mirror of
				https://github.com/KevinMidboe/immich.git
				synced 2025-10-29 17:40:28 +00:00 
			
		
		
		
	* fixed `minScore` not being set correctly * apply to init * don't send `enabled` * fix eslint warning * added logger * added logging * refinements * enable access log for info level * formatting * merged strings --------- Co-authored-by: Alex <alex.tran1502@gmail.com>
		
			
				
	
	
		
			160 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import pickle
 | |
| from abc import ABC, abstractmethod
 | |
| from pathlib import Path
 | |
| from shutil import rmtree
 | |
| from typing import Any
 | |
| from zipfile import BadZipFile
 | |
| 
 | |
| import onnxruntime as ort
 | |
| from onnxruntime.capi.onnxruntime_pybind11_state import InvalidProtobuf  # type: ignore
 | |
| 
 | |
| from ..config import get_cache_dir, log, settings
 | |
| from ..schemas import ModelType
 | |
| 
 | |
| 
 | |
| class InferenceModel(ABC):
 | |
|     _model_type: ModelType
 | |
| 
 | |
|     def __init__(
 | |
|         self,
 | |
|         model_name: str,
 | |
|         cache_dir: Path | str | None = None,
 | |
|         eager: bool = True,
 | |
|         inter_op_num_threads: int = settings.model_inter_op_threads,
 | |
|         intra_op_num_threads: int = settings.model_intra_op_threads,
 | |
|         **model_kwargs: Any,
 | |
|     ) -> None:
 | |
|         self.model_name = model_name
 | |
|         self._loaded = False
 | |
|         self._cache_dir = Path(cache_dir) if cache_dir is not None else get_cache_dir(model_name, self.model_type)
 | |
|         loader = self.load if eager else self.download
 | |
| 
 | |
|         self.providers = model_kwargs.pop("providers", ["CPUExecutionProvider"])
 | |
|         #  don't pre-allocate more memory than needed
 | |
|         self.provider_options = model_kwargs.pop(
 | |
|             "provider_options", [{"arena_extend_strategy": "kSameAsRequested"}] * len(self.providers)
 | |
|         )
 | |
|         log.debug(
 | |
|             (
 | |
|                 f"Setting '{self.model_name}' execution providers to {self.providers}"
 | |
|                 "in descending order of preference"
 | |
|             ),
 | |
|         )
 | |
|         log.debug(f"Setting execution provider options to {self.provider_options}")
 | |
|         self.sess_options = PicklableSessionOptions()
 | |
|         # avoid thread contention between models
 | |
|         if inter_op_num_threads > 1:
 | |
|             self.sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
 | |
| 
 | |
|         log.debug(f"Setting execution_mode to {self.sess_options.execution_mode.name}")
 | |
|         log.debug(f"Setting inter_op_num_threads to {inter_op_num_threads}")
 | |
|         log.debug(f"Setting intra_op_num_threads to {intra_op_num_threads}")
 | |
|         self.sess_options.inter_op_num_threads = inter_op_num_threads
 | |
|         self.sess_options.intra_op_num_threads = intra_op_num_threads
 | |
| 
 | |
|         try:
 | |
|             loader(**model_kwargs)
 | |
|         except (OSError, InvalidProtobuf, BadZipFile):
 | |
|             log.warn(
 | |
|                 (
 | |
|                     f"Failed to load {self.model_type.replace('_', ' ')} model '{self.model_name}'."
 | |
|                     "Clearing cache and retrying."
 | |
|                 )
 | |
|             )
 | |
|             self.clear_cache()
 | |
|             loader(**model_kwargs)
 | |
| 
 | |
|     def download(self, **model_kwargs: Any) -> None:
 | |
|         if not self.cached:
 | |
|             log.info(
 | |
|                 (f"Downloading {self.model_type.replace('_', ' ')} model '{self.model_name}'." "This may take a while.")
 | |
|             )
 | |
|             self._download(**model_kwargs)
 | |
| 
 | |
|     def load(self, **model_kwargs: Any) -> None:
 | |
|         self.download(**model_kwargs)
 | |
|         self._load(**model_kwargs)
 | |
|         self._loaded = True
 | |
| 
 | |
|     def predict(self, inputs: Any, **model_kwargs: Any) -> Any:
 | |
|         if not self._loaded:
 | |
|             log.info(f"Loading {self.model_type.replace('_', ' ')} model '{self.model_name}'")
 | |
|             self.load()
 | |
|         if model_kwargs:
 | |
|             self.configure(**model_kwargs)
 | |
|         return self._predict(inputs)
 | |
| 
 | |
|     @abstractmethod
 | |
|     def _predict(self, inputs: Any) -> Any:
 | |
|         ...
 | |
| 
 | |
|     def configure(self, **model_kwargs: Any) -> None:
 | |
|         pass
 | |
| 
 | |
|     @abstractmethod
 | |
|     def _download(self, **model_kwargs: Any) -> None:
 | |
|         ...
 | |
| 
 | |
|     @abstractmethod
 | |
|     def _load(self, **model_kwargs: Any) -> None:
 | |
|         ...
 | |
| 
 | |
|     @property
 | |
|     def model_type(self) -> ModelType:
 | |
|         return self._model_type
 | |
| 
 | |
|     @property
 | |
|     def cache_dir(self) -> Path:
 | |
|         return self._cache_dir
 | |
| 
 | |
|     @cache_dir.setter
 | |
|     def cache_dir(self, cache_dir: Path) -> None:
 | |
|         self._cache_dir = cache_dir
 | |
| 
 | |
|     @property
 | |
|     def cached(self) -> bool:
 | |
|         return self.cache_dir.exists() and any(self.cache_dir.iterdir())
 | |
| 
 | |
|     @classmethod
 | |
|     def from_model_type(cls, model_type: ModelType, model_name: str, **model_kwargs: Any) -> InferenceModel:
 | |
|         subclasses = {subclass._model_type: subclass for subclass in cls.__subclasses__()}
 | |
|         if model_type not in subclasses:
 | |
|             raise ValueError(f"Unsupported model type: {model_type}")
 | |
| 
 | |
|         return subclasses[model_type](model_name, **model_kwargs)
 | |
| 
 | |
|     def clear_cache(self) -> None:
 | |
|         if not self.cache_dir.exists():
 | |
|             log.warn(
 | |
|                 f"Attempted to clear cache for model '{self.model_name}' but cache directory does not exist.",
 | |
|             )
 | |
|             return
 | |
|         if not rmtree.avoids_symlink_attacks:
 | |
|             raise RuntimeError("Attempted to clear cache, but rmtree is not safe on this platform.")
 | |
| 
 | |
|         if self.cache_dir.is_dir():
 | |
|             log.info(f"Cleared cache directory for model '{self.model_name}'.")
 | |
|             rmtree(self.cache_dir)
 | |
|         else:
 | |
|             log.warn(
 | |
|                 (
 | |
|                     f"Encountered file instead of directory at cache path "
 | |
|                     f"for '{self.model_name}'. Removing file and replacing with a directory."
 | |
|                 ),
 | |
|             )
 | |
|             self.cache_dir.unlink()
 | |
|         self.cache_dir.mkdir(parents=True, exist_ok=True)
 | |
| 
 | |
| 
 | |
| # HF deep copies configs, so we need to make session options picklable
 | |
| class PicklableSessionOptions(ort.SessionOptions):
 | |
|     def __getstate__(self) -> bytes:
 | |
|         return pickle.dumps([(attr, getattr(self, attr)) for attr in dir(self) if not callable(getattr(self, attr))])
 | |
| 
 | |
|     def __setstate__(self, state: Any) -> None:
 | |
|         self.__init__()  # type: ignore
 | |
|         for attr, val in pickle.loads(state):
 | |
|             setattr(self, attr, val)
 |