feat(machine-learning)!: move machine learning to Python based image (#1774)

BREAKING CHANGES
* Users have to update the docker-compose file, machine-learning portion.
* Temporary dropping machine-learning support for Arm64 and Armv7
This commit is contained in:
Alex
2023-02-18 09:13:37 -06:00
committed by GitHub
parent 8c315dfeb1
commit 57136e48fb
27 changed files with 92 additions and 16849 deletions

View File

@@ -1,10 +0,0 @@
import { Module } from '@nestjs/common';
import { ImageClassifierModule } from './image-classifier/image-classifier.module';
import { ObjectDetectionModule } from './object-detection/object-detection.module';
@Module({
imports: [ImageClassifierModule, ObjectDetectionModule],
controllers: [],
providers: [],
})
export class AppModule {}

View File

@@ -1,14 +0,0 @@
import { Body, Controller, Post } from '@nestjs/common';
import { ImageClassifierService } from './image-classifier.service';
@Controller('image-classifier')
export class ImageClassifierController {
constructor(
private readonly imageClassifierService: ImageClassifierService,
) { }
@Post('/tag-image')
async tagImage(@Body('thumbnailPath') thumbnailPath: string) {
return await this.imageClassifierService.tagImage(thumbnailPath);
}
}

View File

@@ -1,9 +0,0 @@
import { Module } from '@nestjs/common';
import { ImageClassifierService } from './image-classifier.service';
import { ImageClassifierController } from './image-classifier.controller';
@Module({
controllers: [ImageClassifierController],
providers: [ImageClassifierService],
})
export class ImageClassifierModule {}

View File

@@ -1,49 +0,0 @@
import { Injectable, Logger } from '@nestjs/common';
import * as mobilenet from '@tensorflow-models/mobilenet';
import * as cocoSsd from '@tensorflow-models/coco-ssd';
import * as tf from '@tensorflow/tfjs-node';
import * as fs from 'fs';
@Injectable()
export class ImageClassifierService {
private readonly MOBILENET_VERSION = 2;
private readonly MOBILENET_ALPHA = 1.0;
private mobileNetModel: mobilenet.MobileNet;
constructor() {
Logger.log(
`Running Node TensorFlow Version : ${tf.version['tfjs']}`,
'ImageClassifier',
);
mobilenet
.load({
version: this.MOBILENET_VERSION,
alpha: this.MOBILENET_ALPHA,
})
.then((mobilenetModel) => (this.mobileNetModel = mobilenetModel));
}
async tagImage(thumbnailPath: string) {
try {
const isExist = fs.existsSync(thumbnailPath);
if (isExist) {
const tags = [];
const image = fs.readFileSync(thumbnailPath);
const decodedImage = tf.node.decodeImage(image, 3) as tf.Tensor3D;
const predictions = await this.mobileNetModel.classify(decodedImage);
for (const prediction of predictions) {
if (prediction.probability >= 0.1) {
tags.push(...prediction.className.split(',').map((e) => e.trim()));
}
}
tf.dispose(decodedImage);
return tags;
}
} catch (e) {
console.log('Error reading file ', e);
}
}
}

View File

@@ -0,0 +1,61 @@
import os
from flask import Flask, request
from transformers import pipeline
server = Flask(__name__)
classifier = pipeline(
task="image-classification",
model="microsoft/resnet-50"
)
detector = pipeline(
task="object-detection",
model="hustvl/yolos-tiny"
)
# Environment resolver
is_dev = os.getenv('NODE_ENV') == 'development'
server_port = os.getenv('MACHINE_LEARNING_PORT') or 3003
@server.route("/ping")
def ping():
return "pong"
@server.route("/object-detection/detect-object", methods=['POST'])
def object_detection():
assetPath = request.json['thumbnailPath']
return run_engine(detector, assetPath), 201
@server.route("/image-classifier/tag-image", methods=['POST'])
def image_classification():
assetPath = request.json['thumbnailPath']
return run_engine(classifier, assetPath), 201
def run_engine(engine, path):
result = []
predictions = engine(path)
for index, pred in enumerate(predictions):
tags = pred['label'].split(', ')
if (index == 0):
result = tags
else:
if (pred['score'] > 0.5):
result = [*result, *tags]
if (len(result) > 1):
result = list(set(result))
return result
if __name__ == "__main__":
server.run(debug=is_dev, host='0.0.0.0', port=server_port)

View File

@@ -1,27 +0,0 @@
import { NestFactory } from '@nestjs/core';
import { AppModule } from './app.module';
import { Logger } from '@nestjs/common';
async function bootstrap() {
const app = await NestFactory.create(AppModule);
const port = Number(process.env.MACHINE_LEARNING_PORT) || 3003;
await app.listen(port, () => {
if (process.env.NODE_ENV == 'development') {
Logger.log(
'Running Immich Machine Learning in DEVELOPMENT environment',
'IMMICH MICROSERVICES',
);
}
if (process.env.NODE_ENV == 'production') {
Logger.log(
'Running Immich Machine Learning in PRODUCTION environment',
'IMMICH MICROSERVICES',
);
}
});
}
bootstrap();

View File

@@ -1,15 +0,0 @@
import { Body, Controller, Post } from '@nestjs/common';
import { ObjectDetectionService } from './object-detection.service';
import { Logger } from '@nestjs/common';
@Controller('object-detection')
export class ObjectDetectionController {
constructor(
private readonly objectDetectionService: ObjectDetectionService,
) { }
@Post('/detect-object')
async detectObject(@Body('thumbnailPath') thumbnailPath: string) {
return await this.objectDetectionService.detectObject(thumbnailPath);
}
}

View File

@@ -1,9 +0,0 @@
import { Module } from '@nestjs/common';
import { ObjectDetectionService } from './object-detection.service';
import { ObjectDetectionController } from './object-detection.controller';
@Module({
controllers: [ObjectDetectionController],
providers: [ObjectDetectionService],
})
export class ObjectDetectionModule {}

View File

@@ -1,39 +0,0 @@
import { Injectable, Logger } from '@nestjs/common';
import * as cocoSsd from '@tensorflow-models/coco-ssd';
import * as tf from '@tensorflow/tfjs-node';
import * as fs from 'fs';
@Injectable()
export class ObjectDetectionService {
private cocoSsdModel: cocoSsd.ObjectDetection;
constructor() {
Logger.log(
`Running Node TensorFlow Version : ${tf.version['tfjs']}`,
'ObjectDetection',
);
cocoSsd.load().then((model) => (this.cocoSsdModel = model));
}
async detectObject(thumbnailPath: string) {
try {
const isExist = fs.existsSync(thumbnailPath);
if (isExist) {
const tags = new Set();
const image = fs.readFileSync(thumbnailPath);
const decodedImage = tf.node.decodeImage(image, 3) as tf.Tensor3D;
const predictions = await this.cocoSsdModel.detect(decodedImage);
for (const result of predictions) {
if (result.score > 0.5) {
tags.add(result.class);
}
}
tf.dispose(decodedImage);
return [...tags];
}
} catch (e) {
console.log('Error reading file ', e);
}
}
}