mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
Add OpenGL shading language (GLSL)
This is the language used for writing OpenGL shaders, which are becoming much more mainstream lately.
This commit is contained in:
committed by
Lars Brinkhoff
parent
53b356deee
commit
a93e9493e2
161
samples/GLSL/SyLens.glsl
Normal file
161
samples/GLSL/SyLens.glsl
Normal file
@@ -0,0 +1,161 @@
|
||||
#version 120
|
||||
|
||||
/*
|
||||
Original Lens Distortion Algorithm from SSontech (Syntheyes)
|
||||
http://www.ssontech.com/content/lensalg.htm
|
||||
|
||||
r2 is radius squared.
|
||||
|
||||
r2 = image_aspect*image_aspect*u*u + v*v
|
||||
f = 1 + r2*(k + kcube*sqrt(r2))
|
||||
u' = f*u
|
||||
v' = f*v
|
||||
|
||||
*/
|
||||
|
||||
// Controls
|
||||
uniform float kCoeff, kCube, uShift, vShift;
|
||||
uniform float chroma_red, chroma_green, chroma_blue;
|
||||
uniform bool apply_disto;
|
||||
|
||||
// Uniform inputs
|
||||
uniform sampler2D input1;
|
||||
uniform float adsk_input1_w, adsk_input1_h, adsk_input1_aspect, adsk_input1_frameratio;
|
||||
uniform float adsk_result_w, adsk_result_h;
|
||||
|
||||
float distortion_f(float r) {
|
||||
float f = 1 + (r*r)*(kCoeff + kCube * r);
|
||||
return f;
|
||||
}
|
||||
|
||||
|
||||
float inverse_f(float r)
|
||||
{
|
||||
|
||||
// Build a lookup table on the radius, as a fixed-size table.
|
||||
// We will use a vec3 since we will store the multipled number in the Z coordinate.
|
||||
// So to recap: x will be the radius, y will be the f(x) distortion, and Z will be x * y;
|
||||
vec3[48] lut;
|
||||
|
||||
// Since out LUT is shader-global check if it's been computed alrite
|
||||
// Flame has no overflow bbox so we can safely max out at the image edge, plus some cushion
|
||||
float max_r = sqrt((adsk_input1_frameratio * adsk_input1_frameratio) + 1) + 0.1;
|
||||
float incr = max_r / 48;
|
||||
float lut_r = 0;
|
||||
float f;
|
||||
for(int i=0; i < 48; i++) {
|
||||
f = distortion_f(lut_r);
|
||||
lut[i] = vec3(lut_r, f, lut_r * f);
|
||||
lut_r += incr;
|
||||
}
|
||||
|
||||
float t;
|
||||
// Now find the nehgbouring elements
|
||||
// only iterate to 46 since we will need
|
||||
// 47 as i+1
|
||||
for(int i=0; i < 47; i++) {
|
||||
if(lut[i].z < r && lut[i+1].z > r) {
|
||||
// BAM! our value is between these two segments
|
||||
// get the T interpolant and mix
|
||||
t = (r - lut[i].z) / (lut[i+1].z - lut[i]).z;
|
||||
return mix(lut[i].y, lut[i+1].y, t );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
float aberrate(float f, float chroma)
|
||||
{
|
||||
return f + (f * chroma);
|
||||
}
|
||||
|
||||
vec3 chromaticize_and_invert(float f)
|
||||
{
|
||||
vec3 rgb_f = vec3(aberrate(f, chroma_red), aberrate(f, chroma_green), aberrate(f, chroma_blue));
|
||||
// We need to DIVIDE by F when we redistort, and x / y == x * (1 / y)
|
||||
if(apply_disto) {
|
||||
rgb_f = 1 / rgb_f;
|
||||
}
|
||||
return rgb_f;
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
vec2 px, uv;
|
||||
float f = 1;
|
||||
float r = 1;
|
||||
|
||||
px = gl_FragCoord.xy;
|
||||
|
||||
// Make sure we are still centered
|
||||
px.x -= (adsk_result_w - adsk_input1_w) / 2;
|
||||
px.y -= (adsk_result_h - adsk_input1_h) / 2;
|
||||
|
||||
// Push the destination coordinates into the [0..1] range
|
||||
uv.x = px.x / adsk_input1_w;
|
||||
uv.y = px.y / adsk_input1_h;
|
||||
|
||||
|
||||
// And to Syntheyes UV which are [1..-1] on both X and Y
|
||||
uv.x = (uv.x *2 ) - 1;
|
||||
uv.y = (uv.y *2 ) - 1;
|
||||
|
||||
// Add UV shifts
|
||||
uv.x += uShift;
|
||||
uv.y += vShift;
|
||||
|
||||
// Make the X value the aspect value, so that the X coordinates go to [-aspect..aspect]
|
||||
uv.x = uv.x * adsk_input1_frameratio;
|
||||
|
||||
// Compute the radius
|
||||
r = sqrt(uv.x*uv.x + uv.y*uv.y);
|
||||
|
||||
// If we are redistorting, account for the oversize plate in the input, assume that
|
||||
// the input aspect is the same
|
||||
if(apply_disto) {
|
||||
r = r / (float(adsk_input1_w) / float(adsk_result_w));
|
||||
}
|
||||
|
||||
// Apply or remove disto, per channel honoring chromatic aberration
|
||||
if(apply_disto) {
|
||||
f = inverse_f(r);
|
||||
} else {
|
||||
f = distortion_f(r);
|
||||
}
|
||||
|
||||
vec2[3] rgb_uvs = vec2[](uv, uv, uv);
|
||||
|
||||
// Compute distortions per component
|
||||
vec3 rgb_f = chromaticize_and_invert(f);
|
||||
|
||||
// Apply the disto coefficients, per component
|
||||
rgb_uvs[0] = rgb_uvs[0] * rgb_f.rr;
|
||||
rgb_uvs[1] = rgb_uvs[1] * rgb_f.gg;
|
||||
rgb_uvs[2] = rgb_uvs[2] * rgb_f.bb;
|
||||
|
||||
// Convert all the UVs back to the texture space, per color component
|
||||
for(int i=0; i < 3; i++) {
|
||||
uv = rgb_uvs[i];
|
||||
|
||||
// Back from [-aspect..aspect] to [-1..1]
|
||||
uv.x = uv.x / adsk_input1_frameratio;
|
||||
|
||||
// Remove UV shifts
|
||||
uv.x -= uShift;
|
||||
uv.y -= vShift;
|
||||
|
||||
// Back to OGL UV
|
||||
uv.x = (uv.x + 1) / 2;
|
||||
uv.y = (uv.y + 1) / 2;
|
||||
|
||||
rgb_uvs[i] = uv;
|
||||
}
|
||||
|
||||
// Sample the input plate, per component
|
||||
vec4 sampled;
|
||||
sampled.r = texture2D(input1, rgb_uvs[0]).r;
|
||||
sampled.g = texture2D(input1, rgb_uvs[1]).g;
|
||||
sampled.b = texture2D(input1, rgb_uvs[2]).b;
|
||||
|
||||
// and assign to the output
|
||||
gl_FragColor.rgba = vec4(sampled.rgb, 1.0 );
|
||||
}
|
||||
Reference in New Issue
Block a user