From 5b3152d99d809495bb0e8b919a3edf9042a98db1 Mon Sep 17 00:00:00 2001 From: john howard Date: Mon, 2 Jun 2014 15:16:00 -0700 Subject: [PATCH] Create sample.zmpl --- samples/zmpl/sample.zmpl | 355 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 355 insertions(+) create mode 100644 samples/zmpl/sample.zmpl diff --git a/samples/zmpl/sample.zmpl b/samples/zmpl/sample.zmpl new file mode 100644 index 00000000..50b65102 --- /dev/null +++ b/samples/zmpl/sample.zmpl @@ -0,0 +1,355 @@ +# Mini Manitoba Hydro LP Model +# Written for zimpl 3.0.0a +# Licensed under the MIT license +# Developed for fun using publicly available sources. +# This software comes with no guarantees and no claims that it is fit for any purpose. +# john howard, 1 Dec 2009 + +# Inflows: +# CR churchill river +# LT lower nelson tribs +# SL south indian lake +# RR red river +# WR winnipeg river +# +# Major Storages: +# LW lake winnipeg +# CL cedar lake +# +# Controlled Channels: +# MF missi falls +# NT notigi +# EC east channel +# WC west channel +# +# Generation Projects: +# GR grand rapids +# JP jenpeg +# KE kelsey +# LN lower nelson projects + +# variables and constraints are named the following way: +# Type Subtype 2LetterName Kind Modifier +# (v|k) [c] (..) (q|i|o|p|v|e|s|hk|ss|tw|mb|rc|os|ur) [ Start | End | Max | Min | Adj | Fact | Offset ] + +param kTS := 662; +set sTime := { 1 .. kTS }; + +# for 5 day averaging requires indices spaced 3 apart +set sTime5 := { in sTime with t < (kTS - 1) and t mod 3 == 0 }; + +param kCMSd2KCFSdFact := 35.315 / 1000; + +# column 8 is month +param vMONTH[ sTime ] := read "historical.csv" as "8n" skip 1; +set sMonth := { 1 .. 12 }; + +######################### +### Inital Conditions ### + +# South Indian Lake +param kSLeMin := 840.0; +param kSLeMax := 847.9; +param kSLssFactor := 283.7; +param kSLvMax := (kSLeMax - kSLeMin) * kSLssFactor; + +# Grand Rapids Pond (Cedar Lake) +param kGReMin := 830.0; +param kGReMax := 841.5; +param kGRssFactor := 330.9; +param kGRvMax := (kGReMax - kGReMin) * kGRssFactor; + +# Lake Winnipeg +param kLWeMin := 709.0; +param kLWeMax := 714.75; +param kLWssFactor := 3040.0; +param kLWvMax := (kLWeMax - kLWeMin) * kLWssFactor; + +# Kelsey Pond +param kKEeMin := 0.0; +param kKEeMax := 0.1; # as modelled +param kKEssFactor := 902.0; +param kKEvMax := (kKEeMax - kKEeMin) * kKEssFactor; + +# Storage at aggregate Lower Nelson Projects +param kLNeMin := 0.0; +param kLNeMax := 3.0; # as modelled +param kLNssFactor := 200.0; +param kLNvMax := (kLNeMax - kLNeMin) * kLNssFactor; +param kLNvStart := kLNvMax / 2; + +#################################################################### +### Churchill River through South Indian Lake and Notigi Control ### + +param kNToMin := 15; # control discharge limits (KCFS) +param kNToMax := 35; + +param kMFoMin := 0; # control discharge limits (KCFS) +param kMFoMax := 10; # as modelled +param kMFoFact := 0.001; # adjustments (calibrated for 92-94 peroid) + +var vMFo[ sTime ] >= 1 <= kMFoMax; # Missi Falls acts as spill +var vNTo[ sTime ] >= kNToMin <= kNToMax; +var vSLv[ sTime ] >= 0 <= kSLvMax; + +# 2nd column for Churchill River +param vCRq[ sTime ] := read "historical.csv" as "2n" skip 1; + +param kSLiAdj := 2.3; # adjustments (calibrated for 92-94 peroid) +param kSLvStart := kSLvMax / 2; + +# refill +subto kcSLvEnd: vSLv[ kTS ] >= kSLvStart; + +# change-in-storage + outflow == inflow +subto vcSLmb: + forall in sTime do + if ( t == 1 ) then vSLv[ 1 ] - kSLvStart + vMFo[ 1 ] + vNTo[ 1 ] + else vSLv[ t ] - vSLv[ t - 1 ] + vMFo[ t ] + vNTo[ t ] + end + == kCMSd2KCFSdFact * vCRq[ t ] + kSLiAdj; + +# Notigi within-week outflow shaping +param kNTosFact := 0; # as modelled +subto vcNTosA: forall in sTime5 do vNTo[ t - 2 ] >= vNTo[ t ] - kNTosFact; +subto vcNTosB: forall in sTime5 do vNTo[ t - 2 ] <= vNTo[ t ] + kNTosFact; +subto vcNTosC: forall in sTime5 do vNTo[ t - 1 ] >= vNTo[ t ] - kNTosFact; +subto vcNTosD: forall in sTime5 do vNTo[ t - 1 ] <= vNTo[ t ] + kNTosFact; +subto vcNTosE: forall in sTime5 do vNTo[ t + 1 ] >= vNTo[ t ] - kNTosFact; +subto vcNTosF: forall in sTime5 do vNTo[ t + 1 ] <= vNTo[ t ] + kNTosFact; +subto vcNTosG: forall in sTime5 do vNTo[ t + 2 ] >= vNTo[ t ] - kNTosFact; +subto vcNTosH: forall in sTime5 do vNTo[ t + 2 ] <= vNTo[ t ] + kNTosFact; + +########################################################### +### Sask River into Cedar Lake and through Grand Rapids ### + +param kGRoMin := 5; # plant/control discharge limits (KCFS) +param kGRoMax := 53; +param kGRsMin := 0; +param kGRsMax := 40; +param kGRpMax := 472; # generation limits (MW) + +var vGRv[ sTime ] >= 0 <= kGRvMax; +var vGRs[ sTime ] >= kGRsMin <= kGRsMax; +var vGRo[ sTime ] >= kGRoMin <= kGRoMax; +var vGRp[ sTime ] >= 0 <= kGRpMax; + +# 1st column for Sask River +param vSKRq[ sTime ] := read "historical.csv" as "1n" skip 1; + +param kGRhk := 9.2; # plant HK factors (MW/KCFS) +param kGRiAdj := -0.6; # adjustments (calibrated for 92-94 peroid) +param kGRvStart := kGRvMax / 2; + +# refill +subto kcGRvEnd: vGRv[ kTS ] >= kGRvStart; + +# change-in-storage + outflow == inflow +subto vcGRmb: + forall in sTime do + if ( t == 1 ) then vGRv[ 1 ] - kGRvStart + vGRo[ 1 ] + vGRs[ 1 ] + else vGRv[ t ] - vGRv[ t - 1 ] + vGRo[ t ] + vGRs[ t ] + end + == kCMSd2KCFSdFact * vSKRq[ t ] + kGRiAdj; + +# compute power from discharge +subto vcGRp: + forall in sTime do + vGRp[ t ] == kGRhk * vGRo[ t ]; + +# Grand Rapids within-week outflow shaping +param kGRosFact := 10; # as modelled +subto vcGRosA: forall in sTime5 do vGRo[ t - 2 ] >= vGRo[ t ] - kGRosFact; +subto vcGRosB: forall in sTime5 do vGRo[ t - 2 ] <= vGRo[ t ] + kGRosFact; +subto vcGRosC: forall in sTime5 do vGRo[ t - 1 ] >= vGRo[ t ] - kGRosFact; +subto vcGRosD: forall in sTime5 do vGRo[ t - 1 ] <= vGRo[ t ] + kGRosFact; +subto vcGRosE: forall in sTime5 do vGRo[ t + 1 ] >= vGRo[ t ] - kGRosFact; +subto vcGRosF: forall in sTime5 do vGRo[ t + 1 ] <= vGRo[ t ] + kGRosFact; +subto vcGRosG: forall in sTime5 do vGRo[ t + 2 ] >= vGRo[ t ] - kGRosFact; +subto vcGRosH: forall in sTime5 do vGRo[ t + 2 ] <= vGRo[ t ] + kGRosFact; + +############################################################################## +### Lake Winnipeg Storage as operated by JENPEG and effect of Each Channel ### + +param kJPoMin := 0; # plant/control discharge limits (KCFS) +param kJPoMax := 93; +param kJPsMin := 0; # plant/control discharge limits (KCFS) +param kJPsMax := 9e9; # as modelled +param kJPpMax := 97; # generation limits (MW) + +var vLWv[ sTime ] >= 0 <= kLWvMax; +var vECo[ sTime ] >= 0; # upper bound determined by rating curve +var vJPo[ sTime ] >= kJPoMin <= kJPoMax; +var vJPs[ sTime ] >= kJPsMin <= kJPsMax; +var vJPp[ sTime ] >= 0 <= kJPpMax; + +# 3rd column for Red River and 4th column for Winnipeg River +param vRRq[ sTime ] := read "historical.csv" as "3n" skip 1; +param vWRq[ sTime ] := read "historical.csv" as "4n" skip 1; + +param kLWiAdj := 11.7; # adjustments (calibrated for 92-94 peroid) +param kLWvStart := kLWvMax / 2; + +param kJPhk := 1; # plant HK factors (MW/KCFS) +param kJPoNovMaxFact := 0; # curves +param kJPoNovMaxOffset := 0; +param kJPtwFact := 0; # TODO +param kJPtwOffset := 0; + +# refill +subto kcLWvEnd: vLWv[ kTS ] >= kLWvStart; + +# change-in-storage + outflow == inflow +subto vcLWmb: + forall in sTime do + if ( t == 1 ) then vLWv[ 1 ] - kLWvStart + vJPo[ 1 ] + vJPs[ 1 ] + vECo[ 1 ] + else vLWv[ t ] - vLWv[ t - 1 ] + vJPo[ t ] + vJPs[ t ] + vECo[ t ] + end + == kCMSd2KCFSdFact * vRRq[ t ] + kCMSd2KCFSdFact * vWRq[ t ] + vGRo[ t ] + vGRs[ t ] + kLWiAdj; + +# compute power from discharge +subto vcJPp: + forall in sTime do + vJPp[ t ] == kJPhk * vJPo[ t ]; + +# West Channel Max Discharge +param vWCoMax[ sMonth ] := <1> 8.6440678, <2> 7.79661017, <3> 7.11864407, <4> 6.61016949, <11> 10.3389831, <12> 9.3220339 default 12.5423729; +subto vJPoA: + forall in sTime cross sMonth with m == vMONTH[ t ] do + vJPo[ t ] <= vLWv[ t ] * vWCoMax[ m ] / kLWssFactor; + +# East Channel Discharge +subto vcECo: + forall in sTime do + vECo[ t ] == vLWv[ t ] * 4.67463938 / kLWssFactor; # convert q/ft (from historical 92-94 period data) to q/v + +# Jenpeg within-week outflow shaping +param kJPosFact := 2; # as modelled +subto vcJPosA: forall in sTime5 do vJPo[ t - 2 ] >= vJPo[ t ] - kJPosFact; +subto vcJPosB: forall in sTime5 do vJPo[ t - 2 ] <= vJPo[ t ] + kJPosFact; +subto vcJPosC: forall in sTime5 do vJPo[ t - 1 ] >= vJPo[ t ] - kJPosFact; +subto vcJPosD: forall in sTime5 do vJPo[ t - 1 ] <= vJPo[ t ] + kJPosFact; +subto vcJPosE: forall in sTime5 do vJPo[ t + 1 ] >= vJPo[ t ] - kJPosFact; +subto vcJPosF: forall in sTime5 do vJPo[ t + 1 ] <= vJPo[ t ] + kJPosFact; +subto vcJPosG: forall in sTime5 do vJPo[ t + 2 ] >= vJPo[ t ] - kJPosFact; +subto vcJPosH: forall in sTime5 do vJPo[ t + 2 ] <= vJPo[ t ] + kJPosFact; + +# Jenpeg intra-week shaping +subto vcJPosI: forall in sTime5 without { kTS - 2 } do vJPo[ t + 3 ] >= vJPo[ t ] - kJPosFact * 2; +subto vcJPosJ: forall in sTime5 without { kTS - 2 } do vJPo[ t + 3 ] <= vJPo[ t ] + kJPosFact * 2; + +######################### +### Kelsey Operations ### + +param kKEoMin := 0; # plant/control discharge limits (KCFS) +param kKEoMax := 55.4; +param kKEsMin := 0; # as modelled +param kKEsMax := 9e9; # as modelled +param kKEpMax := 211; # generation limits (MW) + +var vKEv[ sTime ] >= 0 <= kKEvMax; +var vKEs[ sTime ] >= kKEsMin <= kKEsMax; +var vKEo[ sTime ] >= kKEoMin <= kKEoMax; +var vKEp[ sTime ] >= 0 <= kKEpMax; + +# 5th column for Gunisao River +param vGUNq[ sTime ] := read "historical.csv" as "5n" skip 1; + +param kKEhk := 3.8; # plant HK factors (MW/KCFS) +param kKEiFact := 1; # adjustments (calibrated for 92-94 peroid) +param kKEtwFact := 0; # curves +param kKEtwOffset := 0; +param kKEiAdj := 3; # adjustments (calibrated for 92-94 peroid) +param kKEvStart := kKEvMax / 2; + +# refill +subto kcKEvEnd: vKEv[ kTS ] >= kKEvStart; + +# change-in-storage + outflow == inflow +subto vcKEmb: + forall in sTime do + if ( t == 1 ) then vKEv[ 1 ] - kKEvStart + vKEo[ 1 ] + vKEs[ 1 ] + else vKEv[ t ] - vKEv[ t - 1 ] + vKEo[ t ] + vKEs[ t ] + end + == kKEiFact * kCMSd2KCFSdFact * vGUNq[ t ] + kKEiAdj + vECo[ t ] + vJPo[ t ] + vJPs[ t ]; + +# compute power from discharge +subto vcKEp: + forall in sTime do + vKEp[ t ] == kKEhk * vKEo[ t ]; + +######################################################################### +### Lower Nelson Operations with inflows from Upper Nelson and Notigi ### + +param kLNoMin := 0; # plant/control discharge limits (KCFS) +param kLNoMax := 165.7; +param kLNsMin := 0; # plant/control discharge limits (KCFS) +param kLNsMax := 150; # kpill limits (KCFS) +param kLNpMax := 3583; # generation limits (MW) + +var vLNv[ sTime ] >= 0 <= kLNvMax; +var vLNs[ sTime ] >= kLNsMin <= kLNsMax; +var vLNo[ sTime ] >= kLNoMin <= kLNoMax; +var vLNp[ sTime ] >= 0 <= kLNpMax; + +# 6th column for Lower Nelson Tribs +param vLTq[ sTime ] := read "historical.csv" as "6n" skip 1; + +param kLNhk := 21.7; # plant HK factors (MW/KCFS) +param kLNiAdj := 5; # adjustments (calibrated for 92-94 peroid) +param kLTiFact := 3; # adjustments (calibrated for 92-94 peroid) + +# refill +subto kcLNvEnd: vLNv[ kTS ] >= kLNvStart; + +# Routed discharges from Notigi to Lower Nelson +var vNTor[ sTime ] >= 0; +set sUIR := { 1, 2, 3, 4 }; +param kNTur[ sUIR ] := <1> 0.0, <2> 0.05, <3> 0.80, <4> 0.15; # as modelled +subto vcNTorA: + forall in sTime without { 1, 2, 3 } do + vNTor[ t ] == vNTo[ t - 0 ] * kNTur[ 1 ] + vNTo[ t - 1 ] * kNTur[ 2 ] + vNTo[ t - 2 ] * kNTur[ 3 ] + vNTo[ t - 3 ] * kNTur[ 4 ]; + +# change-in-storage + outflow == inflow +subto vcLNmb: + forall in sTime do + if ( t == 1 ) then vLNv[ 1 ] - kLNvStart + vLNo[ 1 ] + vLNs[ 1 ] + else vLNv[ t ] - vLNv[ t - 1 ] + vLNo[ t ] + vLNs[ t ] + end + == kLTiFact * kCMSd2KCFSdFact * vLTq[ t ] + kLNiAdj + vNTor[ t ] + vKEo[ t ] + vKEs[ t ]; + +# compute power from discharge +subto vcLNp: + forall in sTime do + vLNp[ t ] == kLNhk * vLNo[ t ]; + +# Lowern Nelson within-week outflow shaping +param kLNosFact := 10; # as modelled +subto vcLNosA: forall in sTime5 do vLNo[ t - 2 ] >= vLNo[ t ] - kLNosFact; +subto vcLNosB: forall in sTime5 do vLNo[ t - 2 ] <= vLNo[ t ] + kLNosFact; +subto vcLNosC: forall in sTime5 do vLNo[ t - 1 ] >= vLNo[ t ] - kLNosFact; +subto vcLNosD: forall in sTime5 do vLNo[ t - 1 ] <= vLNo[ t ] + kLNosFact; +subto vcLNosE: forall in sTime5 do vLNo[ t + 1 ] >= vLNo[ t ] - kLNosFact; +subto vcLNosF: forall in sTime5 do vLNo[ t + 1 ] <= vLNo[ t ] + kLNosFact; +subto vcLNosG: forall in sTime5 do vLNo[ t + 2 ] >= vLNo[ t ] - kLNosFact; +subto vcLNosH: forall in sTime5 do vLNo[ t + 2 ] <= vLNo[ t ] + kLNosFact; + +# Lowern Nelson inter-week outflow shaping +subto vcLNosI: forall in sTime5 without { kTS - 2 } do vLNo[ t + 3 ] >= vLNo[ t ] - kLNosFact * 2; +subto vcLNosJ: forall in sTime5 without { kTS - 2 } do vLNo[ t + 3 ] <= vLNo[ t ] + kLNosFact * 2; + +######################################################## + +# 7th column for Load +param vLOAD[ sTime ] := read "historical.csv" as "7n" skip 1; +var sLOAD >= 0; +subto vcLOAD: + forall in sTime do + vGRp[ t ] + vJPp[ t ] + vKEp[ t ] + vLNp[ t ] >= vLOAD[ t ]; + +minimize kSPILL: + sum in sTime do vMFo[ t ] + + sum in sTime do vGRs[ t ] + + sum in sTime do vJPs[ t ] + + sum in sTime do vKEs[ t ] + + sum in sTime do vLNs[ t ];