mirror of
				https://github.com/KevinMidboe/leifs-image-processor.git
				synced 2025-10-29 17:50:20 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			91 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			91 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import glob
 | |
| import os
 | |
| from PIL import Image
 | |
| import concurrent.futures
 | |
| import argparse
 | |
| import fileinput
 | |
| import uuid
 | |
| import os.path
 | |
| 
 | |
| IMAGE_TYPES = ['.png', '.jpg', '.jpeg', '.JPG', '.PNG']
 | |
| OUTPUT_EXTENSION = 'jpg'
 | |
| OUTPUT_FALLBACK = os.path.dirname(__file__)
 | |
| OUTPUT_SIZES = [
 | |
|     { 'dimensions': (300, 300), 'name': 'thumb', 'crop': True },
 | |
|     { 'dimensions': (650, 650), 'name': 'sm', 'crop': False },
 | |
|     { 'dimensions': (1200, 1200), 'name': 'md', 'crop': False },
 | |
|     { 'dimensions': (2500, 2500), 'name': 'lg', 'crop': False }]
 | |
| 
 | |
| 
 | |
| 
 | |
| def processImage(file, outputPath=None):
 | |
|     if outputPath == None:
 | |
|       outputPath = args.output if 'args.output' in globals() else os.path.join(OUTPUT_FALLBACK, 'output')
 | |
|     else:
 | |
|       outputPath = os.path.join(OUTPUT_FALLBACK, outputPath)
 | |
| 
 | |
|     print('outputpath', outputPath)
 | |
|     image = Image.open(file)
 | |
|     fileID = uuid.uuid4().hex
 | |
| 
 | |
|     for size in OUTPUT_SIZES:
 | |
|         temp = image.copy()
 | |
|         
 | |
|         if size['crop']:
 | |
|             temp = temp.crop(squareDimensions(temp.size))
 | |
| 
 | |
|         temp.thumbnail(size['dimensions'], Image.LANCZOS)
 | |
|         
 | |
|         filename = generateFilename(fileID, size['name'], outputPath)
 | |
|         temp.save(filename)
 | |
|     
 | |
|     return {
 | |
|       'filename': '.'.join([fileID, OUTPUT_EXTENSION]),
 | |
|       'folder': outputPath,
 | |
|       'variations': list(map(lambda vairation: vairation['name'], OUTPUT_SIZES))
 | |
|     }
 | |
| 
 | |
| def generateFilename(fileID, modifier, outputPath):
 | |
|     filename = "{}_{}.{}".format(fileID, modifier, OUTPUT_EXTENSION)
 | |
|     return os.path.join(outputPath, filename)
 | |
| 
 | |
| def squareDimensions(dimensions):
 | |
|     (width, height) = dimensions
 | |
| 
 | |
|     if width > height:
 | |
|        delta = width - height
 | |
|        left = int(delta/2)
 | |
|        upper = 0
 | |
|        right = height + left
 | |
|        lower = height
 | |
|     else:
 | |
|        delta = height - width
 | |
|        left = 0
 | |
|        upper = int(delta/2)
 | |
|        right = width
 | |
|        lower = width + upper
 | |
| 
 | |
|     return (left, upper, right, lower)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     parser = argparse.ArgumentParser(description='Process some images')
 | |
|     parser.add_argument('files', metavar="files", type=str, help='Directory of images to process')
 | |
|     parser.add_argument('--output', metavar="DIR", help="Output directory")
 | |
| 
 | |
|     class Args:
 | |
|         pass
 | |
| 
 | |
|     args = Args()
 | |
|     args = parser.parse_args()
 | |
| 
 | |
|     # Create a pool of processes. By default, one is created for each CPU in your machine.
 | |
|     with concurrent.futures.ProcessPoolExecutor() as executor:
 | |
|         # Get a list of files to process
 | |
|         image_files = glob.glob('{}/*'.format(args.files))
 | |
| 
 | |
|         print('Processing and generating images in following sizes: {}'.format(OUTPUT_SIZES))
 | |
|         # Process the list of files, but split the work across the process pool to use all CPUs!
 | |
|         for image_file, output_file in zip(image_files, executor.map(processImage, image_files)):
 | |
|             print(f"Processed image {image_file} and save as {output_file}")
 |