mirror of
				https://github.com/KevinMidboe/immich.git
				synced 2025-10-29 17:40:28 +00:00 
			
		
		
		
	* fixed dev docker compose * updated locustfile * deleted old script, moved comments to locustfile
		
			
				
	
	
		
			93 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from io import BytesIO
 | |
| import json
 | |
| from typing import Any
 | |
| 
 | |
| from locust import HttpUser, events, task
 | |
| from locust.env import Environment
 | |
| from PIL import Image
 | |
| from argparse import ArgumentParser
 | |
| byte_image = BytesIO()
 | |
| 
 | |
| 
 | |
| @events.init_command_line_parser.add_listener
 | |
| def _(parser: ArgumentParser) -> None:
 | |
|     parser.add_argument("--tag-model", type=str, default="microsoft/resnet-50")
 | |
|     parser.add_argument("--clip-model", type=str, default="ViT-B-32::openai")
 | |
|     parser.add_argument("--face-model", type=str, default="buffalo_l")
 | |
|     parser.add_argument("--tag-min-score", type=int, default=0.0, 
 | |
|                         help="Returns all tags at or above this score. The default returns all tags.")
 | |
|     parser.add_argument("--face-min-score", type=int, default=0.034, 
 | |
|                         help=("Returns all faces at or above this score. The default returns 1 face per request; "
 | |
|                               "setting this to 0 blows up the number of faces to the thousands."))
 | |
|     parser.add_argument("--image-size", type=int, default=1000)
 | |
| 
 | |
| 
 | |
| @events.test_start.add_listener
 | |
| def on_test_start(environment: Environment, **kwargs: Any) -> None:
 | |
|     global byte_image
 | |
|     assert environment.parsed_options is not None
 | |
|     image = Image.new("RGB", (environment.parsed_options.image_size, environment.parsed_options.image_size))
 | |
|     byte_image = BytesIO()
 | |
|     image.save(byte_image, format="jpeg")
 | |
| 
 | |
| 
 | |
| class InferenceLoadTest(HttpUser):
 | |
|     abstract: bool = True
 | |
|     host = "http://127.0.0.1:3003"
 | |
|     data: bytes
 | |
|     headers: dict[str, str] = {"Content-Type": "image/jpg"}
 | |
| 
 | |
|     # re-use the image across all instances in a process
 | |
|     def on_start(self) -> None:
 | |
|         global byte_image
 | |
|         self.data = byte_image.getvalue()
 | |
| 
 | |
| 
 | |
| class ClassificationFormDataLoadTest(InferenceLoadTest):
 | |
|     @task
 | |
|     def classify(self) -> None:
 | |
|         data = [
 | |
|             ("modelName", self.environment.parsed_options.clip_model),
 | |
|             ("modelType", "clip"),
 | |
|             ("options", json.dumps({"minScore": self.environment.parsed_options.tag_min_score})),
 | |
|         ]
 | |
|         files = {"image": self.data}
 | |
|         self.client.post("/predict", data=data, files=files)
 | |
| 
 | |
| 
 | |
| class CLIPTextFormDataLoadTest(InferenceLoadTest):
 | |
|     @task
 | |
|     def encode_text(self) -> None:
 | |
|         data = [
 | |
|             ("modelName", self.environment.parsed_options.clip_model),
 | |
|             ("modelType", "clip"),
 | |
|             ("options", json.dumps({"mode": "text"})),
 | |
|             ("text", "test search query")
 | |
|         ]
 | |
|         self.client.post("/predict", data=data)
 | |
| 
 | |
| 
 | |
| class CLIPVisionFormDataLoadTest(InferenceLoadTest):
 | |
|     @task
 | |
|     def encode_image(self) -> None:
 | |
|         data = [
 | |
|             ("modelName", self.environment.parsed_options.clip_model),
 | |
|             ("modelType", "clip"),
 | |
|             ("options", json.dumps({"mode": "vision"})),
 | |
|         ]
 | |
|         files = {"image": self.data}
 | |
|         self.client.post("/predict", data=data, files=files)
 | |
| 
 | |
| 
 | |
| class RecognitionFormDataLoadTest(InferenceLoadTest):
 | |
|     @task
 | |
|     def recognize(self) -> None:
 | |
|         data = [
 | |
|             ("modelName", self.environment.parsed_options.face_model),
 | |
|             ("modelType", "facial-recognition"),
 | |
|             ("options", json.dumps({"minScore": self.environment.parsed_options.face_min_score})),
 | |
|         ]
 | |
|         files = {"image": self.data}
 | |
|             
 | |
|         self.client.post("/predict", data=data, files=files)
 |