Adds samples for the clean programming language

This commit is contained in:
Joshua Moerman
2014-10-05 12:55:00 +02:00
parent 5010f32421
commit bec0052065
9 changed files with 304 additions and 0 deletions

11
samples/Clean/GenHylo.dcl Normal file
View File

@@ -0,0 +1,11 @@
definition module GenHylo
import StdGeneric, GenMap
:: Fix f = In (f .(Fix f))
Out :: !u:(Fix v:a) -> v:(a w:(Fix v:a)), [u <= w]
hylo :: ((.f .b) -> .b) (.a -> (.f .a)) -> (.a -> .b) | gMap{|*->*|} f
cata :: (u:(f .a) -> .a) -> (Fix u:f) -> .a | gMap{|*->*|} f
ana :: (.a -> u:(f .a)) -> .a -> (Fix u:f) | gMap{|*->*|} f

9
samples/Clean/GenMap.dcl Normal file
View File

@@ -0,0 +1,9 @@
definition module GenMap
import StdGeneric
generic gMap a b :: .a -> .b
derive gMap c, UNIT, PAIR, EITHER, CONS, FIELD, OBJECT, {}, {!}
derive gMap [], (,), (,,), (,,,), (,,,,), (,,,,,), (,,,,,,), (,,,,,,,)

19
samples/Clean/GenMap.icl Normal file
View File

@@ -0,0 +1,19 @@
implementation module GenMap
import StdClass, StdArray, StdInt, StdFunc
import StdGeneric, _Array
generic gMap a b :: .a -> .b
gMap{|c|} x = x
gMap{|UNIT|} x = x
gMap{|PAIR|} fx fy (PAIR x y) = PAIR (fx x) (fy y)
gMap{|EITHER|} fl fr (LEFT x) = LEFT (fl x)
gMap{|EITHER|} fl fr (RIGHT x) = RIGHT (fr x)
gMap{|CONS|} f (CONS x) = CONS (f x)
gMap{|FIELD|} f (FIELD x) = FIELD (f x)
gMap{|OBJECT|} f (OBJECT x) = OBJECT (f x)
gMap{|{}|} f xs = mapArray f xs
gMap{|{!}|} f xs = mapArray f xs
derive gMap [], (,), (,,), (,,,), (,,,,), (,,,,,), (,,,,,,), (,,,,,,,)

54
samples/Clean/fsieve.icl Normal file
View File

@@ -0,0 +1,54 @@
module fsieve
/*
The Fast Sieve of Eratosthenes.
A sequential and optimized version of the sieve of Eratosthenes.
The program calculates a list of the first NrOfPrime primes.
The result of the program is the NrOfPrimes'th prime.
Strictness annotations have been added because the strictness analyser
is not able to deduce all strictness information. Removal of these !'s
will make the program about 20% slower.
On a machine without a math coprocessor the execution of this
program might take a (very) long time. Set NrOfPrimes to a smaller value.
*/
import StdClass; // RWS
import StdInt, StdReal
NrOfPrimes :== 3000
// The sieve algorithm: generate an infinite list of all primes.
Primes::[Int]
Primes = pr where pr = [5 : Sieve 7 4 pr]
Sieve::Int !Int [Int] -> [Int]
Sieve g i prs
| IsPrime prs g (toInt (sqrt (toReal g))) = [g : Sieve` g i prs]
= Sieve (g + i) (6 - i) prs
Sieve`::Int Int [Int] -> [Int]
Sieve` g i prs = Sieve (g + i) (6 - i) prs
IsPrime::[Int] !Int Int -> Bool
IsPrime [f:r] pr bd | f>bd = True
| pr rem f==0 = False
= IsPrime r pr bd
// Select is used to get the NrOfPrimes'th prime from the infinite list.
Select::[x] Int -> x
Select [f:r] 1 = f
Select [f:r] n = Select r (n - 1)
/* The Start rule: Select the NrOfPrimes'th prime from the list of primes
generated by Primes.
*/
Start::Int
Start = Select [2, 3 : Primes] NrOfPrimes

99
samples/Clean/sem.icl Normal file
View File

@@ -0,0 +1,99 @@
module monadicSemantics
import StdEnv, StdGeneric, GenMap, GenHylo
/* For fun I implemented the recursive datastructre Exp and Stm as fixpoints
This helps us define recursive functions on them (only a little bit though)
However deriving gMap for Fix did not works out of the box
I had to remove some uniqueness typing in GenMap and GenHylo */
:: Op = Plus | Minus | Times | Rem | Equal | LessThan
:: Var :== String
:: ExpP a = Int Int | Var Var | Op Op a a
:: Exp :== Fix ExpP
:: StmP a = Assign Var Exp | If Exp a a | While Exp a | Seq a a | Cont
:: Stm :== Fix StmP
derive gMap ExpP, StmP, Fix
// Environment. Semantics is basically Env -> Env
:: Env :== Var -> Int
:: Sem :== Env -> (Int, Env)
empty = \v . 0
// return
rtn :: Int -> Sem
rtn i = \e. (i, e)
// the usual bind
(>>=) infixl 1 :: Sem (Int->Sem) -> Sem
(>>=) x y = \e. (\(i,e2).y i e2) (x e)
(>>|) infixl 1 :: Sem Sem -> Sem
(>>|) x y = x >>= \_. y
// read variable from environment
read :: Var -> Sem
read v = \e. (e v, e)
// assign value to give variable in environment
write :: Var Int -> Sem
write v i = \e. (i, \w. if (w==v) i (e w))
// semantics
class sem a :: a -> Sem
operator :: Op -> Int -> Int -> Int
operator Plus = (+)
operator Minus = (-)
operator Times = (*)
operator Rem = rem
operator Equal = \x y . if (x==y) 1 0
operator LessThan = \x y . if (x< y) 1 0
// semantics of expressions
instance sem Exp where
sem x = cata phi x where
phi (Int n) = rtn n
phi (Var v) = read v
phi (Op op x y) = x >>= \v1. y >>= return o (operator op v1)
// semantics of statments
// NOTE: while will always return 0, as it might not even be executed
instance sem Stm where
sem x = cata phi x where
phi (Assign v e) = sem e >>= write v
phi (If e s1 s2) = sem e >>= \b . if (b<>0) s1 s2
phi stm=:(While e s) = sem e >>= \b . if (b<>0) (s >>| phi stm) (phi Cont)
phi (Seq s1 s2) = s1 >>| s2 // Here the cata *finally* pays off :D
phi Cont = rtn 0
// convenience functions
int = In o Int
var = In o Var
op o = In o2 (Op o)
assign = In o2 Assign
ifte e = In o2 (If e)
while = In o2 While
seq = In o2 Seq
cont = In Cont
// test case, also testing the new operator <
pEuclides =
while (op LessThan (int 0) (var "b"))(
seq (assign "r" (op Rem (var "a") (var "b")))
(seq (assign "a" (var "b"))
( (assign "b" (var "r")))
)
)
Start = fst (program start) where
program = sem pEuclides >>| read "a"
start "a" = 9
start "b" = 12
start _ = 0
// Helper
(o2) infixr 9
(o2) f g x :== f o (g x)

14
samples/Clean/stack.dcl Normal file
View File

@@ -0,0 +1,14 @@
definition module stack
:: Stack a
newStack :: (Stack a)
push :: a (Stack a) -> Stack a
pushes :: [a] (Stack a) -> Stack a
pop :: (Stack a) -> Stack a
popn :: Int (Stack a) -> Stack a
top :: (Stack a) -> a
topn :: Int (Stack a) -> [a]
elements :: (Stack a) -> [a]
count :: (Stack a) -> Int

33
samples/Clean/stack.icl Normal file
View File

@@ -0,0 +1,33 @@
implementation module stack
import StdEnv
:: Stack a :== [a]
newStack :: (Stack a)
newStack = []
push :: a (Stack a) -> Stack a
push x s = [x:s]
pushes :: [a] (Stack a) -> Stack a
pushes x s = x ++ s
pop :: (Stack a) -> Stack a
pop [] = abort "Cannot use pop on an empty stack"
pop [e:s] = s
popn :: Int (Stack a) -> Stack a
popn n s = drop n s
top :: (Stack a) -> a
top [] = abort "Cannot use top on an empty stack"
top [e:s] = e
topn :: Int (Stack a) -> [a]
topn n s = take n s
elements :: (Stack a) -> [a]
elements s = s
count :: (Stack a) -> Int
count s = length s

16
samples/Clean/streams.dcl Normal file
View File

@@ -0,0 +1,16 @@
definition module streams
import StdEnv
instance zero [Real]
instance one [Real]
instance + [Real]
instance - [Real]
instance * [Real]
instance / [Real]
X :: [Real]
invert :: [Real] -> [Real]
pow :: [Real] Int -> [Real]
(shuffle) infixl 7 :: [Real] [Real] -> [Real]

49
samples/Clean/streams.icl Normal file
View File

@@ -0,0 +1,49 @@
implementation module streams
import StdEnv
instance zero [Real]
where
zero = [] //Infinite row of zeroes represented as empty list to ease computation
instance one [Real]
where
one = [1.0:zero]
instance + [Real]
where
(+) [s:s`] [t:t`] = [s+t:s`+t`]
(+) [s:s`] [] = [s:s`]
(+) [] [t:t`] = [t:t`]
(+) [] [] = []
instance - [Real]
where
(-) [s:s`] [t:t`] = [s-t:s`-t`]
(-) [s:s`] [] = [s:s`]
(-) [] [t:t`] = [-1.0] * [t:t`]
(-) [] [] = []
instance * [Real]
where
(*) [s:s`] [t:t`] = [s*t:s`*[t:t`]+[s]*t`]
(*) _ _ = []
instance / [Real]
where
(/) s t = s * (invert t)
X :: [Real]
X = [0.0:one]
invert :: [Real] -> [Real]
invert [s:s`] = [1.0/s:(invert [s:s`]) * s` * [-1.0/s]]
pow :: [Real] Int -> [Real]
pow s 0 = one
pow s n = s * pow s (n-1)
(shuffle) infixl 7 :: [Real] [Real] -> [Real]
(shuffle) [s:s`] [t:t`] = [s*t:s` shuffle [t:t`] + [s:s`] shuffle t`]
(shuffle) _ _ = []