Files
immich/server/src/domain/facial-recognition/facial-recognition.services.ts
Jason Rasmussen 8ebac41318 refactor(server)*: tsconfigs (#2689)
* refactor(server): tsconfigs

* chore: dummy commit

* fix: start.sh

* chore: restore original entry scripts
2023-06-08 10:01:07 -05:00

140 lines
5.6 KiB
TypeScript

import { Inject, Logger } from '@nestjs/common';
import { join } from 'path';
import { IAssetRepository, WithoutProperty } from '../asset';
import { MACHINE_LEARNING_ENABLED } from '../domain.constant';
import { usePagination } from '../domain.util';
import { IBaseJob, IEntityJob, IFaceThumbnailJob, IJobRepository, JobName, JOBS_ASSET_PAGINATION_SIZE } from '../job';
import { CropOptions, FACE_THUMBNAIL_SIZE, IMediaRepository } from '../media';
import { IPersonRepository } from '../person/person.repository';
import { ISearchRepository } from '../search/search.repository';
import { IMachineLearningRepository } from '../smart-info';
import { IStorageRepository, StorageCore, StorageFolder } from '../storage';
import { AssetFaceId, IFaceRepository } from './face.repository';
export class FacialRecognitionService {
private logger = new Logger(FacialRecognitionService.name);
private storageCore = new StorageCore();
constructor(
@Inject(IAssetRepository) private assetRepository: IAssetRepository,
@Inject(IFaceRepository) private faceRepository: IFaceRepository,
@Inject(IJobRepository) private jobRepository: IJobRepository,
@Inject(IMachineLearningRepository) private machineLearning: IMachineLearningRepository,
@Inject(IMediaRepository) private mediaRepository: IMediaRepository,
@Inject(IPersonRepository) private personRepository: IPersonRepository,
@Inject(ISearchRepository) private searchRepository: ISearchRepository,
@Inject(IStorageRepository) private storageRepository: IStorageRepository,
) {}
async handleQueueRecognizeFaces({ force }: IBaseJob) {
const assetPagination = usePagination(JOBS_ASSET_PAGINATION_SIZE, (pagination) => {
return force
? this.assetRepository.getAll(pagination)
: this.assetRepository.getWithout(pagination, WithoutProperty.FACES);
});
if (force) {
const people = await this.personRepository.deleteAll();
const faces = await this.searchRepository.deleteAllFaces();
this.logger.debug(`Deleted ${people} people and ${faces} faces`);
}
for await (const assets of assetPagination) {
for (const asset of assets) {
await this.jobRepository.queue({ name: JobName.RECOGNIZE_FACES, data: { id: asset.id } });
}
}
return true;
}
async handleRecognizeFaces({ id }: IEntityJob) {
const [asset] = await this.assetRepository.getByIds([id]);
if (!asset || !MACHINE_LEARNING_ENABLED || !asset.resizePath) {
return false;
}
const faces = await this.machineLearning.detectFaces({ imagePath: asset.resizePath });
this.logger.debug(`${faces.length} faces detected in ${asset.resizePath}`);
this.logger.verbose(faces.map((face) => ({ ...face, embedding: `float[${face.embedding.length}]` })));
for (const { embedding, ...rest } of faces) {
const faceSearchResult = await this.searchRepository.searchFaces(embedding, { ownerId: asset.ownerId });
let personId: string | null = null;
// try to find a matching face and link to the associated person
// The closer to 0, the better the match. Range is from 0 to 2
if (faceSearchResult.total && faceSearchResult.distances[0] < 0.6) {
this.logger.verbose(`Match face with distance ${faceSearchResult.distances[0]}`);
personId = faceSearchResult.items[0].personId;
}
if (!personId) {
this.logger.debug('No matches, creating a new person.');
const person = await this.personRepository.create({ ownerId: asset.ownerId });
personId = person.id;
await this.jobRepository.queue({
name: JobName.GENERATE_FACE_THUMBNAIL,
data: { assetId: asset.id, personId, ...rest },
});
}
const faceId: AssetFaceId = { assetId: asset.id, personId };
await this.faceRepository.create({ ...faceId, embedding });
await this.jobRepository.queue({ name: JobName.SEARCH_INDEX_FACE, data: faceId });
}
return true;
}
async handleGenerateFaceThumbnail(data: IFaceThumbnailJob) {
const { assetId, personId, boundingBox, imageWidth, imageHeight } = data;
const [asset] = await this.assetRepository.getByIds([assetId]);
if (!asset || !asset.resizePath) {
return false;
}
this.logger.verbose(`Cropping face for person: ${personId}`);
const outputFolder = this.storageCore.getFolderLocation(StorageFolder.THUMBNAILS, asset.ownerId);
const output = join(outputFolder, `${personId}.jpeg`);
this.storageRepository.mkdirSync(outputFolder);
const { x1, y1, x2, y2 } = boundingBox;
const halfWidth = (x2 - x1) / 2;
const halfHeight = (y2 - y1) / 2;
const middleX = Math.round(x1 + halfWidth);
const middleY = Math.round(y1 + halfHeight);
// zoom out 10%
const targetHalfSize = Math.floor(Math.max(halfWidth, halfHeight) * 1.1);
// get the longest distance from the center of the image without overflowing
const newHalfSize = Math.min(
middleX - Math.max(0, middleX - targetHalfSize),
middleY - Math.max(0, middleY - targetHalfSize),
Math.min(imageWidth - 1, middleX + targetHalfSize) - middleX,
Math.min(imageHeight - 1, middleY + targetHalfSize) - middleY,
);
const cropOptions: CropOptions = {
left: middleX - newHalfSize,
top: middleY - newHalfSize,
width: newHalfSize * 2,
height: newHalfSize * 2,
};
const croppedOutput = await this.mediaRepository.crop(asset.resizePath, cropOptions);
await this.mediaRepository.resize(croppedOutput, output, { size: FACE_THUMBNAIL_SIZE, format: 'jpeg' });
await this.personRepository.update({ id: personId, thumbnailPath: output });
return true;
}
}