feat(ml)!: customizable ML settings (#3891)

* consolidated endpoints, added live configuration

* added ml settings to server

* added settings dashboard

* updated deps, fixed typos

* simplified modelconfig

updated tests

* Added ml setting accordion for admin page

updated tests

* merge `clipText` and `clipVision`

* added face distance setting

clarified setting

* add clip mode in request, dropdown for face models

* polished ml settings

updated descriptions

* update clip field on error

* removed unused import

* add description for image classification threshold

* pin safetensors for arm wheel

updated poetry lock

* moved dto

* set model type only in ml repository

* revert form-data package install

use fetch instead of axios

* added slotted description with link

updated facial recognition description

clarified effect of disabling tasks

* validation before model load

* removed unnecessary getconfig call

* added migration

* updated api

updated api

updated api

---------

Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
This commit is contained in:
Mert
2023-08-29 09:58:00 -04:00
committed by GitHub
parent 22f5e05060
commit bcc36d14a1
56 changed files with 2324 additions and 655 deletions

View File

@@ -1,29 +1,65 @@
import { DetectFaceResult, IMachineLearningRepository, MachineLearningInput } from '@app/domain';
import {
ClassificationConfig,
CLIPConfig,
CLIPMode,
DetectFaceResult,
IMachineLearningRepository,
ModelConfig,
ModelType,
RecognitionConfig,
TextModelInput,
VisionModelInput,
} from '@app/domain';
import { Injectable } from '@nestjs/common';
import axios from 'axios';
import { createReadStream } from 'fs';
const client = axios.create();
import { readFile } from 'fs/promises';
@Injectable()
export class MachineLearningRepository implements IMachineLearningRepository {
private post<T>(input: MachineLearningInput, endpoint: string): Promise<T> {
return client.post<T>(endpoint, createReadStream(input.imagePath)).then((res) => res.data);
private async post<T>(url: string, input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<T> {
const formData = await this.getFormData(input, config);
const res = await fetch(`${url}/predict`, { method: 'POST', body: formData });
return res.json();
}
classifyImage(url: string, input: MachineLearningInput): Promise<string[]> {
return this.post<string[]>(input, `${url}/image-classifier/tag-image`);
classifyImage(url: string, input: VisionModelInput, config: ClassificationConfig): Promise<string[]> {
return this.post<string[]>(url, input, { ...config, modelType: ModelType.IMAGE_CLASSIFICATION });
}
detectFaces(url: string, input: MachineLearningInput): Promise<DetectFaceResult[]> {
return this.post<DetectFaceResult[]>(input, `${url}/facial-recognition/detect-faces`);
detectFaces(url: string, input: VisionModelInput, config: RecognitionConfig): Promise<DetectFaceResult[]> {
return this.post<DetectFaceResult[]>(url, input, { ...config, modelType: ModelType.FACIAL_RECOGNITION });
}
encodeImage(url: string, input: MachineLearningInput): Promise<number[]> {
return this.post<number[]>(input, `${url}/sentence-transformer/encode-image`);
encodeImage(url: string, input: VisionModelInput, config: CLIPConfig): Promise<number[]> {
return this.post<number[]>(url, input, {
...config,
modelType: ModelType.CLIP,
mode: CLIPMode.VISION,
} as CLIPConfig);
}
encodeText(url: string, input: string): Promise<number[]> {
return client.post<number[]>(`${url}/sentence-transformer/encode-text`, { text: input }).then((res) => res.data);
encodeText(url: string, input: TextModelInput, config: CLIPConfig): Promise<number[]> {
return this.post<number[]>(url, input, { ...config, modelType: ModelType.CLIP, mode: CLIPMode.TEXT } as CLIPConfig);
}
async getFormData(input: TextModelInput | VisionModelInput, config: ModelConfig): Promise<FormData> {
const formData = new FormData();
const { modelName, modelType, ...options } = config;
formData.append('modelName', modelName);
if (modelType) {
formData.append('modelType', modelType);
}
if (options) {
formData.append('options', JSON.stringify(options));
}
if ('imagePath' in input) {
formData.append('image', new Blob([await readFile(input.imagePath)]));
} else if ('text' in input) {
formData.append('text', input.text);
} else {
throw new Error('Invalid input');
}
return formData;
}
}