mirror of
https://github.com/KevinMidboe/immich.git
synced 2025-10-29 17:40:28 +00:00
feat(ml): model unloading (#2661)
* model cache * fixed revalidation when using cache namespace * fixed ttl not being set, added lock
This commit is contained in:
84
machine-learning/app/cache.py
Normal file
84
machine-learning/app/cache.py
Normal file
@@ -0,0 +1,84 @@
|
||||
from aiocache.plugins import TimingPlugin, BasePlugin
|
||||
from aiocache.backends.memory import SimpleMemoryCache
|
||||
from aiocache.lock import OptimisticLock
|
||||
from typing import Any
|
||||
from models import get_model
|
||||
|
||||
|
||||
class ModelCache:
|
||||
"""Fetches a model from an in-memory cache, instantiating it if it's missing."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ttl: int | None = None,
|
||||
revalidate: bool = False,
|
||||
timeout: int | None = None,
|
||||
profiling: bool = False,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
ttl: Unloads model after this duration. Disabled if None. Defaults to None.
|
||||
revalidate: Resets TTL on cache hit. Useful to keep models in memory while active. Defaults to False.
|
||||
timeout: Maximum allowed time for model to load. Disabled if None. Defaults to None.
|
||||
profiling: Collects metrics for cache operations, adding slight overhead. Defaults to False.
|
||||
"""
|
||||
|
||||
self.ttl = ttl
|
||||
plugins = []
|
||||
|
||||
if revalidate:
|
||||
plugins.append(RevalidationPlugin())
|
||||
if profiling:
|
||||
plugins.append(TimingPlugin())
|
||||
|
||||
self.cache = SimpleMemoryCache(
|
||||
ttl=ttl, timeout=timeout, plugins=plugins, namespace=None
|
||||
)
|
||||
|
||||
async def get_cached_model(
|
||||
self, model_name: str, model_type: str, **model_kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Args:
|
||||
model_name: Name of model in the model hub used for the task.
|
||||
model_type: Model type or task, which determines which model zoo is used.
|
||||
|
||||
Returns:
|
||||
model: The requested model.
|
||||
"""
|
||||
|
||||
key = self.cache.build_key(model_name, model_type)
|
||||
model = await self.cache.get(key)
|
||||
if model is None:
|
||||
async with OptimisticLock(self.cache, key) as lock:
|
||||
model = get_model(model_name, model_type, **model_kwargs)
|
||||
await lock.cas(model, ttl=self.ttl)
|
||||
return model
|
||||
|
||||
async def get_profiling(self) -> dict[str, float] | None:
|
||||
if not hasattr(self.cache, "profiling"):
|
||||
return None
|
||||
|
||||
return self.cache.profiling # type: ignore
|
||||
|
||||
|
||||
class RevalidationPlugin(BasePlugin):
|
||||
"""Revalidates cache item's TTL after cache hit."""
|
||||
|
||||
async def post_get(self, client, key, ret=None, namespace=None, **kwargs):
|
||||
if ret is None:
|
||||
return
|
||||
if namespace is not None:
|
||||
key = client.build_key(key, namespace)
|
||||
if key in client._handlers:
|
||||
await client.expire(key, client.ttl)
|
||||
|
||||
async def post_multi_get(self, client, keys, ret=None, namespace=None, **kwargs):
|
||||
if ret is None:
|
||||
return
|
||||
|
||||
for key, val in zip(keys, ret):
|
||||
if namespace is not None:
|
||||
key = client.build_key(key, namespace)
|
||||
if val is not None and key in client._handlers:
|
||||
await client.expire(key, client.ttl)
|
||||
@@ -1,5 +1,7 @@
|
||||
import os
|
||||
from typing import Any
|
||||
|
||||
from cache import ModelCache
|
||||
from schemas import (
|
||||
EmbeddingResponse,
|
||||
FaceResponse,
|
||||
@@ -9,16 +11,11 @@ from schemas import (
|
||||
TextResponse,
|
||||
VisionModelRequest,
|
||||
)
|
||||
import cv2 as cv
|
||||
import uvicorn
|
||||
|
||||
from insightface.app import FaceAnalysis
|
||||
from transformers import pipeline
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from transformers import Pipeline
|
||||
from PIL import Image
|
||||
from fastapi import FastAPI
|
||||
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from models import get_model, run_classification, run_facial_recognition
|
||||
|
||||
classification_model = os.getenv(
|
||||
"MACHINE_LEARNING_CLASSIFICATION_MODEL", "microsoft/resnet-50"
|
||||
@@ -29,21 +26,20 @@ facial_recognition_model = os.getenv(
|
||||
"MACHINE_LEARNING_FACIAL_RECOGNITION_MODEL", "buffalo_l"
|
||||
)
|
||||
|
||||
min_face_score = float(os.getenv("MACHINE_LEARNING_MIN_FACE_SCORE", 0.7))
|
||||
min_tag_score = float(os.getenv("MACHINE_LEARNING_MIN_TAG_SCORE", 0.9))
|
||||
eager_startup = (
|
||||
os.getenv("MACHINE_LEARNING_EAGER_STARTUP", "true") == "true"
|
||||
) # loads all models at startup
|
||||
model_ttl = int(os.getenv("MACHINE_LEARNING_MODEL_TTL", 300))
|
||||
|
||||
cache_folder = os.getenv("MACHINE_LEARNING_CACHE_FOLDER", "/cache")
|
||||
|
||||
_model_cache = {}
|
||||
|
||||
_model_cache = None
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
async def startup_event() -> None:
|
||||
global _model_cache
|
||||
_model_cache = ModelCache(ttl=model_ttl, revalidate=True)
|
||||
models = [
|
||||
(classification_model, "image-classification"),
|
||||
(clip_image_model, "clip"),
|
||||
@@ -54,9 +50,9 @@ async def startup_event() -> None:
|
||||
# Get all models
|
||||
for model_name, model_type in models:
|
||||
if eager_startup:
|
||||
get_cached_model(model_name, model_type)
|
||||
await _model_cache.get_cached_model(model_name, model_type)
|
||||
else:
|
||||
_get_model(model_name, model_type)
|
||||
get_model(model_name, model_type)
|
||||
|
||||
|
||||
@app.get("/", response_model=MessageResponse)
|
||||
@@ -70,10 +66,14 @@ def ping() -> str:
|
||||
|
||||
|
||||
@app.post("/image-classifier/tag-image", response_model=TagResponse, status_code=200)
|
||||
def image_classification(payload: VisionModelRequest) -> list[str]:
|
||||
model = get_cached_model(classification_model, "image-classification")
|
||||
assetPath = payload.image_path
|
||||
labels = run_engine(model, assetPath)
|
||||
async def image_classification(payload: VisionModelRequest) -> list[str]:
|
||||
if _model_cache is None:
|
||||
raise HTTPException(status_code=500, detail="Unable to load model.")
|
||||
|
||||
model = await _model_cache.get_cached_model(
|
||||
classification_model, "image-classification"
|
||||
)
|
||||
labels = run_classification(model, payload.image_path, min_tag_score)
|
||||
return labels
|
||||
|
||||
|
||||
@@ -82,10 +82,14 @@ def image_classification(payload: VisionModelRequest) -> list[str]:
|
||||
response_model=EmbeddingResponse,
|
||||
status_code=200,
|
||||
)
|
||||
def clip_encode_image(payload: VisionModelRequest) -> list[float]:
|
||||
model = get_cached_model(clip_image_model, "clip")
|
||||
async def clip_encode_image(payload: VisionModelRequest) -> list[float]:
|
||||
if _model_cache is None:
|
||||
raise HTTPException(status_code=500, detail="Unable to load model.")
|
||||
|
||||
model = await _model_cache.get_cached_model(clip_image_model, "clip")
|
||||
image = Image.open(payload.image_path)
|
||||
return model.encode(image).tolist()
|
||||
embedding = model.encode(image).tolist()
|
||||
return embedding
|
||||
|
||||
|
||||
@app.post(
|
||||
@@ -93,82 +97,27 @@ def clip_encode_image(payload: VisionModelRequest) -> list[float]:
|
||||
response_model=EmbeddingResponse,
|
||||
status_code=200,
|
||||
)
|
||||
def clip_encode_text(payload: TextModelRequest) -> list[float]:
|
||||
model = get_cached_model(clip_text_model, "clip")
|
||||
return model.encode(payload.text).tolist()
|
||||
async def clip_encode_text(payload: TextModelRequest) -> list[float]:
|
||||
if _model_cache is None:
|
||||
raise HTTPException(status_code=500, detail="Unable to load model.")
|
||||
|
||||
model = await _model_cache.get_cached_model(clip_text_model, "clip")
|
||||
embedding = model.encode(payload.text).tolist()
|
||||
return embedding
|
||||
|
||||
|
||||
@app.post(
|
||||
"/facial-recognition/detect-faces", response_model=FaceResponse, status_code=200
|
||||
)
|
||||
def facial_recognition(payload: VisionModelRequest) -> list[dict[str, Any]]:
|
||||
model = get_cached_model(facial_recognition_model, "facial-recognition")
|
||||
img = cv.imread(payload.image_path)
|
||||
height, width, _ = img.shape
|
||||
results = []
|
||||
faces = model.get(img)
|
||||
async def facial_recognition(payload: VisionModelRequest) -> list[dict[str, Any]]:
|
||||
if _model_cache is None:
|
||||
raise HTTPException(status_code=500, detail="Unable to load model.")
|
||||
|
||||
for face in faces:
|
||||
if face.det_score < min_face_score:
|
||||
continue
|
||||
x1, y1, x2, y2 = face.bbox
|
||||
|
||||
results.append(
|
||||
{
|
||||
"imageWidth": width,
|
||||
"imageHeight": height,
|
||||
"boundingBox": {
|
||||
"x1": round(x1),
|
||||
"y1": round(y1),
|
||||
"x2": round(x2),
|
||||
"y2": round(y2),
|
||||
},
|
||||
"score": face.det_score.item(),
|
||||
"embedding": face.normed_embedding.tolist(),
|
||||
}
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def run_engine(engine: Pipeline, path: str) -> list[str]:
|
||||
result: list[str] = []
|
||||
predictions: list[dict[str, Any]] = engine(path) # type: ignore
|
||||
|
||||
for pred in predictions:
|
||||
tags = pred["label"].split(", ")
|
||||
if pred["score"] > min_tag_score:
|
||||
result = [*result, *tags]
|
||||
|
||||
if len(result) > 1:
|
||||
result = list(set(result))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_cached_model(model, task) -> Any:
|
||||
global _model_cache
|
||||
key = "|".join([model, str(task)])
|
||||
if key not in _model_cache:
|
||||
model = _get_model(model, task)
|
||||
_model_cache[key] = model
|
||||
|
||||
return _model_cache[key]
|
||||
|
||||
|
||||
def _get_model(model, task) -> Any:
|
||||
match task:
|
||||
case "facial-recognition":
|
||||
model = FaceAnalysis(
|
||||
name=model,
|
||||
root=cache_folder,
|
||||
allowed_modules=["detection", "recognition"],
|
||||
)
|
||||
model.prepare(ctx_id=0, det_size=(640, 640))
|
||||
case "clip":
|
||||
model = SentenceTransformer(model, cache_folder=cache_folder)
|
||||
case _:
|
||||
model = pipeline(model=model, task=task)
|
||||
return model
|
||||
model = await _model_cache.get_cached_model(
|
||||
facial_recognition_model, "facial-recognition"
|
||||
)
|
||||
faces = run_facial_recognition(model, payload.image_path)
|
||||
return faces
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
117
machine-learning/app/models.py
Normal file
117
machine-learning/app/models.py
Normal file
@@ -0,0 +1,117 @@
|
||||
import torch
|
||||
from insightface.app import FaceAnalysis
|
||||
from pathlib import Path
|
||||
import os
|
||||
|
||||
from transformers import pipeline, Pipeline
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from typing import Any
|
||||
import cv2 as cv
|
||||
|
||||
cache_folder = os.getenv("MACHINE_LEARNING_CACHE_FOLDER", "/cache")
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
def get_model(model_name: str, model_type: str, **model_kwargs):
|
||||
"""
|
||||
Instantiates the specified model.
|
||||
|
||||
Args:
|
||||
model_name: Name of model in the model hub used for the task.
|
||||
model_type: Model type or task, which determines which model zoo is used.
|
||||
`facial-recognition` uses Insightface, while all other models use the HF Model Hub.
|
||||
|
||||
Options:
|
||||
`image-classification`, `clip`,`facial-recognition`, `tokenizer`, `processor`
|
||||
|
||||
Returns:
|
||||
model: The requested model.
|
||||
"""
|
||||
|
||||
cache_dir = _get_cache_dir(model_name, model_type)
|
||||
match model_type:
|
||||
case "facial-recognition":
|
||||
model = _load_facial_recognition(
|
||||
model_name, cache_dir=cache_dir, **model_kwargs
|
||||
)
|
||||
case "clip":
|
||||
model = SentenceTransformer(
|
||||
model_name, cache_folder=cache_dir, **model_kwargs
|
||||
)
|
||||
case _:
|
||||
model = pipeline(
|
||||
model_type,
|
||||
model_name,
|
||||
model_kwargs={"cache_dir": cache_dir, **model_kwargs},
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def run_classification(
|
||||
model: Pipeline, image_path: str, min_score: float | None = None
|
||||
):
|
||||
predictions: list[dict[str, Any]] = model(image_path) # type: ignore
|
||||
result = {
|
||||
tag
|
||||
for pred in predictions
|
||||
for tag in pred["label"].split(", ")
|
||||
if min_score is None or pred["score"] >= min_score
|
||||
}
|
||||
|
||||
return list(result)
|
||||
|
||||
|
||||
def run_facial_recognition(
|
||||
model: FaceAnalysis, image_path: str
|
||||
) -> list[dict[str, Any]]:
|
||||
img = cv.imread(image_path)
|
||||
height, width, _ = img.shape
|
||||
results = []
|
||||
faces = model.get(img)
|
||||
|
||||
for face in faces:
|
||||
x1, y1, x2, y2 = face.bbox
|
||||
|
||||
results.append(
|
||||
{
|
||||
"imageWidth": width,
|
||||
"imageHeight": height,
|
||||
"boundingBox": {
|
||||
"x1": round(x1),
|
||||
"y1": round(y1),
|
||||
"x2": round(x2),
|
||||
"y2": round(y2),
|
||||
},
|
||||
"score": face.det_score.item(),
|
||||
"embedding": face.normed_embedding.tolist(),
|
||||
}
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def _load_facial_recognition(
|
||||
model_name: str,
|
||||
min_face_score: float | None = None,
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs,
|
||||
):
|
||||
if cache_dir is None:
|
||||
cache_dir = _get_cache_dir(model_name, "facial-recognition")
|
||||
if isinstance(cache_dir, Path):
|
||||
cache_dir = cache_dir.as_posix()
|
||||
if min_face_score is None:
|
||||
min_face_score = float(os.getenv("MACHINE_LEARNING_MIN_FACE_SCORE", 0.7))
|
||||
|
||||
model = FaceAnalysis(
|
||||
name=model_name,
|
||||
root=cache_dir,
|
||||
allowed_modules=["detection", "recognition"],
|
||||
**model_kwargs,
|
||||
)
|
||||
model.prepare(ctx_id=0, det_thresh=min_face_score, det_size=(640, 640))
|
||||
return model
|
||||
|
||||
|
||||
def _get_cache_dir(model_name: str, model_type: str) -> Path:
|
||||
return Path(cache_folder, device, model_type, model_name)
|
||||
Reference in New Issue
Block a user