mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	add Stan samples
This commit is contained in:
		
							
								
								
									
										14
									
								
								samples/Stan/congress.stan
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										14
									
								
								samples/Stan/congress.stan
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,14 @@ | ||||
| data { | ||||
|   int<lower=0> N; | ||||
|   vector[N] incumbency_88; | ||||
|   vector[N] vote_86; | ||||
|   vector[N] vote_88; | ||||
| } | ||||
| parameters { | ||||
|   vector[3] beta; | ||||
|   real<lower=0> sigma; | ||||
| } | ||||
| model { | ||||
|     vote_88 ~ normal(beta[1] + beta[2] * vote_86 | ||||
|                      + beta[3] * incumbency_88,sigma); | ||||
| } | ||||
							
								
								
									
										31
									
								
								samples/Stan/dogs.stan
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								samples/Stan/dogs.stan
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,31 @@ | ||||
| data { | ||||
|   int<lower=0> n_dogs; | ||||
|   int<lower=0> n_trials; | ||||
|   int<lower=0,upper=1> y[n_dogs,n_trials]; | ||||
| } | ||||
| parameters { | ||||
|   vector[3] beta; | ||||
| } | ||||
| transformed parameters { | ||||
|   matrix[n_dogs,n_trials] n_avoid; | ||||
|   matrix[n_dogs,n_trials] n_shock; | ||||
|   matrix[n_dogs,n_trials] p; | ||||
|  | ||||
|   for (j in 1:n_dogs) { | ||||
|     n_avoid[j,1] <- 0; | ||||
|     n_shock[j,1] <- 0; | ||||
|     for (t in 2:n_trials) { | ||||
|       n_avoid[j,t] <- n_avoid[j,t-1] + 1 - y[j,t-1]; | ||||
|       n_shock[j,t] <- n_shock[j,t-1] + y[j,t-1]; | ||||
|     } | ||||
|     for (t in 1:n_trials) | ||||
|       p[j,t] <- beta[1] + beta[2] * n_avoid[j,t] + beta[3] * n_shock[j,t]; | ||||
|   } | ||||
| } | ||||
| model { | ||||
|   beta ~ normal(0, 100); | ||||
|   for (i in 1:n_dogs) { | ||||
|     for (j in 1:n_trials) | ||||
|       y[i,j] ~ bernoulli_logit(p[i,j]); | ||||
|   } | ||||
| } | ||||
							
								
								
									
										26
									
								
								samples/Stan/schools.stan
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										26
									
								
								samples/Stan/schools.stan
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,26 @@ | ||||
| data { | ||||
|   int<lower=0> N; | ||||
|   vector[N] y; | ||||
|   vector[N] sigma_y; | ||||
| } | ||||
| parameters { | ||||
|   vector[N] eta; | ||||
|   real mu_theta; | ||||
|   real<lower=0,upper=100> sigma_eta; | ||||
|   real xi; | ||||
| } | ||||
| transformed parameters { | ||||
|   real<lower=0> sigma_theta; | ||||
|   vector[N] theta; | ||||
|  | ||||
|   theta <- mu_theta + xi * eta; | ||||
|   sigma_theta <- fabs(xi) / sigma_eta; | ||||
| } | ||||
| model { | ||||
|   mu_theta ~ normal(0, 100); | ||||
|   sigma_eta ~ inv_gamma(1, 1); //prior distribution can be changed to uniform | ||||
|  | ||||
|   eta ~ normal(0, sigma_eta); | ||||
|   xi ~ normal(0, 5); | ||||
|   y ~ normal(theta,sigma_y); | ||||
| } | ||||
		Reference in New Issue
	
	Block a user