mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
Add the X10 language (http://x10-lang.org/).
This commit is contained in:
147
samples/X10/KMeansDist.x10
Normal file
147
samples/X10/KMeansDist.x10
Normal file
@@ -0,0 +1,147 @@
|
||||
/*
|
||||
* This file is part of the X10 project (http://x10-lang.org).
|
||||
*
|
||||
* This file is licensed to You under the Eclipse Public License (EPL);
|
||||
* You may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
* http://www.opensource.org/licenses/eclipse-1.0.php
|
||||
*
|
||||
* (C) Copyright IBM Corporation 2006-2014.
|
||||
*/
|
||||
|
||||
import x10.array.*;
|
||||
import x10.io.Console;
|
||||
import x10.util.Random;
|
||||
|
||||
/**
|
||||
* A low performance formulation of distributed KMeans using fine-grained asyncs.
|
||||
*
|
||||
* For a highly optimized and scalable, version of this benchmark see
|
||||
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
|
||||
*/
|
||||
public class KMeansDist {
|
||||
|
||||
static val DIM=2;
|
||||
static val CLUSTERS=4;
|
||||
static val POINTS=2000;
|
||||
static val ITERATIONS=50;
|
||||
|
||||
public static def main (Rail[String]) {
|
||||
val world = Place.places();
|
||||
val local_curr_clusters =
|
||||
PlaceLocalHandle.make[Array_2[Float]](world, () => new Array_2[Float](CLUSTERS, DIM));
|
||||
val local_new_clusters =
|
||||
PlaceLocalHandle.make[Array_2[Float]](world, () => new Array_2[Float](CLUSTERS, DIM));
|
||||
val local_cluster_counts =
|
||||
PlaceLocalHandle.make[Rail[Int]](world, ()=> new Rail[Int](CLUSTERS));
|
||||
|
||||
val rnd = PlaceLocalHandle.make[Random](world, () => new Random(0));
|
||||
val points = new DistArray_Block_2[Float](POINTS, DIM, world, (Long,Long)=>rnd().nextFloat());
|
||||
|
||||
val central_clusters = new Array_2[Float](CLUSTERS, DIM, (i:Long, j:Long) => {
|
||||
at (points.place(i,j)) points(i,j)
|
||||
});
|
||||
|
||||
val old_central_clusters = new Array_2[Float](CLUSTERS, DIM);
|
||||
|
||||
val central_cluster_counts = new Rail[Int](CLUSTERS);
|
||||
|
||||
for (iter in 1..ITERATIONS) {
|
||||
|
||||
Console.OUT.println("Iteration: "+iter);
|
||||
|
||||
finish {
|
||||
// reset state
|
||||
for (d in world) at (d) async {
|
||||
for ([i,j] in central_clusters.indices()) {
|
||||
local_curr_clusters()(i, j) = central_clusters(i, j);
|
||||
local_new_clusters()(i, j) = 0f;
|
||||
}
|
||||
|
||||
local_cluster_counts().clear();
|
||||
}
|
||||
}
|
||||
|
||||
finish {
|
||||
// compute new clusters and counters
|
||||
for (p in 0..(POINTS-1)) {
|
||||
at (points.place(p,0)) async {
|
||||
var closest:Long = -1;
|
||||
var closest_dist:Float = Float.MAX_VALUE;
|
||||
for (k in 0..(CLUSTERS-1)) {
|
||||
var dist : Float = 0;
|
||||
for (d in 0..(DIM-1)) {
|
||||
val tmp = points(p,d) - local_curr_clusters()(k, d);
|
||||
dist += tmp * tmp;
|
||||
}
|
||||
if (dist < closest_dist) {
|
||||
closest_dist = dist;
|
||||
closest = k;
|
||||
}
|
||||
}
|
||||
atomic {
|
||||
for (d in 0..(DIM-1)) {
|
||||
local_new_clusters()(closest,d) += points(p,d);
|
||||
}
|
||||
local_cluster_counts()(closest)++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for ([i,j] in old_central_clusters.indices()) {
|
||||
old_central_clusters(i, j) = central_clusters(i, j);
|
||||
central_clusters(i, j) = 0f;
|
||||
}
|
||||
|
||||
central_cluster_counts.clear();
|
||||
|
||||
finish {
|
||||
val central_clusters_gr = GlobalRef(central_clusters);
|
||||
val central_cluster_counts_gr = GlobalRef(central_cluster_counts);
|
||||
val there = here;
|
||||
for (d in world) at (d) async {
|
||||
// access PlaceLocalHandles 'here' and then data will be captured by at and transfered to 'there' for accumulation
|
||||
val tmp_new_clusters = local_new_clusters();
|
||||
val tmp_cluster_counts = local_cluster_counts();
|
||||
at (there) atomic {
|
||||
for ([i,j] in tmp_new_clusters.indices()) {
|
||||
central_clusters_gr()(i,j) += tmp_new_clusters(i,j);
|
||||
}
|
||||
for (j in 0..(CLUSTERS-1)) {
|
||||
central_cluster_counts_gr()(j) += tmp_cluster_counts(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (k in 0..(CLUSTERS-1)) {
|
||||
for (d in 0..(DIM-1)) {
|
||||
central_clusters(k, d) /= central_cluster_counts(k);
|
||||
}
|
||||
}
|
||||
|
||||
// TEST FOR CONVERGENCE
|
||||
var b:Boolean = true;
|
||||
for ([i,j] in old_central_clusters.indices()) {
|
||||
if (Math.abs(old_central_clusters(i, j)-central_clusters(i, j))>0.0001) {
|
||||
b = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (b) break;
|
||||
|
||||
}
|
||||
|
||||
for (d in 0..(DIM-1)) {
|
||||
for (k in 0..(CLUSTERS-1)) {
|
||||
if (k>0)
|
||||
Console.OUT.print(" ");
|
||||
Console.OUT.print(central_clusters(k,d));
|
||||
}
|
||||
Console.OUT.println();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// vim: shiftwidth=4:tabstop=4:expandtab
|
||||
Reference in New Issue
Block a user