mirror of
				https://github.com/KevinMidboe/immich.git
				synced 2025-10-29 17:40:28 +00:00 
			
		
		
		
	* using pydantic BaseSetting * ML API takes image file as input * keeping image in memory * reducing duplicate code * using bytes instead of UploadFile & other small code improvements * removed form-multipart, using HTTP body * format code --------- Co-authored-by: Alex Tran <alex.tran1502@gmail.com>
		
			
				
	
	
		
			134 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			134 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import io
 | |
| from typing import Any
 | |
| 
 | |
| from cache import ModelCache
 | |
| from schemas import (
 | |
|     EmbeddingResponse,
 | |
|     FaceResponse,
 | |
|     TagResponse,
 | |
|     MessageResponse,
 | |
|     TextModelRequest,
 | |
|     TextResponse,
 | |
| )
 | |
| import uvicorn
 | |
| from PIL import Image
 | |
| from fastapi import FastAPI, HTTPException, Depends, Body
 | |
| from models import get_model, run_classification, run_facial_recognition
 | |
| from config import settings
 | |
| 
 | |
| _model_cache = None
 | |
| 
 | |
| app = FastAPI()
 | |
| 
 | |
| 
 | |
| @app.on_event("startup")
 | |
| async def startup_event() -> None:
 | |
|     global _model_cache
 | |
|     _model_cache = ModelCache(ttl=settings.model_ttl, revalidate=True)
 | |
|     models = [
 | |
|         (settings.classification_model, "image-classification"),
 | |
|         (settings.clip_image_model, "clip"),
 | |
|         (settings.clip_text_model, "clip"),
 | |
|         (settings.facial_recognition_model, "facial-recognition"),
 | |
|     ]
 | |
| 
 | |
|     # Get all models
 | |
|     for model_name, model_type in models:
 | |
|         if settings.eager_startup:
 | |
|             await _model_cache.get_cached_model(model_name, model_type)
 | |
|         else:
 | |
|             get_model(model_name, model_type)
 | |
| 
 | |
| 
 | |
| def dep_model_cache():
 | |
|     if _model_cache is None:
 | |
|         raise HTTPException(status_code=500, detail="Unable to load model.")
 | |
| 
 | |
| def dep_input_image(image: bytes = Body(...)) -> Image:
 | |
|     return Image.open(io.BytesIO(image))
 | |
| 
 | |
| @app.get("/", response_model=MessageResponse)
 | |
| async def root() -> dict[str, str]:
 | |
|     return {"message": "Immich ML"}
 | |
| 
 | |
| 
 | |
| @app.get("/ping", response_model=TextResponse)
 | |
| def ping() -> str:
 | |
|     return "pong"
 | |
| 
 | |
| 
 | |
| @app.post(
 | |
|     "/image-classifier/tag-image",
 | |
|     response_model=TagResponse,
 | |
|     status_code=200,
 | |
|     dependencies=[Depends(dep_model_cache)],
 | |
| )
 | |
| async def image_classification(
 | |
|     image: Image = Depends(dep_input_image)
 | |
| ) -> list[str]:
 | |
|     try:
 | |
|         model = await _model_cache.get_cached_model(
 | |
|             settings.classification_model, "image-classification"
 | |
|         )
 | |
|         labels = run_classification(model, image, settings.min_tag_score)
 | |
|     except Exception as ex:
 | |
|         raise HTTPException(status_code=500, detail=str(ex))
 | |
|     else:
 | |
|         return labels
 | |
| 
 | |
| 
 | |
| @app.post(
 | |
|     "/sentence-transformer/encode-image",
 | |
|     response_model=EmbeddingResponse,
 | |
|     status_code=200,
 | |
|     dependencies=[Depends(dep_model_cache)],
 | |
| )
 | |
| async def clip_encode_image(
 | |
|     image: Image = Depends(dep_input_image)
 | |
| ) -> list[float]:
 | |
|     model = await _model_cache.get_cached_model(settings.clip_image_model, "clip")
 | |
|     embedding = model.encode(image).tolist()
 | |
|     return embedding
 | |
| 
 | |
| 
 | |
| @app.post(
 | |
|     "/sentence-transformer/encode-text",
 | |
|     response_model=EmbeddingResponse,
 | |
|     status_code=200,
 | |
|     dependencies=[Depends(dep_model_cache)],
 | |
| )
 | |
| async def clip_encode_text(
 | |
|     payload: TextModelRequest
 | |
| ) -> list[float]:
 | |
|     model = await _model_cache.get_cached_model(settings.clip_text_model, "clip")
 | |
|     embedding = model.encode(payload.text).tolist()
 | |
|     return embedding
 | |
| 
 | |
| 
 | |
| @app.post(
 | |
|     "/facial-recognition/detect-faces",
 | |
|     response_model=FaceResponse,
 | |
|     status_code=200,
 | |
|     dependencies=[Depends(dep_model_cache)],
 | |
| )
 | |
| async def facial_recognition(
 | |
|     image: bytes = Body(...),
 | |
| ) -> list[dict[str, Any]]:
 | |
|     model = await _model_cache.get_cached_model(
 | |
|         settings.facial_recognition_model, "facial-recognition"
 | |
|     )
 | |
|     faces = run_facial_recognition(model, image)
 | |
|     return faces
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     is_dev = os.getenv("NODE_ENV") == "development"
 | |
|     uvicorn.run(
 | |
|         "main:app",
 | |
|         host=settings.host,
 | |
|         port=settings.port,
 | |
|         reload=is_dev,
 | |
|         workers=settings.workers,
 | |
|     )
 |