mirror of
https://github.com/KevinMidboe/immich.git
synced 2025-12-08 20:29:05 +00:00
feat(ml)!: customizable ML settings (#3891)
* consolidated endpoints, added live configuration * added ml settings to server * added settings dashboard * updated deps, fixed typos * simplified modelconfig updated tests * Added ml setting accordion for admin page updated tests * merge `clipText` and `clipVision` * added face distance setting clarified setting * add clip mode in request, dropdown for face models * polished ml settings updated descriptions * update clip field on error * removed unused import * add description for image classification threshold * pin safetensors for arm wheel updated poetry lock * moved dto * set model type only in ml repository * revert form-data package install use fetch instead of axios * added slotted description with link updated facial recognition description clarified effect of disabling tasks * validation before model load * removed unnecessary getconfig call * added migration * updated api updated api updated api --------- Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
This commit is contained in:
@@ -60,16 +60,21 @@ class InferenceModel(ABC):
|
||||
self._load(**model_kwargs)
|
||||
self._loaded = True
|
||||
|
||||
def predict(self, inputs: Any) -> Any:
|
||||
def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
|
||||
if not self._loaded:
|
||||
print(f"Loading {self.model_type.value.replace('_', ' ')} model...")
|
||||
self.load()
|
||||
if model_kwargs:
|
||||
self.configure(**model_kwargs)
|
||||
return self._predict(inputs)
|
||||
|
||||
@abstractmethod
|
||||
def _predict(self, inputs: Any) -> Any:
|
||||
...
|
||||
|
||||
def configure(self, **model_kwargs: Any) -> None:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def _download(self, **model_kwargs: Any) -> None:
|
||||
...
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import os
|
||||
import zipfile
|
||||
from io import BytesIO
|
||||
from typing import Any, Literal
|
||||
|
||||
import onnxruntime as ort
|
||||
@@ -8,7 +9,7 @@ from clip_server.model.clip import BICUBIC, _convert_image_to_rgb
|
||||
from clip_server.model.clip_onnx import _MODELS, _S3_BUCKET_V2, CLIPOnnxModel, download_model
|
||||
from clip_server.model.pretrained_models import _VISUAL_MODEL_IMAGE_SIZE
|
||||
from clip_server.model.tokenization import Tokenizer
|
||||
from PIL.Image import Image
|
||||
from PIL import Image
|
||||
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
||||
|
||||
from ..schemas import ModelType
|
||||
@@ -74,9 +75,12 @@ class CLIPEncoder(InferenceModel):
|
||||
image_size = _VISUAL_MODEL_IMAGE_SIZE[CLIPOnnxModel.get_model_name(self.model_name)]
|
||||
self.transform = _transform_pil_image(image_size)
|
||||
|
||||
def _predict(self, image_or_text: Image | str) -> list[float]:
|
||||
def _predict(self, image_or_text: Image.Image | str) -> list[float]:
|
||||
if isinstance(image_or_text, bytes):
|
||||
image_or_text = Image.open(BytesIO(image_or_text))
|
||||
|
||||
match image_or_text:
|
||||
case Image():
|
||||
case Image.Image():
|
||||
if self.mode == "text":
|
||||
raise TypeError("Cannot encode image as text-only model")
|
||||
pixel_values = self.transform(image_or_text)
|
||||
|
||||
@@ -9,7 +9,6 @@ from insightface.model_zoo import ArcFaceONNX, RetinaFace
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from insightface.utils.storage import BASE_REPO_URL, download_file
|
||||
|
||||
from ..config import settings
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
@@ -20,7 +19,7 @@ class FaceRecognizer(InferenceModel):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = settings.min_face_score,
|
||||
min_score: float = 0.7,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
@@ -69,11 +68,13 @@ class FaceRecognizer(InferenceModel):
|
||||
)
|
||||
self.rec_model.prepare(ctx_id=0)
|
||||
|
||||
def _predict(self, image: cv2.Mat) -> list[dict[str, Any]]:
|
||||
def _predict(self, image: np.ndarray[int, np.dtype[Any]] | bytes) -> list[dict[str, Any]]:
|
||||
if isinstance(image, bytes):
|
||||
image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
|
||||
bboxes, kpss = self.det_model.detect(image)
|
||||
if bboxes.size == 0:
|
||||
return []
|
||||
assert isinstance(kpss, np.ndarray)
|
||||
assert isinstance(image, np.ndarray) and isinstance(kpss, np.ndarray)
|
||||
|
||||
scores = bboxes[:, 4].tolist()
|
||||
bboxes = bboxes[:, :4].round().tolist()
|
||||
@@ -102,3 +103,6 @@ class FaceRecognizer(InferenceModel):
|
||||
@property
|
||||
def cached(self) -> bool:
|
||||
return self.cache_dir.is_dir() and any(self.cache_dir.glob("*.onnx"))
|
||||
|
||||
def configure(self, **model_kwargs: Any) -> None:
|
||||
self.det_model.det_thresh = model_kwargs.get("min_score", self.det_model.det_thresh)
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from optimum.onnxruntime import ORTModelForImageClassification
|
||||
from optimum.pipelines import pipeline
|
||||
from PIL.Image import Image
|
||||
from PIL import Image
|
||||
from transformers import AutoImageProcessor
|
||||
|
||||
from ..config import settings
|
||||
from ..schemas import ModelType
|
||||
from .base import InferenceModel
|
||||
|
||||
@@ -18,7 +18,7 @@ class ImageClassifier(InferenceModel):
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str,
|
||||
min_score: float = settings.min_tag_score,
|
||||
min_score: float = 0.9,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
@@ -56,8 +56,13 @@ class ImageClassifier(InferenceModel):
|
||||
feature_extractor=processor,
|
||||
)
|
||||
|
||||
def _predict(self, image: Image) -> list[str]:
|
||||
def _predict(self, image: Image.Image | bytes) -> list[str]:
|
||||
if isinstance(image, bytes):
|
||||
image = Image.open(BytesIO(image))
|
||||
predictions: list[dict[str, Any]] = self.model(image) # type: ignore
|
||||
tags = [tag for pred in predictions for tag in pred["label"].split(", ") if pred["score"] >= self.min_score]
|
||||
|
||||
return tags
|
||||
|
||||
def configure(self, **model_kwargs: Any) -> None:
|
||||
self.min_score = model_kwargs.get("min_score", self.min_score)
|
||||
|
||||
Reference in New Issue
Block a user