mirror of
https://github.com/KevinMidboe/immich.git
synced 2025-10-29 17:40:28 +00:00
fix(ml): load models in separate threads (#4034)
* load models in thread * set clip mode logs to debug level * updated tests * made fixtures slightly less ugly * moved responses to json file * formatting
This commit is contained in:
@@ -5,10 +5,8 @@ from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from shutil import rmtree
|
||||
from typing import Any
|
||||
from zipfile import BadZipFile
|
||||
|
||||
import onnxruntime as ort
|
||||
from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf, NoSuchFile # type: ignore
|
||||
|
||||
from ..config import get_cache_dir, log, settings
|
||||
from ..schemas import ModelType
|
||||
@@ -21,16 +19,13 @@ class InferenceModel(ABC):
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | str | None = None,
|
||||
eager: bool = True,
|
||||
inter_op_num_threads: int = settings.model_inter_op_threads,
|
||||
intra_op_num_threads: int = settings.model_intra_op_threads,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.model_name = model_name
|
||||
self._loaded = False
|
||||
self.loaded = False
|
||||
self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
|
||||
loader = self.load if eager else self.download
|
||||
|
||||
self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
|
||||
# don't pre-allocate more memory than needed
|
||||
self.provider_options = model_kwargs.pop(
|
||||
@@ -55,34 +50,23 @@ class InferenceModel(ABC):
|
||||
self.sess_options.intra_op_num_threads = intra_op_num_threads
|
||||
self.sess_options.enable_cpu_mem_arena = False
|
||||
|
||||
try:
|
||||
loader(**model_kwargs)
|
||||
except (OSError, InvalidProtobuf, BadZipFile, NoSuchFile):
|
||||
log.warn(
|
||||
(
|
||||
f"Failed to load {self.model_type.replace('_', ' ')} model '{self.model_name}'."
|
||||
"Clearing cache and retrying."
|
||||
)
|
||||
)
|
||||
self.clear_cache()
|
||||
loader(**model_kwargs)
|
||||
|
||||
def download(self, **model_kwargs: Any) -> None:
|
||||
def download(self) -> None:
|
||||
if not self.cached:
|
||||
log.info(
|
||||
(f"Downloading {self.model_type.replace('_', ' ')} model '{self.model_name}'." "This may take a while.")
|
||||
(f"Downloading {self.model_type.replace('-', ' ')} model '{self.model_name}'." "This may take a while.")
|
||||
)
|
||||
self._download(**model_kwargs)
|
||||
self._download()
|
||||
|
||||
def load(self, **model_kwargs: Any) -> None:
|
||||
self.download(**model_kwargs)
|
||||
self._load(**model_kwargs)
|
||||
self._loaded = True
|
||||
def load(self) -> None:
|
||||
if self.loaded:
|
||||
return
|
||||
self.download()
|
||||
log.info(f"Loading {self.model_type.replace('-', ' ')} model '{self.model_name}'")
|
||||
self._load()
|
||||
self.loaded = True
|
||||
|
||||
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
|
||||
if not self._loaded:
|
||||
log.info(f"Loading {self.model_type.replace('_', ' ')} model '{self.model_name}'")
|
||||
self.load()
|
||||
self.load()
|
||||
if model_kwargs:
|
||||
self.configure(**model_kwargs)
|
||||
return self._predict(inputs)
|
||||
@@ -95,11 +79,11 @@ class InferenceModel(ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
...
|
||||
|
||||
@property
|
||||
|
||||
@@ -17,7 +17,7 @@ class ModelCache:
|
||||
revalidate: bool = False,
|
||||
timeout: int | None = None,
|
||||
profiling: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ttl: Unloads model after this duration. Disabled if None. Defaults to None.
|
||||
|
||||
@@ -42,7 +42,7 @@ class CLIPEncoder(InferenceModel):
|
||||
jina_model_name = self._get_jina_model_name(model_name)
|
||||
super().__init__(jina_model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
models: tuple[tuple[str, str], tuple[str, str]] = _MODELS[self.model_name]
|
||||
text_onnx_path = self.cache_dir / "textual.onnx"
|
||||
vision_onnx_path = self.cache_dir / "visual.onnx"
|
||||
@@ -53,8 +53,9 @@ class CLIPEncoder(InferenceModel):
|
||||
if not vision_onnx_path.is_file():
|
||||
self._download_model(*models[1])
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
if self.mode == "text" or self.mode is None:
|
||||
log.debug(f"Loading clip text model '{self.model_name}'")
|
||||
self.text_model = ort.InferenceSession(
|
||||
self.cache_dir / "textual.onnx",
|
||||
sess_options=self.sess_options,
|
||||
@@ -65,6 +66,7 @@ class CLIPEncoder(InferenceModel):
|
||||
self.tokenizer = Tokenizer(self.model_name)
|
||||
|
||||
if self.mode == "vision" or self.mode is None:
|
||||
log.debug(f"Loading clip vision model '{self.model_name}'")
|
||||
self.vision_model = ort.InferenceSession(
|
||||
self.cache_dir / "visual.onnx",
|
||||
sess_options=self.sess_options,
|
||||
|
||||
@@ -26,7 +26,7 @@ class FaceRecognizer(InferenceModel):
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
zip_file = self.cache_dir / f"{self.model_name}.zip"
|
||||
download_file(f"{BASE_REPO_URL}/{self.model_name}.zip", zip_file)
|
||||
with zipfile.ZipFile(zip_file, "r") as zip:
|
||||
@@ -36,7 +36,7 @@ class FaceRecognizer(InferenceModel):
|
||||
zip.extractall(self.cache_dir, members=[det_file, rec_file])
|
||||
zip_file.unlink()
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
try:
|
||||
det_file = next(self.cache_dir.glob("det_*.onnx"))
|
||||
rec_file = next(self.cache_dir.glob("w600k_*.onnx"))
|
||||
|
||||
@@ -26,7 +26,7 @@ class ImageClassifier(InferenceModel):
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(model_name, cache_dir, **model_kwargs)
|
||||
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
def _download(self) -> None:
|
||||
snapshot_download(
|
||||
cache_dir=self.cache_dir,
|
||||
repo_id=self.model_name,
|
||||
@@ -35,10 +35,10 @@ class ImageClassifier(InferenceModel):
|
||||
local_dir_use_symlinks=True,
|
||||
)
|
||||
|
||||
def _load(self, **model_kwargs: Any) -> None:
|
||||
def _load(self) -> None:
|
||||
processor = AutoImageProcessor.from_pretrained(self.cache_dir, cache_dir=self.cache_dir)
|
||||
model_path = self.cache_dir / "model.onnx"
|
||||
model_kwargs |= {
|
||||
model_kwargs = {
|
||||
"cache_dir": self.cache_dir,
|
||||
"provider": self.providers[0],
|
||||
"provider_options": self.provider_options[0],
|
||||
|
||||
Reference in New Issue
Block a user