New Verilog and Coq sample files added

New Verilog examples and Coq examples for additional training have
been added since linguist is currently failing Coq/Verilog recognition
tasks (see #201). In case it wasn't obvious, linguist will not
currently pass these new, added test cases.
This commit is contained in:
Schuyler Eldridge
2012-07-20 10:49:12 -04:00
parent 1ac6e87b75
commit 7363241531
23 changed files with 8321 additions and 0 deletions

591
samples/coq/Lists.v Executable file
View File

@@ -0,0 +1,591 @@
Require Export Basics.
Module NatList.
Import Playground1.
Inductive natprod : Type :=
pair : nat -> nat -> natprod.
Definition fst (p : natprod) : nat :=
match p with
| pair x y => x
end.
Definition snd (p : natprod) : nat :=
match p with
| pair x y => y
end.
Notation "( x , y )" := (pair x y).
Definition swap_pair (p : natprod) : natprod :=
match p with
| (x, y) => (y, x)
end.
Theorem surjective_pairing' : forall (n m : nat),
(n, m) = (fst (n, m), snd (n, m)).
Proof.
reflexivity. Qed.
Theorem surjective_pairing : forall (p : natprod),
p = (fst p, snd p).
Proof.
intros p.
destruct p as (n, m).
simpl.
reflexivity.
Qed.
Theorem snd_fst_is_swap : forall (p : natprod),
(snd p, fst p) = swap_pair p.
Proof.
intros p.
destruct p.
reflexivity.
Qed.
Theorem fst_swap_is_snd : forall (p : natprod),
fst (swap_pair p) = snd p.
Proof.
intros p.
destruct p.
reflexivity.
Qed.
Inductive natlist : Type :=
| nil : natlist
| cons : nat -> natlist -> natlist.
Definition l_123 := cons (S O) (cons (S (S O)) (cons (S (S (S O))) nil)).
Notation "x :: l" := (cons x l) (at level 60, right associativity).
Notation "[ ]" := nil.
Notation "[]" := nil.
Notation "[ x , .. , y ]" := (cons x .. (cons y nil) ..).
Fixpoint repeat (n count : nat) : natlist :=
match count with
| O => nil
| S count' => n :: (repeat n count')
end.
Fixpoint length (l:natlist) : nat :=
match l with
| nil => O
| h :: t => S (length t)
end.
Fixpoint app (l1 l2 : natlist) : natlist :=
match l1 with
| nil => l2
| h :: t => h :: (app t l2)
end.
Notation "x ++ y" := (app x y) (right associativity, at level 60).
(*
Example test_app1: [1,2,3] ++ [4,5] = [1,2,3,4,5].
Proof. reflexivity. Qed.
Example test_app2: nil ++ [4,5] = [4,5].
Proof. reflexivity. Qed.
Example test_app3: [1,2,3] ++ [] = [1,2,3].
Proof. reflexivity. Qed.
*)
Definition head (l : natlist) : nat :=
match l with
| nil => O
| h :: t => h
end.
Definition tl (l : natlist) : natlist :=
match l with
| nil => nil
| h :: t => t
end.
(*
Example test_tl: tl [1,2,3] = [2,3].
Proof. reflexivity. Qed.
*)
Fixpoint nonzeros (l:natlist) : natlist :=
match l with
| nil => nil
| O :: r => nonzeros r
| n :: r => n :: (nonzeros r)
end.
Example test_nonzeros: nonzeros [O,S O,O,S (S O), S (S (S O)),O,O] = [S O,S (S O), S (S (S O))].
Proof. reflexivity. Qed.
Fixpoint oddmembers (l:natlist) : natlist :=
match l with
| nil => nil
| n :: r => match (oddb n) with
| true => n :: (oddmembers r)
| false => oddmembers r
end
end.
Example test_oddmembers: oddmembers [O, S O, O, S (S O), S (S (S O)), O, O] = [S O, S (S (S O))].
Proof. reflexivity. Qed.
Fixpoint countoddmembers (l:natlist) : nat :=
length (oddmembers l).
Example test_countoddmembers2: countoddmembers [O, S (S O), S (S (S (S O)))] = O.
Proof. reflexivity. Qed.
Example test_countoddmembers3: countoddmembers [] = O.
Proof. reflexivity. Qed.
Fixpoint alternate (l1 l2 : natlist) : natlist :=
match l1 with
| nil => l2
| a :: r1 => match l2 with
| nil => l1
| b :: r2 => a :: b :: (alternate r1 r2)
end
end.
Example test_alternative1: alternate [S O, S (S O), S (S (S O))] [S (S (S (S O))), S (S (S (S (S O)))), S (S (S (S (S (S O)))))] =
[S O, S (S (S (S O))), S (S O), S (S (S (S (S O)))), S (S (S O)), S (S (S (S (S (S O)))))].
Proof. reflexivity. Qed.
Definition bag := natlist.
Fixpoint count (v : nat) (s: bag) : nat :=
match s with
| nil => O
| v' :: r => match (beq_nat v' v) with
| true => S (count v r)
| false => count v r
end
end.
Example test_count1: count (S O) [S O, S (S O), S (S (S O)), S O, S (S (S (S O))), S O] = S (S (S O)).
Proof. reflexivity. Qed.
Definition sum : bag -> bag -> bag := app.
Example test_sum1: count (S O) (sum [S O, S (S O), S (S (S O))] [S O, S (S (S (S O))), S O]) = S (S (S O)).
Proof. reflexivity. Qed.
Definition add (v:nat) (s:bag) : bag := v :: s.
Example test_add1: count (S O) (add (S O) [S O, S (S (S (S O))), S O]) = S (S (S O)).
Proof. reflexivity. Qed.
Definition member (v:nat) (s:bag) : bool :=
ble_nat (S O) (count v s).
Example test_member1: member (S O) [S O, S (S (S (S O))), S O] = true.
Proof. reflexivity. Qed.
Example test_member2: member (S (S O)) [S O, S (S (S (S O))), S O] = false.
Proof. reflexivity. Qed.
Fixpoint remove_one (v:nat) (s:bag) : bag :=
match s with
| nil => nil
| v' :: r => match (beq_nat v v') with
| true => r
| false => v' :: (remove_one v r)
end
end.
Example test_remove_one1: count (S (S (S (S (S O)))))
(remove_one (S (S (S (S (S O)))))
[S (S O), S O, S (S (S (S (S O)))), S (S (S (S O))), S O]) = O.
Proof. reflexivity. Qed.
Fixpoint remove_all (v:nat) (s:bag) : bag :=
match s with
| nil => nil
| v' :: r => match (beq_nat v v') with
| true => remove_all v r
| false => v' :: (remove_all v r)
end
end.
Example test_remove_all1: count (S (S (S (S (S O)))))
(remove_all (S (S (S (S (S O)))))
[S (S O), S O, S (S (S (S (S O)))), S (S (S (S O))), S O]) = O.
Proof. reflexivity. Qed.
Fixpoint subset (s1:bag) (s2:bag) : bool :=
match s1 with
| nil => true
| v :: r => andb (member v s2)
(subset r (remove_one v s2))
end.
Definition test_subset1: subset [S O, S (S O)] [S (S O), S O, S (S (S (S O))), S O] = true.
Proof. reflexivity. Qed.
Definition test_subset2: subset [S O, S (S O), S (S O)] [S (S O), S O, S (S (S (S O))), S O] = false.
Proof. reflexivity. Qed.
Theorem bag_count_add : forall n t: nat, forall s : bag,
count n s = t -> count n (add n s) = S t.
Proof.
intros n t s.
intros H.
induction s.
simpl.
rewrite <- beq_nat_refl.
rewrite <- H.
reflexivity.
rewrite <- H.
simpl.
rewrite <- beq_nat_refl.
reflexivity.
Qed.
Theorem nil_app : forall l:natlist,
[] ++ l = l.
Proof.
reflexivity. Qed.
Theorem tl_length_pred : forall l:natlist,
pred (length l) = length (tl l).
Proof.
intros l. destruct l as [| n l'].
Case "l = nil".
reflexivity.
Case "l = cons n l'".
reflexivity. Qed.
Theorem app_ass:forall l1 l2 l3 : natlist,
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
Proof.
intros l1 l2 l3. induction l1 as [| n l1'].
Case "l1 = nil".
reflexivity.
Case "l1 = cons n l1'".
simpl. rewrite -> IHl1'. reflexivity. Qed.
Theorem app_length: forall l1 l2 : natlist,
length (l1 ++ l2) = (length l1) + (length l2).
Proof.
intros l1 l2. induction l1 as [| n l1'].
Case "l1 = nil".
reflexivity.
Case "l1 = cons".
simpl. rewrite -> IHl1'. reflexivity. Qed.
Fixpoint snoc (l:natlist) (v:nat) : natlist :=
match l with
| nil => [v]
| h :: t => h :: (snoc t v)
end.
Fixpoint rev (l:natlist) : natlist :=
match l with
| nil => nil
| h :: t => snoc (rev t) h
end.
Example test_rev1: rev [S O, S (S O), S (S (S O))] = [S (S (S O)), S (S O), S O].
Proof. reflexivity. Qed.
Theorem length_snoc : forall n : nat, forall l : natlist,
length (snoc l n) = S (length l).
Proof.
intros n l. induction l as [| n' l'].
Case "l = nil".
reflexivity.
Case "l = cons n' l'".
simpl. rewrite -> IHl'. reflexivity. Qed.
Theorem rev_length : forall l : natlist,
length (rev l) = length l.
Proof.
intros l. induction l as [| n l'].
Case "l = nil".
reflexivity.
Case "l = cons".
simpl. rewrite -> length_snoc.
rewrite -> IHl'. reflexivity. Qed.
Theorem app_nil_end : forall l :natlist,
l ++ [] = l.
Proof.
intros l.
induction l.
Case "l = nil".
reflexivity.
Case "l = cons".
simpl. rewrite -> IHl. reflexivity. Qed.
Theorem rev_snoc : forall l: natlist, forall n : nat,
rev (snoc l n) = n :: (rev l).
Proof.
intros l n.
induction l.
Case "l = nil".
reflexivity.
Case "l = cons".
simpl.
rewrite -> IHl.
reflexivity.
Qed.
Theorem rev_involutive : forall l : natlist,
rev (rev l) = l.
Proof.
intros l.
induction l.
Case "l = nil".
reflexivity.
Case "l = cons".
simpl.
rewrite -> rev_snoc.
rewrite -> IHl.
reflexivity.
Qed.
Theorem app_ass4 : forall l1 l2 l3 l4 : natlist,
l1 ++ (l2 ++ (l3 ++ l4)) = ((l1 ++ l2) ++ l3) ++ l4.
Proof.
intros l1 l2 l3 l4.
rewrite -> app_ass.
rewrite -> app_ass.
reflexivity.
Qed.
Theorem snoc_append : forall (l : natlist) (n : nat),
snoc l n = l ++ [n].
Proof.
intros l n.
induction l.
Case "l = nil".
reflexivity.
Case "l = cons".
simpl.
rewrite -> IHl.
reflexivity.
Qed.
Theorem nonzeros_length : forall l1 l2 : natlist,
nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2).
Proof.
intros l1 l2.
induction l1.
Case "l1 = nil".
reflexivity.
Case "l1 = cons".
simpl.
rewrite -> IHl1.
destruct n.
reflexivity.
reflexivity.
Qed.
Theorem distr_rev : forall l1 l2 : natlist,
rev (l1 ++ l2) = (rev l2) ++ (rev l1).
Proof.
intros l1 l2.
induction l1.
Case "l1 = nil".
simpl.
rewrite -> app_nil_end.
reflexivity.
Case "l1 = cons".
simpl.
rewrite -> IHl1.
simpl.
rewrite -> snoc_append.
rewrite -> snoc_append.
rewrite -> app_ass.
reflexivity.
Qed.
Theorem count_number_nonzero : forall (s : bag),
ble_nat O (count (S O) (S O :: s)) = true.
Proof.
intros s.
induction s.
reflexivity.
reflexivity.
Qed.
Theorem ble_n_Sn : forall n,
ble_nat n (S n) = true.
Proof.
intros n. induction n as [| n'].
Case "0".
simpl. reflexivity.
Case "S n'".
simpl. rewrite -> IHn'. reflexivity. Qed.
Theorem remove_decreases_count: forall (s : bag),
ble_nat (count O (remove_one O s)) (count O s) = true.
Proof.
intros s.
induction s.
Case "s = nil".
reflexivity.
Case "s = cons".
simpl.
induction n.
SCase "n = O".
simpl. rewrite -> ble_n_Sn.
reflexivity.
SCase "n = S n'".
simpl.
rewrite -> IHs.
reflexivity.
Qed.
Inductive natoption : Type :=
| Some : nat -> natoption
| None : natoption.
Fixpoint index (n:nat) (l:natlist) : natoption :=
match l with
| nil => None
| a :: l' => if beq_nat n O then Some a else index (pred n) l'
end.
Definition option_elim (o : natoption) (d : nat) : nat :=
match o with
| Some n' => n'
| None => d
end.
Definition hd_opt (l : natlist) : natoption :=
match l with
| nil => None
| v :: r => Some v
end.
Example test_hd_opt1 : hd_opt [] = None.
Proof. reflexivity. Qed.
Example test_hd_opt2 : hd_opt [S O] = Some (S O).
Proof. reflexivity. Qed.
Theorem option_elim_hd : forall l:natlist,
head l = option_elim (hd_opt l) O.
Proof.
intros l.
destruct l.
reflexivity.
reflexivity.
Qed.
Fixpoint beq_natlist (l1 l2 : natlist) : bool :=
match l1 with
| nil => match l2 with
| nil => true
| _ => false
end
| v1 :: r1 => match l2 with
| nil => false
| v2 :: r2 => if beq_nat v1 v2 then beq_natlist r1 r2
else false
end
end.
Example test_beq_natlist1 : (beq_natlist nil nil = true).
Proof. reflexivity. Qed.
Example test_beq_natlist2 : (beq_natlist [S O, S (S O), S (S (S O))]
[S O, S (S O), S (S (S O))] = true).
Proof. reflexivity. Qed.
Theorem beq_natlist_refl : forall l:natlist,
beq_natlist l l = true.
Proof.
intros l.
induction l.
Case "l = nil".
reflexivity.
Case "l = cons".
simpl.
rewrite <- beq_nat_refl.
rewrite -> IHl.
reflexivity.
Qed.
Theorem silly1 : forall (n m o p : nat),
n = m -> [n, o] = [n, p] -> [n, o] = [m, p].
Proof.
intros n m o p eq1 eq2.
rewrite <- eq1.
apply eq2. Qed.
Theorem silly2a : forall (n m : nat),
(n,n) = (m,m) ->
(forall (q r : nat), (q, q) = (r, r) -> [q] = [r]) ->
[n] = [m].
Proof.
intros n m eq1 eq2.
apply eq2.
apply eq1.
Qed.
Theorem silly_ex :
(forall n, evenb n = true -> oddb (S n) = true) ->
evenb (S (S (S O))) = true ->
oddb (S (S (S (S O)))) = true.
Proof.
intros eq1 eq2.
apply eq1.
apply eq2.
Qed.
Theorem silly3 : forall (n : nat),
true = beq_nat n (S (S (S (S (S O))))) ->
beq_nat (S (S n)) (S (S (S (S (S (S (S O))))))) = true.
Proof.
intros n H.
symmetry.
apply H.
Qed.
Theorem rev_exercise : forall (l l' : natlist),
l = rev l' -> l' = rev l.
Proof.
intros l l' H.
rewrite -> H.
rewrite -> rev_involutive.
reflexivity.
Qed.
Theorem beq_nat_sym : forall (n m:nat), forall (b: bool),
beq_nat n m = b -> beq_nat m n = b.
Proof.
intros n.
induction n as [| n'].
Case "n = O".
intros m b eq1.
induction m.
SCase "m = 0".
apply eq1.
SCase "m = S m'".
apply eq1.
Case "n = S n'".
induction m.
SCase "m = 0".
intros b eq1.
apply eq1.
SCase "m = S m'".
intros b eq1.
apply IHn'.
apply eq1.
Qed.
Theorem app_ass' : forall l1 l2 l3 : natlist,
(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
Proof.
intros l1. induction l1 as [ | n l1'].
reflexivity.
simpl.
intros l2 l3.
rewrite -> IHl1'.
reflexivity.
Qed.
End NatList.