mirror of
				https://github.com/KevinMidboe/immich.git
				synced 2025-10-29 17:40:28 +00:00 
			
		
		
		
	added locustfile (#2926)
This commit is contained in:
		| @@ -11,3 +11,12 @@ Running `poetry install --no-root --with dev` will install everything you need i | ||||
|  | ||||
| To add or remove dependencies, you can use the commands `poetry add $PACKAGE_NAME` and `poetry remove $PACKAGE_NAME`, respectively. | ||||
| Be sure to commit the `poetry.lock` and `pyproject.toml` files to reflect any changes in dependencies. | ||||
|  | ||||
|  | ||||
| # Load Testing | ||||
|  | ||||
| To measure inference throughput and latency, you can use [Locust](https://locust.io/) using the provided `locustfile.py`. | ||||
| Locust works by querying the model endpoints and aggregating their statistics, meaning the app must be deployed. | ||||
| You can run `load_test.sh` to automatically deploy the app locally and start Locust, optionally adjusting its env variables as needed. | ||||
|  | ||||
| Alternatively, for more custom testing, you may also run `locust` directly: see the [documentation](https://docs.locust.io/en/stable/index.html). Note that in Locust's jargon, concurrency is measured in `users`, and each user runs one task at a time. To achieve a particular per-endpoint concurrency, multiply that number by the number of endpoints to be queried. For example, if there are 3 endpoints and you want each of them to receive 8 requests at a time, you should set the number of users to 24. | ||||
							
								
								
									
										24
									
								
								machine-learning/load_test.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										24
									
								
								machine-learning/load_test.sh
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| export MACHINE_LEARNING_CACHE_FOLDER=/tmp/model_cache | ||||
| export MACHINE_LEARNING_MIN_FACE_SCORE=0.034 # returns 1 face per request; setting this to 0 blows up the number of faces to the thousands | ||||
| export MACHINE_LEARNING_MIN_TAG_SCORE=0.0 | ||||
| export PID_FILE=/tmp/locust_pid | ||||
| export LOG_FILE=/tmp/gunicorn.log | ||||
| export HEADLESS=false | ||||
| export HOST=127.0.0.1:3003 | ||||
| export CONCURRENCY=4 | ||||
| export NUM_ENDPOINTS=3 | ||||
| export PYTHONPATH=app | ||||
|  | ||||
| gunicorn app.main:app --worker-class uvicorn.workers.UvicornWorker \ | ||||
|     --bind $HOST --daemon --error-logfile $LOG_FILE --pid $PID_FILE | ||||
| while true ; do | ||||
|     echo "Loading models..." | ||||
|     sleep 5 | ||||
|     if cat $LOG_FILE | grep -q -E "startup complete"; then break; fi | ||||
| done | ||||
|  | ||||
| # "users" are assigned only one task, so multiply concurrency by the number of tasks | ||||
| locust --host http://$HOST --web-host 127.0.0.1 \ | ||||
|     --run-time 120s --users $(($CONCURRENCY * $NUM_ENDPOINTS)) $(if $HEADLESS; then echo "--headless"; fi) | ||||
|  | ||||
| if [[ -e $PID_FILE ]]; then kill $(cat $PID_FILE); fi | ||||
							
								
								
									
										52
									
								
								machine-learning/locustfile.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								machine-learning/locustfile.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,52 @@ | ||||
| from io import BytesIO | ||||
|  | ||||
| from locust import HttpUser, events, task | ||||
| from PIL import Image | ||||
|  | ||||
|  | ||||
| @events.test_start.add_listener | ||||
| def on_test_start(environment, **kwargs): | ||||
|     global byte_image | ||||
|     image = Image.new("RGB", (1000, 1000)) | ||||
|     byte_image = BytesIO() | ||||
|     image.save(byte_image, format="jpeg") | ||||
|  | ||||
|  | ||||
| class InferenceLoadTest(HttpUser): | ||||
|     abstract: bool = True | ||||
|     host = "http://127.0.0.1:3003" | ||||
|     data: bytes | ||||
|     headers: dict[str, str] = {"Content-Type": "image/jpg"} | ||||
|  | ||||
|     # re-use the image across all instances in a process | ||||
|     def on_start(self): | ||||
|         global byte_image | ||||
|         self.data = byte_image.getvalue() | ||||
|  | ||||
|  | ||||
| class ClassificationLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def classify(self): | ||||
|         self.client.post( | ||||
|             "/image-classifier/tag-image", data=self.data, headers=self.headers | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class CLIPLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def encode_image(self): | ||||
|         self.client.post( | ||||
|             "/sentence-transformer/encode-image", | ||||
|             data=self.data, | ||||
|             headers=self.headers, | ||||
|         ) | ||||
|  | ||||
|  | ||||
| class RecognitionLoadTest(InferenceLoadTest): | ||||
|     @task | ||||
|     def recognize(self): | ||||
|         self.client.post( | ||||
|             "/facial-recognition/detect-faces", | ||||
|             data=self.data, | ||||
|             headers=self.headers, | ||||
|         ) | ||||
							
								
								
									
										1472
									
								
								machine-learning/poetry.lock
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										1472
									
								
								machine-learning/poetry.lock
									
									
									
										generated
									
									
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -27,6 +27,8 @@ aiocache = "^0.12.1" | ||||
| mypy = "^1.3.0" | ||||
| black = "^23.3.0" | ||||
| pytest = "^7.3.1" | ||||
| locust = "^2.15.1" | ||||
| gunicorn = "^20.1.0" | ||||
|  | ||||
| [[tool.poetry.source]] | ||||
| name = "pytorch-cpu" | ||||
|   | ||||
		Reference in New Issue
	
	Block a user