Support HEIC/HEIF (#16)

* Support HEIC/HEIF backup
* Storing backup directly from original file from the phone
* Directly read and backup video file - Improve performance on video backup
This commit is contained in:
Alex
2022-02-09 20:48:06 -06:00
committed by GitHub
parent f578ca6d47
commit 38c968d47e
15 changed files with 252 additions and 232 deletions

View File

@@ -7,7 +7,6 @@ import { AssetService } from '../../api-v1/asset/asset.service';
import { AssetEntity } from '../../api-v1/asset/entities/asset.entity';
import { ImageOptimizeProcessor } from './image-optimize.processor';
import { AssetOptimizeService } from './image-optimize.service';
import { MachineLearningProcessor } from './machine-learning.processor';
@Module({
imports: [
@@ -19,18 +18,10 @@ import { MachineLearningProcessor } from './machine-learning.processor';
removeOnFail: false,
},
}),
BullModule.registerQueue({
name: 'machine-learning',
defaultJobOptions: {
attempts: 3,
removeOnComplete: true,
removeOnFail: false,
},
}),
TypeOrmModule.forFeature([AssetEntity]),
],
providers: [AssetOptimizeService, ImageOptimizeProcessor, MachineLearningProcessor],
providers: [AssetOptimizeService, ImageOptimizeProcessor],
exports: [AssetOptimizeService],
})
export class ImageOptimizeModule {}

View File

@@ -4,16 +4,16 @@ import { Job, Queue } from 'bull';
import { Repository } from 'typeorm';
import { AssetEntity } from '../../api-v1/asset/entities/asset.entity';
import sharp from 'sharp';
import fs, { existsSync, mkdirSync } from 'fs';
import { existsSync, mkdirSync, readFile } from 'fs';
import { ConfigService } from '@nestjs/config';
import ffmpeg from 'fluent-ffmpeg';
import { Logger } from '@nestjs/common';
@Processor('optimize')
export class ImageOptimizeProcessor {
constructor(
@InjectRepository(AssetEntity) private assetRepository: Repository<AssetEntity>,
@InjectQueue('machine-learning') private machineLearningQueue: Queue,
@InjectRepository(AssetEntity)
private assetRepository: Repository<AssetEntity>,
private configService: ConfigService,
) {}
@@ -32,30 +32,42 @@ export class ImageOptimizeProcessor {
mkdirSync(resizeDir, { recursive: true });
}
fs.readFile(savedAsset.originalPath, (err, data) => {
readFile(savedAsset.originalPath, async (err, data) => {
if (err) {
console.error('Error Reading File');
}
sharp(data)
.resize(512, 512, { fit: 'outside' })
.toFile(resizePath, async (err, info) => {
if (err) {
console.error('Error resizing file ', err);
return;
}
if (savedAsset.mimeType == 'image/heic' || savedAsset.mimeType == 'image/heif') {
let desitnation = '';
if (savedAsset.mimeType == 'image/heic') {
desitnation = resizePath.replace('.HEIC', '.jpeg');
} else {
desitnation = resizePath.replace('.HEIF', '.jpeg');
}
await this.assetRepository.update(savedAsset, { resizePath: resizePath });
sharp(data)
.toFormat('jpeg')
.resize(512, 512, { fit: 'outside' })
.toFile(desitnation, async (err, info) => {
if (err) {
console.error('Error resizing file ', err);
return;
}
// Send file to object detection after resizing
// const detectionJob = await this.machineLearningQueue.add(
// 'object-detection',
// {
// resizePath,
// },
// { jobId: randomUUID() },
// );
});
await this.assetRepository.update(savedAsset, { resizePath: desitnation });
});
} else {
sharp(data)
.resize(512, 512, { fit: 'outside' })
.toFile(resizePath, async (err, info) => {
if (err) {
console.error('Error resizing file ', err);
return;
}
await this.assetRepository.update(savedAsset, { resizePath: resizePath });
});
}
});
return 'ok';

View File

@@ -1,38 +0,0 @@
import { Process, Processor } from '@nestjs/bull';
import { InjectRepository } from '@nestjs/typeorm';
import { Job } from 'bull';
import { Repository } from 'typeorm';
import { AssetEntity } from '../../api-v1/asset/entities/asset.entity';
import fs from 'fs';
import { ConfigService } from '@nestjs/config';
import * as tfnode from '@tensorflow/tfjs-node';
import * as cocoSsd from '@tensorflow-models/coco-ssd';
@Processor('machine-learning')
export class MachineLearningProcessor {
constructor(
@InjectRepository(AssetEntity) private assetRepository: Repository<AssetEntity>,
private configService: ConfigService,
) {}
@Process('object-detection')
async handleOptimization(job: Job) {
try {
const { resizePath }: { resizePath: string } = job.data;
const image = fs.readFileSync(resizePath);
const decodedImage = tfnode.node.decodeImage(image, 3) as tfnode.Tensor3D;
const model = await cocoSsd.load();
const predictions = await model.detect(decodedImage);
console.log('\n\nstart predictions ------------------ ');
for (var result of predictions) {
console.log(`Found ${result.class} with score ${result.score}`);
}
console.log('end predictions ------------------\n\n');
return 'ok';
} catch (e) {
console.log('Error object detection ', e);
}
}
}