mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
Rename samples subdirectories
This commit is contained in:
37
samples/Julia/stockcorr.jl
Normal file
37
samples/Julia/stockcorr.jl
Normal file
@@ -0,0 +1,37 @@
|
||||
## Test case from Issue #445
|
||||
|
||||
#STOCKCORR - The original, unoptimised code that simulates two correlated assets
|
||||
function stockcorr()
|
||||
|
||||
## Correlated asset information
|
||||
CurrentPrice = [78. 102.] # Initial Prices of the two stocks
|
||||
Corr = [1. 0.4; 0.4 1.] # Correlation Matrix
|
||||
T = 500 # Number of days to simulate = 2years = 500days
|
||||
n = 100000 # Number of simulations
|
||||
dt = 1/250 # Time step (1year = 250days)
|
||||
Div=[0.01 0.01] # Dividend
|
||||
Vol=[0.2 0.3] # Volatility
|
||||
|
||||
## Market Information
|
||||
r = 0.03 # Risk-free rate
|
||||
|
||||
## Define storages
|
||||
SimulPriceA = zeros(T,n) # Simulated Price of Asset A
|
||||
SimulPriceA[1,:] = CurrentPrice[1]
|
||||
SimulPriceB = zeros(T,n) # Simulated Price of Asset B
|
||||
SimulPriceB[1,:] = CurrentPrice[2]
|
||||
|
||||
## Generating the paths of stock prices by Geometric Brownian Motion
|
||||
UpperTriangle=chol(Corr) # UpperTriangle Matrix by Cholesky decomposition
|
||||
|
||||
for i = 1:n
|
||||
Wiener = randn(T-1,2)
|
||||
CorrWiener = Wiener*UpperTriangle
|
||||
for j = 2:T
|
||||
SimulPriceA[j,i] = SimulPriceA[j-1,i]*exp((r-Div[1]-Vol[1]^2/2)*dt+Vol[1]*sqrt(dt)*CorrWiener[j-1,1])
|
||||
SimulPriceB[j,i] = SimulPriceB[j-1,i]*exp((r-Div[2]-Vol[2]^2/2)*dt+Vol[2]*sqrt(dt)*CorrWiener[j-1,2])
|
||||
end
|
||||
end
|
||||
|
||||
return (SimulPriceA, SimulPriceB)
|
||||
end
|
||||
Reference in New Issue
Block a user