mirror of
https://github.com/KevinMidboe/linguist.git
synced 2026-02-10 18:29:34 +00:00
Add Chapel parallel programming language.
Includes several example programs from source distribution.
This commit is contained in:
145
samples/Chapel/quicksort.chpl
Normal file
145
samples/Chapel/quicksort.chpl
Normal file
@@ -0,0 +1,145 @@
|
||||
//
|
||||
// An example of a parallel quick sort implementation that uses
|
||||
// "cobegin" to make each recursive call in parallel and "serial" to
|
||||
// limit the number of threads.
|
||||
//
|
||||
|
||||
use Random, Time; // for random number generation and the Timer class
|
||||
|
||||
var timer: Timer; // to time the sort
|
||||
|
||||
config var n: int = 2**15; // the size of the array to be sorted
|
||||
config var thresh: int = 1; // the recursive depth to serialize
|
||||
config var verbose: int = 0; // print out this many elements in array
|
||||
config var timing: bool = true; // set timing to false to disable timer
|
||||
|
||||
var A: [1..n] real; // array of real numbers
|
||||
|
||||
//
|
||||
// initialize array with random numbers
|
||||
//
|
||||
fillRandom(A);
|
||||
|
||||
//
|
||||
// print out front of array if verbose flag is set
|
||||
//
|
||||
if verbose > 0 then
|
||||
writeln("A[1..", verbose, "] = ", A[1..verbose]);
|
||||
|
||||
//
|
||||
// start timer, call parallel quick sort routine, stop timer
|
||||
//
|
||||
if timing then timer.start();
|
||||
pqsort(A, thresh);
|
||||
if timing then timer.stop();
|
||||
|
||||
//
|
||||
// report sort time
|
||||
//
|
||||
if timing then writeln("sorted in ", timer.elapsed(), " seconds");
|
||||
|
||||
//
|
||||
// print out front of array if verbose flag is set
|
||||
// values should now be in sorted order
|
||||
//
|
||||
if verbose > 0 then
|
||||
writeln("A[1..", verbose, "] = ", A[1..verbose]);
|
||||
|
||||
//
|
||||
// verify that array is sorted or halt
|
||||
//
|
||||
for i in 2..n do
|
||||
if A(i) < A(i-1) then
|
||||
halt("A(", i-1, ") == ", A(i-1), " > A(", i, ") == ", A(i));
|
||||
|
||||
writeln("verification success");
|
||||
|
||||
//
|
||||
// pqsort -- parallel quick sort
|
||||
//
|
||||
// arr: generic 1D array of values (real, int, ...)
|
||||
// thresh: number of recursive calls to make before serializing
|
||||
// low: lower bound of array to start sort at, defaults to whole array
|
||||
// high: upper bound of array to stop sort at, defaults to whole array
|
||||
//
|
||||
proc pqsort(arr: [],
|
||||
thresh: int,
|
||||
low: int = arr.domain.low,
|
||||
high: int = arr.domain.high) where arr.rank == 1 {
|
||||
|
||||
//
|
||||
// base case: arr[low..high] is small enough to bubble sort
|
||||
//
|
||||
if high - low < 8 {
|
||||
bubbleSort(arr, low, high);
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// determine pivot and partition arr[low..high]
|
||||
//
|
||||
const pivotVal = findPivot();
|
||||
const pivotLoc = partition(pivotVal);
|
||||
|
||||
//
|
||||
// make recursive calls to parallel quick sort each unsorted half of
|
||||
// the array; if thresh is 0 or less, start executing conquer tasks
|
||||
// serially
|
||||
//
|
||||
serial thresh <= 0 do cobegin {
|
||||
pqsort(arr, thresh-1, low, pivotLoc-1);
|
||||
pqsort(arr, thresh-1, pivotLoc+1, high);
|
||||
}
|
||||
|
||||
//
|
||||
// findPivot -- helper routine to find pivot value using simple
|
||||
// median-of-3 method, returns pivot value
|
||||
//
|
||||
proc findPivot() {
|
||||
const mid = low + (high-low+1) / 2;
|
||||
|
||||
if arr(mid) < arr(low) then arr(mid) <=> arr(low);
|
||||
if arr(high) < arr(low) then arr(high) <=> arr(low);
|
||||
if arr(high) < arr(mid) then arr(high) <=> arr(mid);
|
||||
|
||||
const pivotVal = arr(mid);
|
||||
arr(mid) = arr(high-1);
|
||||
arr(high-1) = pivotVal;
|
||||
|
||||
return pivotVal;
|
||||
}
|
||||
|
||||
//
|
||||
// partition -- helper routine to partition array such that all
|
||||
// values less than pivot are to its left and all
|
||||
// values greater than pivot are to its right, returns
|
||||
// pivot location
|
||||
//
|
||||
proc partition(pivotVal) {
|
||||
var ilo = low, ihi = high-1;
|
||||
while (ilo < ihi) {
|
||||
do { ilo += 1; } while arr(ilo) < pivotVal;
|
||||
do { ihi -= 1; } while pivotVal < arr(ihi);
|
||||
if (ilo < ihi) {
|
||||
arr(ilo) <=> arr(ihi);
|
||||
}
|
||||
}
|
||||
arr(high-1) = arr(ilo);
|
||||
arr(ilo) = pivotVal;
|
||||
return ilo;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// bubbleSort -- bubble sort for base case of quick sort
|
||||
//
|
||||
// arr: generic 1D array of values (real, int, ...)
|
||||
// low: lower bound of array to start sort at
|
||||
// high: upper bound of array to stop sort at
|
||||
//
|
||||
proc bubbleSort(arr: [], low: int, high: int) where arr.rank == 1 {
|
||||
for i in low..high do
|
||||
for j in low..high-1 do
|
||||
if arr(j) > arr(j+1) then
|
||||
arr(j) <=> arr(j+1);
|
||||
}
|
||||
Reference in New Issue
Block a user