Files
leifs-image-processor/processor.py

91 lines
2.8 KiB
Python

import glob
import os
from PIL import Image
import concurrent.futures
import argparse
import fileinput
import uuid
import os.path
IMAGE_TYPES = ['.png', '.jpg', '.jpeg', '.JPG', '.PNG']
OUTPUT_EXTENSION = 'jpg'
OUTPUT_FALLBACK = os.path.dirname(__file__)
OUTPUT_SIZES = [
{ 'dimensions': (300, 300), 'name': 'thumb', 'crop': True },
{ 'dimensions': (650, 650), 'name': 'sm', 'crop': False },
{ 'dimensions': (1200, 1200), 'name': 'md', 'crop': False },
{ 'dimensions': (2500, 2500), 'name': 'lg', 'crop': False }]
def processImage(file, outputPath=None):
if outputPath == None:
outputPath = args.output if 'args.output' in globals() else os.path.join(OUTPUT_FALLBACK, 'output')
else:
outputPath = os.path.join(OUTPUT_FALLBACK, outputPath)
print('outputpath', outputPath)
image = Image.open(file)
fileID = uuid.uuid4().hex
for size in OUTPUT_SIZES:
temp = image.copy()
if size['crop']:
temp = temp.crop(squareDimensions(temp.size))
temp.thumbnail(size['dimensions'], Image.LANCZOS)
filename = generateFilename(fileID, size['name'], outputPath)
temp.save(filename)
return {
'filename': '.'.join([fileID, OUTPUT_EXTENSION]),
'folder': outputPath,
'variations': list(map(lambda vairation: vairation['name'], OUTPUT_SIZES))
}
def generateFilename(fileID, modifier, outputPath):
filename = "{}_{}.{}".format(fileID, modifier, OUTPUT_EXTENSION)
return os.path.join(outputPath, filename)
def squareDimensions(dimensions):
(width, height) = dimensions
if width > height:
delta = width - height
left = int(delta/2)
upper = 0
right = height + left
lower = height
else:
delta = height - width
left = 0
upper = int(delta/2)
right = width
lower = width + upper
return (left, upper, right, lower)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process some images')
parser.add_argument('files', metavar="files", type=str, help='Directory of images to process')
parser.add_argument('--output', metavar="DIR", help="Output directory")
class Args:
pass
args = Args()
args = parser.parse_args()
# Create a pool of processes. By default, one is created for each CPU in your machine.
with concurrent.futures.ProcessPoolExecutor() as executor:
# Get a list of files to process
image_files = glob.glob('{}/*'.format(args.files))
print('Processing and generating images in following sizes: {}'.format(OUTPUT_SIZES))
# Process the list of files, but split the work across the process pool to use all CPUs!
for image_file, output_file in zip(image_files, executor.map(processImage, image_files)):
print(f"Processed image {image_file} and save as {output_file}")