Fix Ox implementation

Remove .h from Ox, fix `lex` typo, and add samples for Ox.
This commit is contained in:
Christian Bundy
2014-05-30 15:47:42 -07:00
parent 8cde6d2e8f
commit 72a6186f08
5 changed files with 457 additions and 6 deletions

View File

@@ -0,0 +1,72 @@
/** Replicate Imai, Jain and Ching Econometrica 2009 (incomplete).
**/
#include "IJCEmet2009.h"
Kapital::Kapital(L,const N,const entrant,const exit,const KP){
StateVariable(L,N);
this.entrant = entrant;
this.exit = exit;
this.KP = KP;
actual = Kbar*vals/(N-1);
upper = log(actual~.Inf);
}
Kapital::Transit(FeasA) {
decl ent =CV(entrant), stayout = FeasA[][exit.pos], tprob, sigu = CV(KP[SigU]);
if (!v && !ent) return { <0>, ones(stayout) };
tprob = ent ? probn( (upper-CV(KP[Kbe]))/sigu )
: probn( (upper-(CV(KP[Kb0])+CV(KP[Kb2])*upper[v])) / sigu );
tprob = tprob[1:] - tprob[:N-1];
return { vals, tprob.*(1-stayout)+(1.0~zeros(1,N-1)).*stayout };
}
FirmEntry::Run() {
Initialize();
GenerateSample();
BDP->BayesianDP();
}
FirmEntry::Initialize() {
Rust::Initialize(Reachable,0);
sige = new StDeviations("sige",<0.3,0.3>,0);
entrant = new LaggedAction("entrant",d);
KP = new array[Kparams];
KP[Kbe] = new Positive("be",0.5);
KP[Kb0] = new Free("b0",0.0);
KP[Kb1] = new Determined("b1",0.0);
KP[Kb2] = new Positive("b2",0.4);
KP[SigU] = new Positive("sigu",0.4);
EndogenousStates(K = new Kapital("K",KN,entrant,d,KP),entrant);
SetDelta(new Probability("delta",0.85));
kcoef = new Positive("kcoef",0.1);
ecost = new Negative("ec",-0.4);
CreateSpaces();
}
FirmEntry::GenerateSample() {
Volume = LOUD;
EM = new ValueIteration(0);
// EM -> Solve(0,0);
data = new DataSet(0,EM);
data->Simulate(DataN,DataT,0,FALSE);
data->Print("firmentry.xls");
BDP = new ImaiJainChing("FMH",data,EM,ecost,sige,kcoef,KP,delta);
}
/** Capital stock can be positive only for incumbents.
**/
FirmEntry::Reachable() { return CV(entrant)*CV(K) ? 0 : new FirmEntry() ; }
/** The one period return.
<DD>
<pre>U = </pre>
</DD>
**/
FirmEntry::Utility() {
decl ent = CV(entrant),
u =
ent*CV(ecost)+(1-ent)*CV(kcoef)*AV(K)
| 0.0;
return u;
}

View File

@@ -0,0 +1,63 @@
/** Client and Server classes for parallel optimization using CFMPI.**/
#include "ParallelObjective.h"
/** Set up MPI Client-Server support for objective optimization.
@param obj `Objective' to parallelize
@param DONOTUSECLIENT TRUE (default): client node does no object evaluation<br>FALSE after putting servers to work Client node does one evaluation.
**/
ParallelObjective(obj,DONOTUSECLIENT) {
if (isclass(obj.p2p)) {oxwarning("P2P object already exists for "+obj.L+". Nothing changed"); return;}
obj.p2p = new P2P(DONOTUSECLIENT,new ObjClient(obj),new ObjServer(obj));
}
ObjClient::ObjClient(obj) { this.obj = obj; }
ObjClient::Execute() { }
ObjServer::ObjServer(obj) {
this.obj = obj;
basetag = P2P::STOP_TAG+1;
iml = obj.NvfuncTerms;
Nparams = obj.nstruct;
}
/** Wait on the objective client.
**/
ObjServer::Loop(nxtmsgsz) {
Nparams = nxtmsgsz; //free param length is no greater than Nparams
if (Volume>QUIET) println("ObjServer server ",ID," Nparams ",Nparams);
Server::Loop(Nparams);
Recv(ANY_TAG); //receive the ending parameter vector
obj->Encode(Buffer[:Nparams-1]); //encode it.
}
/** Do the objective evaluation.
Receive structural parameter vector and `Objective::Encode`() it.
Call `Objective::vfunc`().
@return Nparams (max. length of next expected message);
**/
ObjServer::Execute() {
obj->Decode(Buffer[:obj.nfree-1]);
Buffer = obj.cur.V[] = obj->vfunc();
if (Volume>QUIET) println("Server Executive: ",ID," vfunc[0]= ",Buffer[0]);
return obj.nstruct;
}
CstrServer::CstrServer(obj) { ObjServer(obj); }
SepServer::SepServer(obj) { ObjServer(obj); }
CstrServer::Execute() {
obj->Encode(Buffer);
obj->Lagrangian(0);
return rows(Buffer = obj.cur->Vec());
}
/** Separable objective evaluations.
**/
SepServer::Execute() {
obj.Kvar.v = imod(Tag-basetag,obj.K);
obj->Encode(Buffer,TRUE);
Buffer = obj.Kvar->PDF() * obj->vfunc();
return obj.NvfuncTerms;
}

38
samples/Ox/particle.oxo Normal file
View File

@@ -0,0 +1,38 @@
nldge::ParticleLogLikeli()
{ decl it, ip,
mss, mbas, ms, my, mx, vw, vwi, dws,
mhi, mhdet, loglikeli, mData,
vxm, vxs, mxm=<>, mxsu=<>, mxsl=<>,
time, timeall, timeran=0, timelik=0, timefun=0, timeint=0, timeres=0;
mData = GetData(m_asY);
mhdet = sqrt((2*M_PI)^m_cY * determinant(m_mMSbE.^2)); // covariance determinant
mhi = invert(m_mMSbE.^2); // invert covariance of measurement shocks
ms = m_vSss + zeros(m_cPar, m_cS); // start particles
mx = m_vXss + zeros(m_cPar, m_cX); // steady state of state and policy
loglikeli = 0; // init likelihood
//timeall=timer();
for(it = 0; it < sizer(mData); it++)
{
mss = rann(m_cPar, m_cSS) * m_mSSbE; // state noise
fg(&ms, ms, mx, mss); // transition prior as proposal
mx = m_oApprox.FastInterpolate(ms); // interpolate
fy(&my, ms, mx, zeros(m_cPar, m_cMS)); // evaluate importance weights
my -= mData[it][]; // observation error
vw = exp(-0.5 * outer(my,mhi,'d')' )/mhdet; // vw = exp(-0.5 * sumr(my*mhi .*my ) )/mhdet;
vw = vw .== .NaN .? 0 .: vw; // no policy can happen for extrem particles
dws = sumc(vw);
if(dws==0) return -.Inf; // or extremely wrong parameters
loglikeli += log(dws/m_cPar) ; // loglikelihood contribution
//timelik += (timer()-time)/100;
//time=timer();
vwi = resample(vw/dws)-1; // selection step in c++
ms = ms[vwi][]; // on normalized weights
mx = mx[vwi][];
}
return loglikeli;
}