mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-12-08 20:38:47 +00:00
add support for Lean Theorem Prover
This commit is contained in:
75
samples/Lean/binary.lean
Normal file
75
samples/Lean/binary.lean
Normal file
@@ -0,0 +1,75 @@
|
||||
/-
|
||||
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
|
||||
Module: algebra.binary
|
||||
Authors: Leonardo de Moura, Jeremy Avigad
|
||||
|
||||
General properties of binary operations.
|
||||
-/
|
||||
|
||||
import logic.eq
|
||||
open eq.ops
|
||||
|
||||
namespace binary
|
||||
section
|
||||
variable {A : Type}
|
||||
variables (op₁ : A → A → A) (inv : A → A) (one : A)
|
||||
|
||||
local notation a * b := op₁ a b
|
||||
local notation a ⁻¹ := inv a
|
||||
local notation 1 := one
|
||||
|
||||
definition commutative := ∀a b, a * b = b * a
|
||||
definition associative := ∀a b c, (a * b) * c = a * (b * c)
|
||||
definition left_identity := ∀a, 1 * a = a
|
||||
definition right_identity := ∀a, a * 1 = a
|
||||
definition left_inverse := ∀a, a⁻¹ * a = 1
|
||||
definition right_inverse := ∀a, a * a⁻¹ = 1
|
||||
definition left_cancelative := ∀a b c, a * b = a * c → b = c
|
||||
definition right_cancelative := ∀a b c, a * b = c * b → a = c
|
||||
|
||||
definition inv_op_cancel_left := ∀a b, a⁻¹ * (a * b) = b
|
||||
definition op_inv_cancel_left := ∀a b, a * (a⁻¹ * b) = b
|
||||
definition inv_op_cancel_right := ∀a b, a * b⁻¹ * b = a
|
||||
definition op_inv_cancel_right := ∀a b, a * b * b⁻¹ = a
|
||||
|
||||
variable (op₂ : A → A → A)
|
||||
|
||||
local notation a + b := op₂ a b
|
||||
|
||||
definition left_distributive := ∀a b c, a * (b + c) = a * b + a * c
|
||||
definition right_distributive := ∀a b c, (a + b) * c = a * c + b * c
|
||||
end
|
||||
|
||||
context
|
||||
variable {A : Type}
|
||||
variable {f : A → A → A}
|
||||
variable H_comm : commutative f
|
||||
variable H_assoc : associative f
|
||||
infixl `*` := f
|
||||
theorem left_comm : ∀a b c, a*(b*c) = b*(a*c) :=
|
||||
take a b c, calc
|
||||
a*(b*c) = (a*b)*c : H_assoc
|
||||
... = (b*a)*c : H_comm
|
||||
... = b*(a*c) : H_assoc
|
||||
|
||||
theorem right_comm : ∀a b c, (a*b)*c = (a*c)*b :=
|
||||
take a b c, calc
|
||||
(a*b)*c = a*(b*c) : H_assoc
|
||||
... = a*(c*b) : H_comm
|
||||
... = (a*c)*b : H_assoc
|
||||
end
|
||||
|
||||
context
|
||||
variable {A : Type}
|
||||
variable {f : A → A → A}
|
||||
variable H_assoc : associative f
|
||||
infixl `*` := f
|
||||
theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) :=
|
||||
calc
|
||||
(a*b)*(c*d) = a*(b*(c*d)) : H_assoc
|
||||
... = a*((b*c)*d) : H_assoc
|
||||
end
|
||||
|
||||
end binary
|
||||
Reference in New Issue
Block a user