = a02 * b20 + a12 * b21 + a22 * b22; | +
| + | out[11] = a03 * b20 + a13 * b21 + a23 * b22; | +
| + | + | +
| + | if (a !== out) { | +
| + | // If the source and destination differ, copy the unchanged last row | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | } | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a matrix by the given angle around the X axis | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function rotateX(out, a, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | var a10 = a[4]; | +
| + | var a11 = a[5]; | +
| + | var a12 = a[6]; | +
| + | var a13 = a[7]; | +
| + | var a20 = a[8]; | +
| + | var a21 = a[9]; | +
| + | var a22 = a[10]; | +
| + | var a23 = a[11]; | +
| + | + | +
| + | if (a !== out) { | +
| + | // If the source and destination differ, copy the unchanged rows | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | out[2] = a[2]; | +
| + | out[3] = a[3]; | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | } | +
| + | + | +
| + | // Perform axis-specific matrix multiplication | +
| + | out[4] = a10 * c + a20 * s; | +
| + | out[5] = a11 * c + a21 * s; | +
| + | out[6] = a12 * c + a22 * s; | +
| + | out[7] = a13 * c + a23 * s; | +
| + | out[8] = a20 * c - a10 * s; | +
| + | out[9] = a21 * c - a11 * s; | +
| + | out[10] = a22 * c - a12 * s; | +
| + | out[11] = a23 * c - a13 * s; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a matrix by the given angle around the Y axis | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function rotateY(out, a, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | var a00 = a[0]; | +
| + | var a01 = a[1]; | +
| + | var a02 = a[2]; | +
| + | var a03 = a[3]; | +
| + | var a20 = a[8]; | +
| + | var a21 = a[9]; | +
| + | var a22 = a[10]; | +
| + | var a23 = a[11]; | +
| + | + | +
| + | if (a !== out) { | +
| + | // If the source and destination differ, copy the unchanged rows | +
| + | out[4] = a[4]; | +
| + | out[5] = a[5]; | +
| + | out[6] = a[6]; | +
| + | out[7] = a[7]; | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | } | +
| + | + | +
| + | // Perform axis-specific matrix multiplication | +
| + | out[0] = a00 * c - a20 * s; | +
| + | out[1] = a01 * c - a21 * s; | +
| + | out[2] = a02 * c - a22 * s; | +
| + | out[3] = a03 * c - a23 * s; | +
| + | out[8] = a00 * s + a20 * c; | +
| + | out[9] = a01 * s + a21 * c; | +
| + | out[10] = a02 * s + a22 * c; | +
| + | out[11] = a03 * s + a23 * c; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a matrix by the given angle around the Z axis | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to rotate | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function rotateZ(out, a, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | var a00 = a[0]; | +
| + | var a01 = a[1]; | +
| + | var a02 = a[2]; | +
| + | var a03 = a[3]; | +
| + | var a10 = a[4]; | +
| + | var a11 = a[5]; | +
| + | var a12 = a[6]; | +
| + | var a13 = a[7]; | +
| + | + | +
| + | if (a !== out) { | +
| + | // If the source and destination differ, copy the unchanged last row | +
| + | out[8] = a[8]; | +
| + | out[9] = a[9]; | +
| + | out[10] = a[10]; | +
| + | out[11] = a[11]; | +
| + | out[12] = a[12]; | +
| + | out[13] = a[13]; | +
| + | out[14] = a[14]; | +
| + | out[15] = a[15]; | +
| + | } | +
| + | + | +
| + | // Perform axis-specific matrix multiplication | +
| + | out[0] = a00 * c + a10 * s; | +
| + | out[1] = a01 * c + a11 * s; | +
| + | out[2] = a02 * c + a12 * s; | +
| + | out[3] = a03 * c + a13 * s; | +
| + | out[4] = a10 * c - a00 * s; | +
| + | out[5] = a11 * c - a01 * s; | +
| + | out[6] = a12 * c - a02 * s; | +
| + | out[7] = a13 * c - a03 * s; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector translation | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.translate(dest, dest, vec); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {vec3} v Translation vector | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromTranslation(out, v) { | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = 1; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = 1; | +
| + | out[11] = 0; | +
| + | out[12] = v[0]; | +
| + | out[13] = v[1]; | +
| + | out[14] = v[2]; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a vector scaling | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.scale(dest, dest, vec); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {vec3} v Scaling vector | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromScaling(out, v) { | +
| + | out[0] = v[0]; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = v[1]; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = v[2]; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a given angle around a given axis | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.rotate(dest, dest, rad, axis); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @param {vec3} axis the axis to rotate around | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromRotation(out, rad, axis) { | +
| + | var x = axis[0], | +
| + | y = axis[1], | +
| + | z = axis[2]; | +
| + | var len = Math.sqrt(x * x + y * y + z * z); | +
| + | var s = void 0, | +
| + | c = void 0, | +
| + | t = void 0; | +
| + | + | +
| + | if (Math.abs(len) < glMatrix.EPSILON) { | +
| + | return null; | +
| + | } | +
| + | + | +
| + | len = 1 / len; | +
| + | x *= len; | +
| + | y *= len; | +
| + | z *= len; | +
| + | + | +
| + | s = Math.sin(rad); | +
| + | c = Math.cos(rad); | +
| + | t = 1 - c; | +
| + | + | +
| + | // Perform rotation-specific matrix multiplication | +
| + | out[0] = x * x * t + c; | +
| + | out[1] = y * x * t + z * s; | +
| + | out[2] = z * x * t - y * s; | +
| + | out[3] = 0; | +
| + | out[4] = x * y * t - z * s; | +
| + | out[5] = y * y * t + c; | +
| + | out[6] = z * y * t + x * s; | +
| + | out[7] = 0; | +
| + | out[8] = x * z * t + y * s; | +
| + | out[9] = y * z * t - x * s; | +
| + | out[10] = z * z * t + c; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from the given angle around the X axis | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.rotateX(dest, dest, rad); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromXRotation(out, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | + | +
| + | // Perform axis-specific matrix multiplication | +
| + | out[0] = 1; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = c; | +
| + | out[6] = s; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = -s; | +
| + | out[10] = c; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from the given angle around the Y axis | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.rotateY(dest, dest, rad); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromYRotation(out, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | + | +
| + | // Perform axis-specific matrix multiplication | +
| + | out[0] = c; | +
| + | out[1] = 0; | +
| + | out[2] = -s; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = 1; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = s; | +
| + | out[9] = 0; | +
| + | out[10] = c; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from the given angle around the Z axis | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.rotateZ(dest, dest, rad); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {Number} rad the angle to rotate the matrix by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromZRotation(out, rad) { | +
| + | var s = Math.sin(rad); | +
| + | var c = Math.cos(rad); | +
| + | + | +
| + | // Perform axis-specific matrix multiplication | +
| + | out[0] = c; | +
| + | out[1] = s; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = -s; | +
| + | out[5] = c; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = 1; | +
| + | out[11] = 0; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a quaternion rotation and vector translation | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.translate(dest, vec); | +
| + | * let quatMat = mat4.create(); | +
| + | * quat4.toMat4(quat, quatMat); | +
| + | * mat4.multiply(dest, quatMat); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {quat4} q Rotation quaternion | +
| + | * @param {vec3} v Translation vector | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromRotationTranslation(out, q, v) { | +
| + | // Quaternion math | +
| + | var x = q[0], | +
| + | y = q[1], | +
| + | z = q[2], | +
| + | w = q[3]; | +
| + | var x2 = x + x; | +
| + | var y2 = y + y; | +
| + | var z2 = z + z; | +
| + | + | +
| + | var xx = x * x2; | +
| + | var xy = x * y2; | +
| + | var xz = x * z2; | +
| + | var yy = y * y2; | +
| + | var yz = y * z2; | +
| + | var zz = z * z2; | +
| + | var wx = w * x2; | +
| + | var wy = w * y2; | +
| + | var wz = w * z2; | +
| + | + | +
| + | out[0] = 1 - (yy + zz); | +
| + | out[1] = xy + wz; | +
| + | out[2] = xz - wy; | +
| + | out[3] = 0; | +
| + | out[4] = xy - wz; | +
| + | out[5] = 1 - (xx + zz); | +
| + | out[6] = yz + wx; | +
| + | out[7] = 0; | +
| + | out[8] = xz + wy; | +
| + | out[9] = yz - wx; | +
| + | out[10] = 1 - (xx + yy); | +
| + | out[11] = 0; | +
| + | out[12] = v[0]; | +
| + | out[13] = v[1]; | +
| + | out[14] = v[2]; | +
| + | out[15] = 1; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the translation vector component of a transformation | +
| + | * matrix. If a matrix is built with fromRotationTranslation, | +
| + | * the returned vector will be the same as the translation vector | +
| + | * originally supplied. | +
| + | * @param {vec3} out Vector to receive translation component | +
| + | * @param {mat4} mat Matrix to be decomposed (input) | +
| + | * @return {vec3} out | +
| + | */ | +
| + | function getTranslation(out, mat) { | +
| + | out[0] = mat[12]; | +
| + | out[1] = mat[13]; | +
| + | out[2] = mat[14]; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns the scaling factor component of a transformation | +
| + | * matrix. If a matrix is built with fromRotationTranslationScale | +
| + | * with a normalized Quaternion paramter, the returned vector will be | +
| + | * the same as the scaling vector | +
| + | * originally supplied. | +
| + | * @param {vec3} out Vector to receive scaling factor component | +
| + | * @param {mat4} mat Matrix to be decomposed (input) | +
| + | * @return {vec3} out | +
| + | */ | +
| + | function getScaling(out, mat) { | +
| + | var m11 = mat[0]; | +
| + | var m12 = mat[1]; | +
| + | var m13 = mat[2]; | +
| + | var m21 = mat[4]; | +
| + | var m22 = mat[5]; | +
| + | var m23 = mat[6]; | +
| + | var m31 = mat[8]; | +
| + | var m32 = mat[9]; | +
| + | var m33 = mat[10]; | +
| + | + | +
| + | out[0] = Math.sqrt(m11 * m11 + m12 * m12 + m13 * m13); | +
| + | out[1] = Math.sqrt(m21 * m21 + m22 * m22 + m23 * m23); | +
| + | out[2] = Math.sqrt(m31 * m31 + m32 * m32 + m33 * m33); | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a quaternion representing the rotational component | +
| + | * of a transformation matrix. If a matrix is built with | +
| + | * fromRotationTranslation, the returned quaternion will be the | +
| + | * same as the quaternion originally supplied. | +
| + | * @param {quat} out Quaternion to receive the rotation component | +
| + | * @param {mat4} mat Matrix to be decomposed (input) | +
| + | * @return {quat} out | +
| + | */ | +
| + | function getRotation(out, mat) { | +
| + | // Algorithm taken from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm | +
| + | var trace = mat[0] + mat[5] + mat[10]; | +
| + | var S = 0; | +
| + | + | +
| + | if (trace > 0) { | +
| + | S = Math.sqrt(trace + 1.0) * 2; | +
| + | out[3] = 0.25 * S; | +
| + | out[0] = (mat[6] - mat[9]) / S; | +
| + | out[1] = (mat[8] - mat[2]) / S; | +
| + | out[2] = (mat[1] - mat[4]) / S; | +
| + | } else if (mat[0] > mat[5] & mat[0] > mat[10]) { | +
| + | S = Math.sqrt(1.0 + mat[0] - mat[5] - mat[10]) * 2; | +
| + | out[3] = (mat[6] - mat[9]) / S; | +
| + | out[0] = 0.25 * S; | +
| + | out[1] = (mat[1] + mat[4]) / S; | +
| + | out[2] = (mat[8] + mat[2]) / S; | +
| + | } else if (mat[5] > mat[10]) { | +
| + | S = Math.sqrt(1.0 + mat[5] - mat[0] - mat[10]) * 2; | +
| + | out[3] = (mat[8] - mat[2]) / S; | +
| + | out[0] = (mat[1] + mat[4]) / S; | +
| + | out[1] = 0.25 * S; | +
| + | out[2] = (mat[6] + mat[9]) / S; | +
| + | } else { | +
| + | S = Math.sqrt(1.0 + mat[10] - mat[0] - mat[5]) * 2; | +
| + | out[3] = (mat[1] - mat[4]) / S; | +
| + | out[0] = (mat[8] + mat[2]) / S; | +
| + | out[1] = (mat[6] + mat[9]) / S; | +
| + | out[2] = 0.25 * S; | +
| + | } | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a quaternion rotation, vector translation and vector scale | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.translate(dest, vec); | +
| + | * let quatMat = mat4.create(); | +
| + | * quat4.toMat4(quat, quatMat); | +
| + | * mat4.multiply(dest, quatMat); | +
| + | * mat4.scale(dest, scale) | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {quat4} q Rotation quaternion | +
| + | * @param {vec3} v Translation vector | +
| + | * @param {vec3} s Scaling vector | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromRotationTranslationScale(out, q, v, s) { | +
| + | // Quaternion math | +
| + | var x = q[0], | +
| + | y = q[1], | +
| + | z = q[2], | +
| + | w = q[3]; | +
| + | var x2 = x + x; | +
| + | var y2 = y + y; | +
| + | var z2 = z + z; | +
| + | + | +
| + | var xx = x * x2; | +
| + | var xy = x * y2; | +
| + | var xz = x * z2; | +
| + | var yy = y * y2; | +
| + | var yz = y * z2; | +
| + | var zz = z * z2; | +
| + | var wx = w * x2; | +
| + | var wy = w * y2; | +
| + | var wz = w * z2; | +
| + | var sx = s[0]; | +
| + | var sy = s[1]; | +
| + | var sz = s[2]; | +
| + | + | +
| + | out[0] = (1 - (yy + zz)) * sx; | +
| + | out[1] = (xy + wz) * sx; | +
| + | out[2] = (xz - wy) * sx; | +
| + | out[3] = 0; | +
| + | out[4] = (xy - wz) * sy; | +
| + | out[5] = (1 - (xx + zz)) * sy; | +
| + | out[6] = (yz + wx) * sy; | +
| + | out[7] = 0; | +
| + | out[8] = (xz + wy) * sz; | +
| + | out[9] = (yz - wx) * sz; | +
| + | out[10] = (1 - (xx + yy)) * sz; | +
| + | out[11] = 0; | +
| + | out[12] = v[0]; | +
| + | out[13] = v[1]; | +
| + | out[14] = v[2]; | +
| + | out[15] = 1; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a matrix from a quaternion rotation, vector translation and vector scale, rotating and scaling around the given origin | +
| + | * This is equivalent to (but much faster than): | +
| + | * | +
| + | * mat4.identity(dest); | +
| + | * mat4.translate(dest, vec); | +
| + | * mat4.translate(dest, origin); | +
| + | * let quatMat = mat4.create(); | +
| + | * quat4.toMat4(quat, quatMat); | +
| + | * mat4.multiply(dest, quatMat); | +
| + | * mat4.scale(dest, scale) | +
| + | * mat4.translate(dest, negativeOrigin); | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {quat4} q Rotation quaternion | +
| + | * @param {vec3} v Translation vector | +
| + | * @param {vec3} s Scaling vector | +
| + | * @param {vec3} o The origin vector around which to scale and rotate | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromRotationTranslationScaleOrigin(out, q, v, s, o) { | +
| + | // Quaternion math | +
| + | var x = q[0], | +
| + | y = q[1], | +
| + | z = q[2], | +
| + | w = q[3]; | +
| + | var x2 = x + x; | +
| + | var y2 = y + y; | +
| + | var z2 = z + z; | +
| + | + | +
| + | var xx = x * x2; | +
| + | var xy = x * y2; | +
| + | var xz = x * z2; | +
| + | var yy = y * y2; | +
| + | var yz = y * z2; | +
| + | var zz = z * z2; | +
| + | var wx = w * x2; | +
| + | var wy = w * y2; | +
| + | var wz = w * z2; | +
| + | + | +
| + | var sx = s[0]; | +
| + | var sy = s[1]; | +
| + | var sz = s[2]; | +
| + | + | +
| + | var ox = o[0]; | +
| + | var oy = o[1]; | +
| + | var oz = o[2]; | +
| + | + | +
| + | out[0] = (1 - (yy + zz)) * sx; | +
| + | out[1] = (xy + wz) * sx; | +
| + | out[2] = (xz - wy) * sx; | +
| + | out[3] = 0; | +
| + | out[4] = (xy - wz) * sy; | +
| + | out[5] = (1 - (xx + zz)) * sy; | +
| + | out[6] = (yz + wx) * sy; | +
| + | out[7] = 0; | +
| + | out[8] = (xz + wy) * sz; | +
| + | out[9] = (yz - wx) * sz; | +
| + | out[10] = (1 - (xx + yy)) * sz; | +
| + | out[11] = 0; | +
| + | out[12] = v[0] + ox - (out[0] * ox + out[4] * oy + out[8] * oz); | +
| + | out[13] = v[1] + oy - (out[1] * ox + out[5] * oy + out[9] * oz); | +
| + | out[14] = v[2] + oz - (out[2] * ox + out[6] * oy + out[10] * oz); | +
| + | out[15] = 1; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates a 4x4 matrix from the given quaternion | +
| + | * | +
| + | * @param {mat4} out mat4 receiving operation result | +
| + | * @param {quat} q Quaternion to create matrix from | +
| + | * | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function fromQuat(out, q) { | +
| + | var x = q[0], | +
| + | y = q[1], | +
| + | z = q[2], | +
| + | w = q[3]; | +
| + | var x2 = x + x; | +
| + | var y2 = y + y; | +
| + | var z2 = z + z; | +
| + | + | +
| + | var xx = x * x2; | +
| + | var yx = y * x2; | +
| + | var yy = y * y2; | +
| + | var zx = z * x2; | +
| + | var zy = z * y2; | +
| + | var zz = z * z2; | +
| + | var wx = w * x2; | +
| + | var wy = w * y2; | +
| + | var wz = w * z2; | +
| + | + | +
| + | out[0] = 1 - yy - zz; | +
| + | out[1] = yx + wz; | +
| + | out[2] = zx - wy; | +
| + | out[3] = 0; | +
| + | + | +
| + | out[4] = yx - wz; | +
| + | out[5] = 1 - xx - zz; | +
| + | out[6] = zy + wx; | +
| + | out[7] = 0; | +
| + | + | +
| + | out[8] = zx + wy; | +
| + | out[9] = zy - wx; | +
| + | out[10] = 1 - xx - yy; | +
| + | out[11] = 0; | +
| + | + | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 0; | +
| + | out[15] = 1; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a frustum matrix with the given bounds | +
| + | * | +
| + | * @param {mat4} out mat4 frustum matrix will be written into | +
| + | * @param {Number} left Left bound of the frustum | +
| + | * @param {Number} right Right bound of the frustum | +
| + | * @param {Number} bottom Bottom bound of the frustum | +
| + | * @param {Number} top Top bound of the frustum | +
| + | * @param {Number} near Near bound of the frustum | +
| + | * @param {Number} far Far bound of the frustum | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function frustum(out, left, right, bottom, top, near, far) { | +
| + | var rl = 1 / (right - left); | +
| + | var tb = 1 / (top - bottom); | +
| + | var nf = 1 / (near - far); | +
| + | out[0] = near * 2 * rl; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = near * 2 * tb; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = (right + left) * rl; | +
| + | out[9] = (top + bottom) * tb; | +
| + | out[10] = (far + near) * nf; | +
| + | out[11] = -1; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = far * near * 2 * nf; | +
| + | out[15] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a perspective projection matrix with the given bounds | +
| + | * | +
| + | * @param {mat4} out mat4 frustum matrix will be written into | +
| + | * @param {number} fovy Vertical field of view in radians | +
| + | * @param {number} aspect Aspect ratio. typically viewport width/height | +
| + | * @param {number} near Near bound of the frustum | +
| + | * @param {number} far Far bound of the frustum | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function perspective(out, fovy, aspect, near, far) { | +
| + | var f = 1.0 / Math.tan(fovy / 2); | +
| + | var nf = 1 / (near - far); | +
| + | out[0] = f / aspect; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = f; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = (far + near) * nf; | +
| + | out[11] = -1; | +
| + | out[12] = 0; | +
| + | out[13] = 0; | +
| + | out[14] = 2 * far * near * nf; | +
| + | out[15] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a perspective projection matrix with the given field of view. | +
| + | * This is primarily useful for generating projection matrices to be used | +
| + | * with the still experiemental WebVR API. | +
| + | * | +
| + | * @param {mat4} out mat4 frustum matrix will be written into | +
| + | * @param {Object} fov Object containing the following values: upDegrees, downDegrees, leftDegrees, rightDegrees | +
| + | * @param {number} near Near bound of the frustum | +
| + | * @param {number} far Far bound of the frustum | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function perspectiveFromFieldOfView(out, fov, near, far) { | +
| + | var upTan = Math.tan(fov.upDegrees * Math.PI / 180.0); | +
| + | var downTan = Math.tan(fov.downDegrees * Math.PI / 180.0); | +
| + | var leftTan = Math.tan(fov.leftDegrees * Math.PI / 180.0); | +
| + | var rightTan = Math.tan(fov.rightDegrees * Math.PI / 180.0); | +
| + | var xScale = 2.0 / (leftTan + rightTan); | +
| + | var yScale = 2.0 / (upTan + downTan); | +
| + | + | +
| + | out[0] = xScale; | +
| + | out[1] = 0.0; | +
| + | out[2] = 0.0; | +
| + | out[3] = 0.0; | +
| + | out[4] = 0.0; | +
| + | out[5] = yScale; | +
| + | out[6] = 0.0; | +
| + | out[7] = 0.0; | +
| + | out[8] = -((leftTan - rightTan) * xScale * 0.5); | +
| + | out[9] = (upTan - downTan) * yScale * 0.5; | +
| + | out[10] = far / (near - far); | +
| + | out[11] = -1.0; | +
| + | out[12] = 0.0; | +
| + | out[13] = 0.0; | +
| + | out[14] = far * near / (near - far); | +
| + | out[15] = 0.0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a orthogonal projection matrix with the given bounds | +
| + | * | +
| + | * @param {mat4} out mat4 frustum matrix will be written into | +
| + | * @param {number} left Left bound of the frustum | +
| + | * @param {number} right Right bound of the frustum | +
| + | * @param {number} bottom Bottom bound of the frustum | +
| + | * @param {number} top Top bound of the frustum | +
| + | * @param {number} near Near bound of the frustum | +
| + | * @param {number} far Far bound of the frustum | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function ortho(out, left, right, bottom, top, near, far) { | +
| + | var lr = 1 / (left - right); | +
| + | var bt = 1 / (bottom - top); | +
| + | var nf = 1 / (near - far); | +
| + | out[0] = -2 * lr; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 0; | +
| + | out[4] = 0; | +
| + | out[5] = -2 * bt; | +
| + | out[6] = 0; | +
| + | out[7] = 0; | +
| + | out[8] = 0; | +
| + | out[9] = 0; | +
| + | out[10] = 2 * nf; | +
| + | out[11] = 0; | +
| + | out[12] = (left + right) * lr; | +
| + | out[13] = (top + bottom) * bt; | +
| + | out[14] = (far + near) * nf; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a look-at matrix with the given eye position, focal point, and up axis | +
| + | * | +
| + | * @param {mat4} out mat4 frustum matrix will be written into | +
| + | * @param {vec3} eye Position of the viewer | +
| + | * @param {vec3} center Point the viewer is looking at | +
| + | * @param {vec3} up vec3 pointing up | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function lookAt(out, eye, center, up) { | +
| + | var x0 = void 0, | +
| + | x1 = void 0, | +
| + | x2 = void 0, | +
| + | y0 = void 0, | +
| + | y1 = void 0, | +
| + | y2 = void 0, | +
| + | z0 = void 0, | +
| + | z1 = void 0, | +
| + | z2 = void 0, | +
| + | len = void 0; | +
| + | var eyex = eye[0]; | +
| + | var eyey = eye[1]; | +
| + | var eyez = eye[2]; | +
| + | var upx = up[0]; | +
| + | var upy = up[1]; | +
| + | var upz = up[2]; | +
| + | var centerx = center[0]; | +
| + | var centery = center[1]; | +
| + | var centerz = center[2]; | +
| + | + | +
| + | if (Math.abs(eyex - centerx) < glMatrix.EPSILON && Math.abs(eyey - centery) < glMatrix.EPSILON && Math.abs(eyez - centerz) < glMatrix.EPSILON) { | +
| + | return mat4.identity(out); | +
| + | } | +
| + | + | +
| + | z0 = eyex - centerx; | +
| + | z1 = eyey - centery; | +
| + | z2 = eyez - centerz; | +
| + | + | +
| + | len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2); | +
| + | z0 *= len; | +
| + | z1 *= len; | +
| + | z2 *= len; | +
| + | + | +
| + | x0 = upy * z2 - upz * z1; | +
| + | x1 = upz * z0 - upx * z2; | +
| + | x2 = upx * z1 - upy * z0; | +
| + | len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2); | +
| + | if (!len) { | +
| + | x0 = 0; | +
| + | x1 = 0; | +
| + | x2 = 0; | +
| + | } else { | +
| + | len = 1 / len; | +
| + | x0 *= len; | +
| + | x1 *= len; | +
| + | x2 *= len; | +
| + | } | +
| + | + | +
| + | y0 = z1 * x2 - z2 * x1; | +
| + | y1 = z2 * x0 - z0 * x2; | +
| + | y2 = z0 * x1 - z1 * x0; | +
| + | + | +
| + | len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2); | +
| + | if (!len) { | +
| + | y0 = 0; | +
| + | y1 = 0; | +
| + | y2 = 0; | +
| + | } else { | +
| + | len = 1 / len; | +
| + | y0 *= len; | +
| + | y1 *= len; | +
| + | y2 *= len; | +
| + | } | +
| + | + | +
| + | out[0] = x0; | +
| + | out[1] = y0; | +
| + | out[2] = z0; | +
| + | out[3] = 0; | +
| + | out[4] = x1; | +
| + | out[5] = y1; | +
| + | out[6] = z1; | +
| + | out[7] = 0; | +
| + | out[8] = x2; | +
| + | out[9] = y2; | +
| + | out[10] = z2; | +
| + | out[11] = 0; | +
| + | out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez); | +
| + | out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez); | +
| + | out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez); | +
| + | out[15] = 1; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Generates a matrix that makes something look at something else. | +
| + | * | +
| + | * @param {mat4} out mat4 frustum matrix will be written into | +
| + | * @param {vec3} eye Position of the viewer | +
| + | * @param {vec3} center Point the viewer is looking at | +
| + | * @param {vec3} up vec3 pointing up | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function targetTo(out, eye, target, up) { | +
| + | var eyex = eye[0], | +
| + | eyey = eye[1], | +
| + | eyez = eye[2], | +
| + | upx = up[0], | +
| + | upy = up[1], | +
| + | upz = up[2]; | +
| + | + | +
| + | var z0 = eyex - target[0], | +
| + | z1 = eyey - target[1], | +
| + | z2 = eyez - target[2]; | +
| + | + | +
| + | var len = z0 * z0 + z1 * z1 + z2 * z2; | +
| + | if (len > 0) { | +
| + | len = 1 / Math.sqrt(len); | +
| + | z0 *= len; | +
| + | z1 *= len; | +
| + | z2 *= len; | +
| + | } | +
| + | + | +
| + | var x0 = upy * z2 - upz * z1, | +
| + | x1 = upz * z0 - upx * z2, | +
| + | x2 = upx * z1 - upy * z0; | +
| + | + | +
| + | out[0] = x0; | +
| + | out[1] = x1; | +
| + | out[2] = x2; | +
| + | out[3] = 0; | +
| + | out[4] = z1 * x2 - z2 * x1; | +
| + | out[5] = z2 * x0 - z0 * x2; | +
| + | out[6] = z0 * x1 - z1 * x0; | +
| + | out[7] = 0; | +
| + | out[8] = z0; | +
| + | out[9] = z1; | +
| + | out[10] = z2; | +
| + | out[11] = 0; | +
| + | out[12] = eyex; | +
| + | out[13] = eyey; | +
| + | out[14] = eyez; | +
| + | out[15] = 1; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a mat4 | +
| + | * | +
| + | * @param {mat4} a matrix to represent as a string | +
| + | * @returns {String} string representation of the matrix | +
| + | */ | +
| + | function str(a) { | +
| + | return 'mat4(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ', ' + a[4] + ', ' + a[5] + ', ' + a[6] + ', ' + a[7] + ', ' + a[8] + ', ' + a[9] + ', ' + a[10] + ', ' + a[11] + ', ' + a[12] + ', ' + a[13] + ', ' + a[14] + ', ' + a[15] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns Frobenius norm of a mat4 | +
| + | * | +
| + | * @param {mat4} a the matrix to calculate Frobenius norm of | +
| + | * @returns {Number} Frobenius norm | +
| + | */ | +
| + | function frob(a) { | +
| + | return Math.sqrt(Math.pow(a[0], 2) + Math.pow(a[1], 2) + Math.pow(a[2], 2) + Math.pow(a[3], 2) + Math.pow(a[4], 2) + Math.pow(a[5], 2) + Math.pow(a[6], 2) + Math.pow(a[7], 2) + Math.pow(a[8], 2) + Math.pow(a[9], 2) + Math.pow(a[10], 2) + Math.pow(a[11], 2) + Math.pow(a[12], 2) + Math.pow(a[13], 2) + Math.pow(a[14], 2) + Math.pow(a[15], 2)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat4's | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the first operand | +
| + | * @param {mat4} b the second operand | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | out[2] = a[2] + b[2]; | +
| + | out[3] = a[3] + b[3]; | +
| + | out[4] = a[4] + b[4]; | +
| + | out[5] = a[5] + b[5]; | +
| + | out[6] = a[6] + b[6]; | +
| + | out[7] = a[7] + b[7]; | +
| + | out[8] = a[8] + b[8]; | +
| + | out[9] = a[9] + b[9]; | +
| + | out[10] = a[10] + b[10]; | +
| + | out[11] = a[11] + b[11]; | +
| + | out[12] = a[12] + b[12]; | +
| + | out[13] = a[13] + b[13]; | +
| + | out[14] = a[14] + b[14]; | +
| + | out[15] = a[15] + b[15]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts matrix b from matrix a | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the first operand | +
| + | * @param {mat4} b the second operand | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | out[2] = a[2] - b[2]; | +
| + | out[3] = a[3] - b[3]; | +
| + | out[4] = a[4] - b[4]; | +
| + | out[5] = a[5] - b[5]; | +
| + | out[6] = a[6] - b[6]; | +
| + | out[7] = a[7] - b[7]; | +
| + | out[8] = a[8] - b[8]; | +
| + | out[9] = a[9] - b[9]; | +
| + | out[10] = a[10] - b[10]; | +
| + | out[11] = a[11] - b[11]; | +
| + | out[12] = a[12] - b[12]; | +
| + | out[13] = a[13] - b[13]; | +
| + | out[14] = a[14] - b[14]; | +
| + | out[15] = a[15] - b[15]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiply each element of the matrix by a scalar. | +
| + | * | +
| + | * @param {mat4} out the receiving matrix | +
| + | * @param {mat4} a the matrix to scale | +
| + | * @param {Number} b amount to scale the matrix's elements by | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function multiplyScalar(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | out[2] = a[2] * b; | +
| + | out[3] = a[3] * b; | +
| + | out[4] = a[4] * b; | +
| + | out[5] = a[5] * b; | +
| + | out[6] = a[6] * b; | +
| + | out[7] = a[7] * b; | +
| + | out[8] = a[8] * b; | +
| + | out[9] = a[9] * b; | +
| + | out[10] = a[10] * b; | +
| + | out[11] = a[11] * b; | +
| + | out[12] = a[12] * b; | +
| + | out[13] = a[13] * b; | +
| + | out[14] = a[14] * b; | +
| + | out[15] = a[15] * b; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two mat4's after multiplying each element of the second operand by a scalar value. | +
| + | * | +
| + | * @param {mat4} out the receiving vector | +
| + | * @param {mat4} a the first operand | +
| + | * @param {mat4} b the second operand | +
| + | * @param {Number} scale the amount to scale b's elements by before adding | +
| + | * @returns {mat4} out | +
| + | */ | +
| + | function multiplyScalarAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | out[2] = a[2] + b[2] * scale; | +
| + | out[3] = a[3] + b[3] * scale; | +
| + | out[4] = a[4] + b[4] * scale; | +
| + | out[5] = a[5] + b[5] * scale; | +
| + | out[6] = a[6] + b[6] * scale; | +
| + | out[7] = a[7] + b[7] * scale; | +
| + | out[8] = a[8] + b[8] * scale; | +
| + | out[9] = a[9] + b[9] * scale; | +
| + | out[10] = a[10] + b[10] * scale; | +
| + | out[11] = a[11] + b[11] * scale; | +
| + | out[12] = a[12] + b[12] * scale; | +
| + | out[13] = a[13] + b[13] * scale; | +
| + | out[14] = a[14] + b[14] * scale; | +
| + | out[15] = a[15] + b[15] * scale; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {mat4} a The first matrix. | +
| + | * @param {mat4} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1] && a[2] === b[2] && a[3] === b[3] && a[4] === b[4] && a[5] === b[5] && a[6] === b[6] && a[7] === b[7] && a[8] === b[8] && a[9] === b[9] && a[10] === b[10] && a[11] === b[11] && a[12] === b[12] && a[13] === b[13] && a[14] === b[14] && a[15] === b[15]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the matrices have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {mat4} a The first matrix. | +
| + | * @param {mat4} b The second matrix. | +
| + | * @returns {Boolean} True if the matrices are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var a4 = a[4], | +
| + | a5 = a[5], | +
| + | a6 = a[6], | +
| + | a7 = a[7]; | +
| + | var a8 = a[8], | +
| + | a9 = a[9], | +
| + | a10 = a[10], | +
| + | a11 = a[11]; | +
| + | var a12 = a[12], | +
| + | a13 = a[13], | +
| + | a14 = a[14], | +
| + | a15 = a[15]; | +
| + | + | +
| + | var b0 = b[0], | +
| + | b1 = b[1], | +
| + | b2 = b[2], | +
| + | b3 = b[3]; | +
| + | var b4 = b[4], | +
| + | b5 = b[5], | +
| + | b6 = b[6], | +
| + | b7 = b[7]; | +
| + | var b8 = b[8], | +
| + | b9 = b[9], | +
| + | b10 = b[10], | +
| + | b11 = b[11]; | +
| + | var b12 = b[12], | +
| + | b13 = b[13], | +
| + | b14 = b[14], | +
| + | b15 = b[15]; | +
| + | + | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) && Math.abs(a2 - b2) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)) && Math.abs(a3 - b3) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a3), Math.abs(b3)) && Math.abs(a4 - b4) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a4), Math.abs(b4)) && Math.abs(a5 - b5) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a5), Math.abs(b5)) && Math.abs(a6 - b6) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a6), Math.abs(b6)) && Math.abs(a7 - b7) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a7), Math.abs(b7)) && Math.abs(a8 - b8) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a8), Math.abs(b8)) && Math.abs(a9 - b9) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a9), Math.abs(b9)) && Math.abs(a10 - b10) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a10), Math.abs(b10)) && Math.abs(a11 - b11) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a11), Math.abs(b11)) && Math.abs(a12 - b12) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a12), Math.abs(b12)) && Math.abs(a13 - b13) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a13), Math.abs(b13)) && Math.abs(a14 - b14) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a14), Math.abs(b14)) && Math.abs(a15 - b15) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a15), Math.abs(b15)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat4.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link mat4.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /***/ }), | +
| + | /* 8 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.setAxes = exports.sqlerp = exports.rotationTo = exports.equals = exports.exactEquals = exports.normalize = exports.sqrLen = exports.squaredLength = exports.len = exports.length = exports.lerp = exports.dot = exports.scale = exports.mul = exports.add = exports.set = exports.copy = exports.fromValues = exports.clone = undefined; | +
| + | exports.create = create; | +
| + | exports.identity = identity; | +
| + | exports.setAxisAngle = setAxisAngle; | +
| + | exports.getAxisAngle = getAxisAngle; | +
| + | exports.multiply = multiply; | +
| + | exports.rotateX = rotateX; | +
| + | exports.rotateY = rotateY; | +
| + | exports.rotateZ = rotateZ; | +
| + | exports.calculateW = calculateW; | +
| + | exports.slerp = slerp; | +
| + | exports.invert = invert; | +
| + | exports.conjugate = conjugate; | +
| + | exports.fromMat3 = fromMat3; | +
| + | exports.fromEuler = fromEuler; | +
| + | exports.str = str; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | var _mat = __webpack_require__(1); | +
| + | + | +
| + | var mat3 = _interopRequireWildcard(_mat); | +
| + | + | +
| + | var _vec = __webpack_require__(2); | +
| + | + | +
| + | var vec3 = _interopRequireWildcard(_vec); | +
| + | + | +
| + | var _vec2 = __webpack_require__(3); | +
| + | + | +
| + | var vec4 = _interopRequireWildcard(_vec2); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * Quaternion | +
| + | * @module quat | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new identity quat | +
| + | * | +
| + | * @returns {quat} a new quaternion | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(4); | +
| + | out[0] = 0; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set a quat to the identity quaternion | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function identity(out) { | +
| + | out[0] = 0; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Sets a quat from the given angle and rotation axis, | +
| + | * then returns it. | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {vec3} axis the axis around which to rotate | +
| + | * @param {Number} rad the angle in radians | +
| + | * @returns {quat} out | +
| + | **/ | +
| + | function setAxisAngle(out, axis, rad) { | +
| + | rad = rad * 0.5; | +
| + | var s = Math.sin(rad); | +
| + | out[0] = s * axis[0]; | +
| + | out[1] = s * axis[1]; | +
| + | out[2] = s * axis[2]; | +
| + | out[3] = Math.cos(rad); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Gets the rotation axis and angle for a given | +
| + | * quaternion. If a quaternion is created with | +
| + | * setAxisAngle, this method will return the same | +
| + | * values as providied in the original parameter list | +
| + | * OR functionally equivalent values. | +
| + | * Example: The quaternion formed by axis [0, 0, 1] and | +
| + | * angle -90 is the same as the quaternion formed by | +
| + | * [0, 0, 1] and 270. This method favors the latter. | +
| + | * @param {vec3} out_axis Vector receiving the axis of rotation | +
| + | * @param {quat} q Quaternion to be decomposed | +
| + | * @return {Number} Angle, in radians, of the rotation | +
| + | */ | +
| + | function getAxisAngle(out_axis, q) { | +
| + | var rad = Math.acos(q[3]) * 2.0; | +
| + | var s = Math.sin(rad / 2.0); | +
| + | if (s != 0.0) { | +
| + | out_axis[0] = q[0] / s; | +
| + | out_axis[1] = q[1] / s; | +
| + | out_axis[2] = q[2] / s; | +
| + | } else { | +
| + | // If s is zero, return any axis (no rotation - axis does not matter) | +
| + | out_axis[0] = 1; | +
| + | out_axis[1] = 0; | +
| + | out_axis[2] = 0; | +
| + | } | +
| + | return rad; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two quat's | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a the first operand | +
| + | * @param {quat} b the second operand | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | var ax = a[0], | +
| + | ay = a[1], | +
| + | az = a[2], | +
| + | aw = a[3]; | +
| + | var bx = b[0], | +
| + | by = b[1], | +
| + | bz = b[2], | +
| + | bw = b[3]; | +
| + | + | +
| + | out[0] = ax * bw + aw * bx + ay * bz - az * by; | +
| + | out[1] = ay * bw + aw * by + az * bx - ax * bz; | +
| + | out[2] = az * bw + aw * bz + ax * by - ay * bx; | +
| + | out[3] = aw * bw - ax * bx - ay * by - az * bz; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a quaternion by the given angle about the X axis | +
| + | * | +
| + | * @param {quat} out quat receiving operation result | +
| + | * @param {quat} a quat to rotate | +
| + | * @param {number} rad angle (in radians) to rotate | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function rotateX(out, a, rad) { | +
| + | rad *= 0.5; | +
| + | + | +
| + | var ax = a[0], | +
| + | ay = a[1], | +
| + | az = a[2], | +
| + | aw = a[3]; | +
| + | var bx = Math.sin(rad), | +
| + | bw = Math.cos(rad); | +
| + | + | +
| + | out[0] = ax * bw + aw * bx; | +
| + | out[1] = ay * bw + az * bx; | +
| + | out[2] = az * bw - ay * bx; | +
| + | out[3] = aw * bw - ax * bx; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a quaternion by the given angle about the Y axis | +
| + | * | +
| + | * @param {quat} out quat receiving operation result | +
| + | * @param {quat} a quat to rotate | +
| + | * @param {number} rad angle (in radians) to rotate | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function rotateY(out, a, rad) { | +
| + | rad *= 0.5; | +
| + | + | +
| + | var ax = a[0], | +
| + | ay = a[1], | +
| + | az = a[2], | +
| + | aw = a[3]; | +
| + | var by = Math.sin(rad), | +
| + | bw = Math.cos(rad); | +
| + | + | +
| + | out[0] = ax * bw - az * by; | +
| + | out[1] = ay * bw + aw * by; | +
| + | out[2] = az * bw + ax * by; | +
| + | out[3] = aw * bw - ay * by; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Rotates a quaternion by the given angle about the Z axis | +
| + | * | +
| + | * @param {quat} out quat receiving operation result | +
| + | * @param {quat} a quat to rotate | +
| + | * @param {number} rad angle (in radians) to rotate | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function rotateZ(out, a, rad) { | +
| + | rad *= 0.5; | +
| + | + | +
| + | var ax = a[0], | +
| + | ay = a[1], | +
| + | az = a[2], | +
| + | aw = a[3]; | +
| + | var bz = Math.sin(rad), | +
| + | bw = Math.cos(rad); | +
| + | + | +
| + | out[0] = ax * bw + ay * bz; | +
| + | out[1] = ay * bw - ax * bz; | +
| + | out[2] = az * bw + aw * bz; | +
| + | out[3] = aw * bw - az * bz; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the W component of a quat from the X, Y, and Z components. | +
| + | * Assumes that quaternion is 1 unit in length. | +
| + | * Any existing W component will be ignored. | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a quat to calculate W component of | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function calculateW(out, a) { | +
| + | var x = a[0], | +
| + | y = a[1], | +
| + | z = a[2]; | +
| + | + | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | out[2] = z; | +
| + | out[3] = Math.sqrt(Math.abs(1.0 - x * x - y * y - z * z)); | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Performs a spherical linear interpolation between two quat | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a the first operand | +
| + | * @param {quat} b the second operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function slerp(out, a, b, t) { | +
| + | // benchmarks: | +
| + | // http://jsperf.com/quaternion-slerp-implementations | +
| + | var ax = a[0], | +
| + | ay = a[1], | +
| + | az = a[2], | +
| + | aw = a[3]; | +
| + | var bx = b[0], | +
| + | by = b[1], | +
| + | bz = b[2], | +
| + | bw = b[3]; | +
| + | + | +
| + | var omega = void 0, | +
| + | cosom = void 0, | +
| + | sinom = void 0, | +
| + | scale0 = void 0, | +
| + | scale1 = void 0; | +
| + | + | +
| + | // calc cosine | +
| + | cosom = ax * bx + ay * by + az * bz + aw * bw; | +
| + | // adjust signs (if necessary) | +
| + | if (cosom < 0.0) { | +
| + | cosom = -cosom; | +
| + | bx = -bx; | +
| + | by = -by; | +
| + | bz = -bz; | +
| + | bw = -bw; | +
| + | } | +
| + | // calculate coefficients | +
| + | if (1.0 - cosom > 0.000001) { | +
| + | // standard case (slerp) | +
| + | omega = Math.acos(cosom); | +
| + | sinom = Math.sin(omega); | +
| + | scale0 = Math.sin((1.0 - t) * omega) / sinom; | +
| + | scale1 = Math.sin(t * omega) / sinom; | +
| + | } else { | +
| + | // "from" and "to" quaternions are very close | +
| + | // ... so we can do a linear interpolation | +
| + | scale0 = 1.0 - t; | +
| + | scale1 = t; | +
| + | } | +
| + | // calculate final values | +
| + | out[0] = scale0 * ax + scale1 * bx; | +
| + | out[1] = scale0 * ay + scale1 * by; | +
| + | out[2] = scale0 * az + scale1 * bz; | +
| + | out[3] = scale0 * aw + scale1 * bw; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the inverse of a quat | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a quat to calculate inverse of | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function invert(out, a) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1], | +
| + | a2 = a[2], | +
| + | a3 = a[3]; | +
| + | var dot = a0 * a0 + a1 * a1 + a2 * a2 + a3 * a3; | +
| + | var invDot = dot ? 1.0 / dot : 0; | +
| + | + | +
| + | // TODO: Would be faster to return [0,0,0,0] immediately if dot == 0 | +
| + | + | +
| + | out[0] = -a0 * invDot; | +
| + | out[1] = -a1 * invDot; | +
| + | out[2] = -a2 * invDot; | +
| + | out[3] = a3 * invDot; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Calculates the conjugate of a quat | +
| + | * If the quaternion is normalized, this function is faster than quat.inverse and produces the same result. | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a quat to calculate conjugate of | +
| + | * @returns {quat} out | +
| + | */ | +
| + | function conjugate(out, a) { | +
| + | out[0] = -a[0]; | +
| + | out[1] = -a[1]; | +
| + | out[2] = -a[2]; | +
| + | out[3] = a[3]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a quaternion from the given 3x3 rotation matrix. | +
| + | * | +
| + | * NOTE: The resultant quaternion is not normalized, so you should be sure | +
| + | * to renormalize the quaternion yourself where necessary. | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {mat3} m rotation matrix | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | function fromMat3(out, m) { | +
| + | // Algorithm in Ken Shoemake's article in 1987 SIGGRAPH course notes | +
| + | // article "Quaternion Calculus and Fast Animation". | +
| + | var fTrace = m[0] + m[4] + m[8]; | +
| + | var fRoot = void 0; | +
| + | + | +
| + | if (fTrace > 0.0) { | +
| + | // |w| > 1/2, may as well choose w > 1/2 | +
| + | fRoot = Math.sqrt(fTrace + 1.0); // 2w | +
| + | out[3] = 0.5 * fRoot; | +
| + | fRoot = 0.5 / fRoot; // 1/(4w) | +
| + | out[0] = (m[5] - m[7]) * fRoot; | +
| + | out[1] = (m[6] - m[2]) * fRoot; | +
| + | out[2] = (m[1] - m[3]) * fRoot; | +
| + | } else { | +
| + | // |w| <= 1/2 | +
| + | var i = 0; | +
| + | if (m[4] > m[0]) i = 1; | +
| + | if (m[8] > m[i * 3 + i]) i = 2; | +
| + | var j = (i + 1) % 3; | +
| + | var k = (i + 2) % 3; | +
| + | + | +
| + | fRoot = Math.sqrt(m[i * 3 + i] - m[j * 3 + j] - m[k * 3 + k] + 1.0); | +
| + | out[i] = 0.5 * fRoot; | +
| + | fRoot = 0.5 / fRoot; | +
| + | out[3] = (m[j * 3 + k] - m[k * 3 + j]) * fRoot; | +
| + | out[j] = (m[j * 3 + i] + m[i * 3 + j]) * fRoot; | +
| + | out[k] = (m[k * 3 + i] + m[i * 3 + k]) * fRoot; | +
| + | } | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a quaternion from the given euler angle x, y, z. | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {x} Angle to rotate around X axis in degrees. | +
| + | * @param {y} Angle to rotate around Y axis in degrees. | +
| + | * @param {z} Angle to rotate around Z axis in degrees. | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | function fromEuler(out, x, y, z) { | +
| + | var halfToRad = 0.5 * Math.PI / 180.0; | +
| + | x *= halfToRad; | +
| + | y *= halfToRad; | +
| + | z *= halfToRad; | +
| + | + | +
| + | var sx = Math.sin(x); | +
| + | var cx = Math.cos(x); | +
| + | var sy = Math.sin(y); | +
| + | var cy = Math.cos(y); | +
| + | var sz = Math.sin(z); | +
| + | var cz = Math.cos(z); | +
| + | + | +
| + | out[0] = sx * cy * cz - cx * sy * sz; | +
| + | out[1] = cx * sy * cz + sx * cy * sz; | +
| + | out[2] = cx * cy * sz - sx * sy * cz; | +
| + | out[3] = cx * cy * cz + sx * sy * sz; | +
| + | + | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a quatenion | +
| + | * | +
| + | * @param {quat} a vector to represent as a string | +
| + | * @returns {String} string representation of the vector | +
| + | */ | +
| + | function str(a) { | +
| + | return 'quat(' + a[0] + ', ' + a[1] + ', ' + a[2] + ', ' + a[3] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new quat initialized with values from an existing quaternion | +
| + | * | +
| + | * @param {quat} a quaternion to clone | +
| + | * @returns {quat} a new quaternion | +
| + | * @function | +
| + | */ | +
| + | var clone = exports.clone = vec4.clone; | +
| + | + | +
| + | /** | +
| + | * Creates a new quat initialized with the given values | +
| + | * | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @param {Number} z Z component | +
| + | * @param {Number} w W component | +
| + | * @returns {quat} a new quaternion | +
| + | * @function | +
| + | */ | +
| + | var fromValues = exports.fromValues = vec4.fromValues; | +
| + | + | +
| + | /** | +
| + | * Copy the values from one quat to another | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a the source quaternion | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | var copy = exports.copy = vec4.copy; | +
| + | + | +
| + | /** | +
| + | * Set the components of a quat to the given values | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @param {Number} z Z component | +
| + | * @param {Number} w W component | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | var set = exports.set = vec4.set; | +
| + | + | +
| + | /** | +
| + | * Adds two quat's | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a the first operand | +
| + | * @param {quat} b the second operand | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | var add = exports.add = vec4.add; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link quat.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Scales a quat by a scalar number | +
| + | * | +
| + | * @param {quat} out the receiving vector | +
| + | * @param {quat} a the vector to scale | +
| + | * @param {Number} b amount to scale the vector by | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | var scale = exports.scale = vec4.scale; | +
| + | + | +
| + | /** | +
| + | * Calculates the dot product of two quat's | +
| + | * | +
| + | * @param {quat} a the first operand | +
| + | * @param {quat} b the second operand | +
| + | * @returns {Number} dot product of a and b | +
| + | * @function | +
| + | */ | +
| + | var dot = exports.dot = vec4.dot; | +
| + | + | +
| + | /** | +
| + | * Performs a linear interpolation between two quat's | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a the first operand | +
| + | * @param {quat} b the second operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | var lerp = exports.lerp = vec4.lerp; | +
| + | + | +
| + | /** | +
| + | * Calculates the length of a quat | +
| + | * | +
| + | * @param {quat} a vector to calculate length of | +
| + | * @returns {Number} length of a | +
| + | */ | +
| + | var length = exports.length = vec4.length; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link quat.length} | +
| + | * @function | +
| + | */ | +
| + | var len = exports.len = length; | +
| + | + | +
| + | /** | +
| + | * Calculates the squared length of a quat | +
| + | * | +
| + | * @param {quat} a vector to calculate squared length of | +
| + | * @returns {Number} squared length of a | +
| + | * @function | +
| + | */ | +
| + | var squaredLength = exports.squaredLength = vec4.squaredLength; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link quat.squaredLength} | +
| + | * @function | +
| + | */ | +
| + | var sqrLen = exports.sqrLen = squaredLength; | +
| + | + | +
| + | /** | +
| + | * Normalize a quat | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a quaternion to normalize | +
| + | * @returns {quat} out | +
| + | * @function | +
| + | */ | +
| + | var normalize = exports.normalize = vec4.normalize; | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the quaternions have exactly the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {quat} a The first quaternion. | +
| + | * @param {quat} b The second quaternion. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | var exactEquals = exports.exactEquals = vec4.exactEquals; | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the quaternions have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {quat} a The first vector. | +
| + | * @param {quat} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | var equals = exports.equals = vec4.equals; | +
| + | + | +
| + | /** | +
| + | * Sets a quaternion to represent the shortest rotation from one | +
| + | * vector to another. | +
| + | * | +
| + | * Both vectors are assumed to be unit length. | +
| + | * | +
| + | * @param {quat} out the receiving quaternion. | +
| + | * @param {vec3} a the initial vector | +
| + | * @param {vec3} b the destination vector | +
| + | * @returns {quat} out | +
| + | */ | +
| + | var rotationTo = exports.rotationTo = function () { | +
| + | var tmpvec3 = vec3.create(); | +
| + | var xUnitVec3 = vec3.fromValues(1, 0, 0); | +
| + | var yUnitVec3 = vec3.fromValues(0, 1, 0); | +
| + | + | +
| + | return function (out, a, b) { | +
| + | var dot = vec3.dot(a, b); | +
| + | if (dot < -0.999999) { | +
| + | vec3.cross(tmpvec3, xUnitVec3, a); | +
| + | if (vec3.len(tmpvec3) < 0.000001) vec3.cross(tmpvec3, yUnitVec3, a); | +
| + | vec3.normalize(tmpvec3, tmpvec3); | +
| + | setAxisAngle(out, tmpvec3, Math.PI); | +
| + | return out; | +
| + | } else if (dot > 0.999999) { | +
| + | out[0] = 0; | +
| + | out[1] = 0; | +
| + | out[2] = 0; | +
| + | out[3] = 1; | +
| + | return out; | +
| + | } else { | +
| + | vec3.cross(tmpvec3, a, b); | +
| + | out[0] = tmpvec3[0]; | +
| + | out[1] = tmpvec3[1]; | +
| + | out[2] = tmpvec3[2]; | +
| + | out[3] = 1 + dot; | +
| + | return normalize(out, out); | +
| + | } | +
| + | }; | +
| + | }(); | +
| + | + | +
| + | /** | +
| + | * Performs a spherical linear interpolation with two control points | +
| + | * | +
| + | * @param {quat} out the receiving quaternion | +
| + | * @param {quat} a the first operand | +
| + | * @param {quat} b the second operand | +
| + | * @param {quat} c the third operand | +
| + | * @param {quat} d the fourth operand | +
| + | * @param {Number} t interpolation amount | +
| + | * @returns {quat} out | +
| + | */ | +
| + | var sqlerp = exports.sqlerp = function () { | +
| + | var temp1 = create(); | +
| + | var temp2 = create(); | +
| + | + | +
| + | return function (out, a, b, c, d, t) { | +
| + | slerp(temp1, a, d, t); | +
| + | slerp(temp2, b, c, t); | +
| + | slerp(out, temp1, temp2, 2 * t * (1 - t)); | +
| + | + | +
| + | return out; | +
| + | }; | +
| + | }(); | +
| + | + | +
| + | /** | +
| + | * Sets the specified quaternion with values corresponding to the given | +
| + | * axes. Each axis is a vec3 and is expected to be unit length and | +
| + | * perpendicular to all other specified axes. | +
| + | * | +
| + | * @param {vec3} view the vector representing the viewing direction | +
| + | * @param {vec3} right the vector representing the local "right" direction | +
| + | * @param {vec3} up the vector representing the local "up" direction | +
| + | * @returns {quat} out | +
| + | */ | +
| + | var setAxes = exports.setAxes = function () { | +
| + | var matr = mat3.create(); | +
| + | + | +
| + | return function (out, view, right, up) { | +
| + | matr[0] = right[0]; | +
| + | matr[3] = right[1]; | +
| + | matr[6] = right[2]; | +
| + | + | +
| + | matr[1] = up[0]; | +
| + | matr[4] = up[1]; | +
| + | matr[7] = up[2]; | +
| + | + | +
| + | matr[2] = -view[0]; | +
| + | matr[5] = -view[1]; | +
| + | matr[8] = -view[2]; | +
| + | + | +
| + | return normalize(out, fromMat3(out, matr)); | +
| + | }; | +
| + | }(); | +
| + | + | +
| + | /***/ }), | +
| + | /* 9 */ | +
| + | /***/ (function(module, exports, __webpack_require__) { | +
| + | + | +
| + | "use strict"; | +
| + | + | +
| + | + | +
| + | Object.defineProperty(exports, "__esModule", { | +
| + | value: true | +
| + | }); | +
| + | exports.forEach = exports.sqrLen = exports.sqrDist = exports.dist = exports.div = exports.mul = exports.sub = exports.len = undefined; | +
| + | exports.create = create; | +
| + | exports.clone = clone; | +
| + | exports.fromValues = fromValues; | +
| + | exports.copy = copy; | +
| + | exports.set = set; | +
| + | exports.add = add; | +
| + | exports.subtract = subtract; | +
| + | exports.multiply = multiply; | +
| + | exports.divide = divide; | +
| + | exports.ceil = ceil; | +
| + | exports.floor = floor; | +
| + | exports.min = min; | +
| + | exports.max = max; | +
| + | exports.round = round; | +
| + | exports.scale = scale; | +
| + | exports.scaleAndAdd = scaleAndAdd; | +
| + | exports.distance = distance; | +
| + | exports.squaredDistance = squaredDistance; | +
| + | exports.length = length; | +
| + | exports.squaredLength = squaredLength; | +
| + | exports.negate = negate; | +
| + | exports.inverse = inverse; | +
| + | exports.normalize = normalize; | +
| + | exports.dot = dot; | +
| + | exports.cross = cross; | +
| + | exports.lerp = lerp; | +
| + | exports.random = random; | +
| + | exports.transformMat2 = transformMat2; | +
| + | exports.transformMat2d = transformMat2d; | +
| + | exports.transformMat3 = transformMat3; | +
| + | exports.transformMat4 = transformMat4; | +
| + | exports.str = str; | +
| + | exports.exactEquals = exactEquals; | +
| + | exports.equals = equals; | +
| + | + | +
| + | var _common = __webpack_require__(0); | +
| + | + | +
| + | var glMatrix = _interopRequireWildcard(_common); | +
| + | + | +
| + | function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } | +
| + | + | +
| + | /** | +
| + | * 2 Dimensional Vector | +
| + | * @module vec2 | +
| + | */ | +
| + | + | +
| + | /** | +
| + | * Creates a new, empty vec2 | +
| + | * | +
| + | * @returns {vec2} a new 2D vector | +
| + | */ | +
| + | function create() { | +
| + | var out = new glMatrix.ARRAY_TYPE(2); | +
| + | out[0] = 0; | +
| + | out[1] = 0; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new vec2 initialized with values from an existing vector | +
| + | * | +
| + | * @param {vec2} a vector to clone | +
| + | * @returns {vec2} a new 2D vector | +
| + | */ | +
| + | /* Copyright (c) 2015, Brandon Jones, Colin MacKenzie IV. | +
| + | + |
| + | Permission is hereby granted, free of charge, to any person obtaining a copy | +
| + | of this software and associated documentation files (the "Software"), to deal | +
| + | in the Software without restriction, including without limitation the rights | +
| + | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | +
| + | copies of the Software, and to permit persons to whom the Software is | +
| + | furnished to do so, subject to the following conditions: | +
| + | + |
| + | The above copyright notice and this permission notice shall be included in | +
| + | all copies or substantial portions of the Software. | +
| + | + |
| + | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | +
| + | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | +
| + | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | +
| + | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | +
| + | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | +
| + | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | +
| + | THE SOFTWARE. */ | +
| + | + | +
| + | function clone(a) { | +
| + | var out = new glMatrix.ARRAY_TYPE(2); | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Creates a new vec2 initialized with the given values | +
| + | * | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @returns {vec2} a new 2D vector | +
| + | */ | +
| + | function fromValues(x, y) { | +
| + | var out = new glMatrix.ARRAY_TYPE(2); | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Copy the values from one vec2 to another | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the source vector | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function copy(out, a) { | +
| + | out[0] = a[0]; | +
| + | out[1] = a[1]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Set the components of a vec2 to the given values | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {Number} x X component | +
| + | * @param {Number} y Y component | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function set(out, x, y) { | +
| + | out[0] = x; | +
| + | out[1] = y; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Adds two vec2's | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function add(out, a, b) { | +
| + | out[0] = a[0] + b[0]; | +
| + | out[1] = a[1] + b[1]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Subtracts vector b from vector a | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function subtract(out, a, b) { | +
| + | out[0] = a[0] - b[0]; | +
| + | out[1] = a[1] - b[1]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Multiplies two vec2's | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function multiply(out, a, b) { | +
| + | out[0] = a[0] * b[0]; | +
| + | out[1] = a[1] * b[1]; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Divides two vec2's | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function divide(out, a, b) { | +
| + | out[0] = a[0] / b[0]; | +
| + | out[1] = a[1] / b[1]; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Math.ceil the components of a vec2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a vector to ceil | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function ceil(out, a) { | +
| + | out[0] = Math.ceil(a[0]); | +
| + | out[1] = Math.ceil(a[1]); | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Math.floor the components of a vec2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a vector to floor | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function floor(out, a) { | +
| + | out[0] = Math.floor(a[0]); | +
| + | out[1] = Math.floor(a[1]); | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Returns the minimum of two vec2's | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function min(out, a, b) { | +
| + | out[0] = Math.min(a[0], b[0]); | +
| + | out[1] = Math.min(a[1], b[1]); | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Returns the maximum of two vec2's | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function max(out, a, b) { | +
| + | out[0] = Math.max(a[0], b[0]); | +
| + | out[1] = Math.max(a[1], b[1]); | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Math.round the components of a vec2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a vector to round | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function round(out, a) { | +
| + | out[0] = Math.round(a[0]); | +
| + | out[1] = Math.round(a[1]); | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Scales a vec2 by a scalar number | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the vector to scale | +
| + | * @param {Number} b amount to scale the vector by | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function scale(out, a, b) { | +
| + | out[0] = a[0] * b; | +
| + | out[1] = a[1] * b; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Adds two vec2's after scaling the second operand by a scalar value | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @param {Number} scale the amount to scale b by before adding | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function scaleAndAdd(out, a, b, scale) { | +
| + | out[0] = a[0] + b[0] * scale; | +
| + | out[1] = a[1] + b[1] * scale; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Calculates the euclidian distance between two vec2's | +
| + | * | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {Number} distance between a and b | +
| + | */ | +
| + | function distance(a, b) { | +
| + | var x = b[0] - a[0], | +
| + | y = b[1] - a[1]; | +
| + | return Math.sqrt(x * x + y * y); | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Calculates the squared euclidian distance between two vec2's | +
| + | * | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {Number} squared distance between a and b | +
| + | */ | +
| + | function squaredDistance(a, b) { | +
| + | var x = b[0] - a[0], | +
| + | y = b[1] - a[1]; | +
| + | return x * x + y * y; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Calculates the length of a vec2 | +
| + | * | +
| + | * @param {vec2} a vector to calculate length of | +
| + | * @returns {Number} length of a | +
| + | */ | +
| + | function length(a) { | +
| + | var x = a[0], | +
| + | y = a[1]; | +
| + | return Math.sqrt(x * x + y * y); | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Calculates the squared length of a vec2 | +
| + | * | +
| + | * @param {vec2} a vector to calculate squared length of | +
| + | * @returns {Number} squared length of a | +
| + | */ | +
| + | function squaredLength(a) { | +
| + | var x = a[0], | +
| + | y = a[1]; | +
| + | return x * x + y * y; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Negates the components of a vec2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a vector to negate | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function negate(out, a) { | +
| + | out[0] = -a[0]; | +
| + | out[1] = -a[1]; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Returns the inverse of the components of a vec2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a vector to invert | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function inverse(out, a) { | +
| + | out[0] = 1.0 / a[0]; | +
| + | out[1] = 1.0 / a[1]; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Normalize a vec2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a vector to normalize | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function normalize(out, a) { | +
| + | var x = a[0], | +
| + | y = a[1]; | +
| + | var len = x * x + y * y; | +
| + | if (len > 0) { | +
| + | //TODO: evaluate use of glm_invsqrt here? | +
| + | len = 1 / Math.sqrt(len); | +
| + | out[0] = a[0] * len; | +
| + | out[1] = a[1] * len; | +
| + | } | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Calculates the dot product of two vec2's | +
| + | * | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {Number} dot product of a and b | +
| + | */ | +
| + | function dot(a, b) { | +
| + | return a[0] * b[0] + a[1] * b[1]; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Computes the cross product of two vec2's | +
| + | * Note that the cross product must by definition produce a 3D vector | +
| + | * | +
| + | * @param {vec3} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @returns {vec3} out | +
| + | */ | +
| + | function cross(out, a, b) { | +
| + | var z = a[0] * b[1] - a[1] * b[0]; | +
| + | out[0] = out[1] = 0; | +
| + | out[2] = z; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Performs a linear interpolation between two vec2's | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the first operand | +
| + | * @param {vec2} b the second operand | +
| + | * @param {Number} t interpolation amount between the two inputs | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function lerp(out, a, b, t) { | +
| + | var ax = a[0], | +
| + | ay = a[1]; | +
| + | out[0] = ax + t * (b[0] - ax); | +
| + | out[1] = ay + t * (b[1] - ay); | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Generates a random vector with the given scale | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {Number} [scale] Length of the resulting vector. If ommitted, a unit vector will be returned | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function random(out, scale) { | +
| + | scale = scale || 1.0; | +
| + | var r = glMatrix.RANDOM() * 2.0 * Math.PI; | +
| + | out[0] = Math.cos(r) * scale; | +
| + | out[1] = Math.sin(r) * scale; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Transforms the vec2 with a mat2 | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the vector to transform | +
| + | * @param {mat2} m matrix to transform with | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function transformMat2(out, a, m) { | +
| + | var x = a[0], | +
| + | y = a[1]; | +
| + | out[0] = m[0] * x + m[2] * y; | +
| + | out[1] = m[1] * x + m[3] * y; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Transforms the vec2 with a mat2d | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the vector to transform | +
| + | * @param {mat2d} m matrix to transform with | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function transformMat2d(out, a, m) { | +
| + | var x = a[0], | +
| + | y = a[1]; | +
| + | out[0] = m[0] * x + m[2] * y + m[4]; | +
| + | out[1] = m[1] * x + m[3] * y + m[5]; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Transforms the vec2 with a mat3 | +
| + | * 3rd vector component is implicitly '1' | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the vector to transform | +
| + | * @param {mat3} m matrix to transform with | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function transformMat3(out, a, m) { | +
| + | var x = a[0], | +
| + | y = a[1]; | +
| + | out[0] = m[0] * x + m[3] * y + m[6]; | +
| + | out[1] = m[1] * x + m[4] * y + m[7]; | +
| + | return out; | +
| + | }; | +
| + | + | +
| + | /** | +
| + | * Transforms the vec2 with a mat4 | +
| + | * 3rd vector component is implicitly '0' | +
| + | * 4th vector component is implicitly '1' | +
| + | * | +
| + | * @param {vec2} out the receiving vector | +
| + | * @param {vec2} a the vector to transform | +
| + | * @param {mat4} m matrix to transform with | +
| + | * @returns {vec2} out | +
| + | */ | +
| + | function transformMat4(out, a, m) { | +
| + | var x = a[0]; | +
| + | var y = a[1]; | +
| + | out[0] = m[0] * x + m[4] * y + m[12]; | +
| + | out[1] = m[1] * x + m[5] * y + m[13]; | +
| + | return out; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns a string representation of a vector | +
| + | * | +
| + | * @param {vec2} a vector to represent as a string | +
| + | * @returns {String} string representation of the vector | +
| + | */ | +
| + | function str(a) { | +
| + | return 'vec2(' + a[0] + ', ' + a[1] + ')'; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the vectors exactly have the same elements in the same position (when compared with ===) | +
| + | * | +
| + | * @param {vec2} a The first vector. | +
| + | * @param {vec2} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | function exactEquals(a, b) { | +
| + | return a[0] === b[0] && a[1] === b[1]; | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Returns whether or not the vectors have approximately the same elements in the same position. | +
| + | * | +
| + | * @param {vec2} a The first vector. | +
| + | * @param {vec2} b The second vector. | +
| + | * @returns {Boolean} True if the vectors are equal, false otherwise. | +
| + | */ | +
| + | function equals(a, b) { | +
| + | var a0 = a[0], | +
| + | a1 = a[1]; | +
| + | var b0 = b[0], | +
| + | b1 = b[1]; | +
| + | return Math.abs(a0 - b0) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) && Math.abs(a1 - b1) <= glMatrix.EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)); | +
| + | } | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.length} | +
| + | * @function | +
| + | */ | +
| + | var len = exports.len = length; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.subtract} | +
| + | * @function | +
| + | */ | +
| + | var sub = exports.sub = subtract; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.multiply} | +
| + | * @function | +
| + | */ | +
| + | var mul = exports.mul = multiply; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.divide} | +
| + | * @function | +
| + | */ | +
| + | var div = exports.div = divide; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.distance} | +
| + | * @function | +
| + | */ | +
| + | var dist = exports.dist = distance; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.squaredDistance} | +
| + | * @function | +
| + | */ | +
| + | var sqrDist = exports.sqrDist = squaredDistance; | +
| + | + | +
| + | /** | +
| + | * Alias for {@link vec2.squaredLength} | +
| + | * @function | +
| + | */ | +
| + | var sqrLen = exports.sqrLen = squaredLength; | +
| + | + | +
| + | /** | +
| + | * Perform some operation over an array of vec2s. | +
| + | * | +
| + | * @param {Array} a the array of vectors to iterate over | +
| + | * @param {Number} stride Number of elements between the start of each vec2. If 0 assumes tightly packed | +
| + | * @param {Number} offset Number of elements to skip at the beginning of the array | +
| + | * @param {Number} count Number of vec2s to iterate over. If 0 iterates over entire array | +
| + | * @param {Function} fn Function to call for each vector in the array | +
| + | * @param {Object} [arg] additional argument to pass to fn | +
| + | * @returns {Array} a | +
| + | * @function | +
| + | */ | +
| + | var forEach = exports.forEach = function () { | +
| + | var vec = create(); | +
| + | + | +
| + | return function (a, stride, offset, count, fn, arg) { | +
| + | var i = void 0, | +
| + | l = void 0; | +
| + | if (!stride) { | +
| + | stride = 2; | +
| + | } | +
| + | + | +
| + | if (!offset) { | +
| + | offset = 0; | +
| + | } | +
| + | + | +
| + | if (count) { | +
| + | l = Math.min(count * stride + offset, a.length); | +
| + | } else { | +
| + | l = a.length; | +
| + | } | +
| + | + | +
| + | for (i = offset; i < l; i += stride) { | +
| + | vec[0] = a[i];vec[1] = a[i + 1]; | +
| + | fn(vec, vec, arg); | +
| + | a[i] = vec[0];a[i + 1] = vec[1]; | +
| + | } | +
| + | + | +
| + | return a; | +
| + | }; | +
| + | }(); | +
| + | + | +
| + | /***/ }) | +
| + | /******/ ]); | +
| + | }); | +