mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	Added matlab code samples.
All of these code samples currently are mis-identified in my repositories. I'm donating them to the cause.
This commit is contained in:
		
							
								
								
									
										12
									
								
								samples/Matlab/Check_plot.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								samples/Matlab/Check_plot.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,12 @@ | ||||
| x_0=linspace(0,100,101); | ||||
| vx_0=linspace(0,100,101); | ||||
| z=zeros(101,101); | ||||
| for i=1:101 | ||||
|     for j=1:101 | ||||
|         z(i,j)=x_0(i)*vx_0(j); | ||||
|     end | ||||
| end | ||||
|  | ||||
| figure | ||||
| pcolor(x_0,vx_0,z) | ||||
| shading flat | ||||
							
								
								
									
										149
									
								
								samples/Matlab/FTLEH.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								samples/Matlab/FTLEH.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,149 @@ | ||||
| tic | ||||
| clear all | ||||
| %% Choice of the mass parameter | ||||
| mu=0.1; | ||||
|  | ||||
| %% Computation of Lagrangian Points | ||||
| [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu); | ||||
|  | ||||
| %% Computation of initial total energy | ||||
| E_L1=-Omega(xl1,yl1,mu); | ||||
| E=E_L1+0.03715; % Offset as in figure 2.2 "LCS in the ER3BP" | ||||
|  | ||||
| %% Initial conditions range | ||||
| x_0_min=-0.8; | ||||
| x_0_max=-0.2; | ||||
|  | ||||
| vx_0_min=-2; | ||||
| vx_0_max=2; | ||||
|  | ||||
| y_0=0; | ||||
|  | ||||
| % Elements for grid definition | ||||
| n=200; | ||||
|  | ||||
| % Dimensionless integrating time | ||||
| T=2; | ||||
|  | ||||
| % Grid initializing | ||||
| [x_0,vx_0]=ndgrid(linspace(x_0_min,x_0_max,n),linspace(vx_0_min,vx_0_max,n)); | ||||
| vy_0=sqrt(2*E+2*Omega(x_0,y_0,mu)-vx_0.^2); | ||||
|  | ||||
| % Kinetic energy computation | ||||
| E_cin=E+Omega(x_0,y_0,mu); | ||||
|  | ||||
| %% Transforming into Hamiltonian variables | ||||
| px_0=vx_0-y_0; | ||||
| py_0=vy_0+x_0; | ||||
|  | ||||
| % Inizializing | ||||
| x_T=zeros(n,n); | ||||
| y_T=zeros(n,n); | ||||
| px_T=zeros(n,n); | ||||
| py_T=zeros(n,n); | ||||
| filtro=ones(n,n); | ||||
| E_T=zeros(n,n); | ||||
| a=zeros(n,n); % matrix of numbers of integration steps for each integration | ||||
| np=0; % number of integrated points | ||||
|  | ||||
| fprintf(' con n = %i\n',n) | ||||
|  | ||||
| %% Energy tolerance setting | ||||
| energy_tol=inf; | ||||
|  | ||||
| %% Computation of the Jacobian of the system | ||||
| options=odeset('Jacobian',@cr3bp_jac); | ||||
|  | ||||
| %% Parallel integration of equations of motion | ||||
| parfor i=1:n | ||||
| 	for j=1:n | ||||
| 		if E_cin(i,j)>0 && isreal(vy_0(i,j)) % Check for real velocity and positive Kinetic energy | ||||
| 			[t,Y]=ode45(@fH,[0 T],[x_0(i,j); y_0; px_0(i,j); py_0(i,j)],options); | ||||
|             % Try to obtain the name of the solver for a following use | ||||
| %  			sol=ode45(@f,[0 T],[x_0(i,j); y_0; vx_0(i,j); vy_0(i,j)],options); | ||||
| % 			Y=sol.y'; | ||||
| % 			solver=sol.solver; | ||||
| 			a(i,j)=length(Y); | ||||
|             %Saving solutions | ||||
| 			x_T(i,j)=Y(a(i,j),1);  | ||||
| 			px_T(i,j)=Y(a(i,j),3); | ||||
| 			y_T(i,j)=Y(a(i,j),2); | ||||
| 			py_T(i,j)=Y(a(i,j),4); | ||||
| 			%Computation of final total energy and difference with | ||||
| 			%initial one | ||||
| 			E_T(i,j)=EnergyH(x_T(i,j),y_T(i,j),px_T(i,j),py_T(i,j),mu); | ||||
| 			delta_E=abs(E_T(i,j)-E); | ||||
| 			if  delta_E > energy_tol; %Check of total energy conservation | ||||
| 				fprintf(' Ouch! Wrong Integration: i,j=(%i,%i)\n E_T=%.2f \n delta_E=%.2f\n\n',i,j,E_T(i,j),delta_E); | ||||
| 				filtro(i,j)=2; %Saving position of the point | ||||
|             end | ||||
| 			np=np+1; | ||||
|         else | ||||
| 			filtro(i,j)=0; % 1=interesting point; 0=non-sense point; 2= bad integration point		 | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
|  | ||||
| t_integrazione=toc; | ||||
| fprintf('  n = %i\n',n) | ||||
| fprintf(' energy_tol = %.2f\n',energy_tol) | ||||
| fprintf('total	\t%i\n',n^2) | ||||
| fprintf('nunber	\t%i\n',np) | ||||
| fprintf('time to integrate	\t%.2f s\n',t_integr) | ||||
|  | ||||
| %% Back to Lagrangian variables | ||||
| vx_T=px_T+y_T; | ||||
| vy_T=py_T-x_T; | ||||
| %% FTLE Computation | ||||
| fprintf('adesso calcolo ftle\n') | ||||
| tic | ||||
| dphi=zeros(2,2); | ||||
| ftle=zeros(n-2,n-2); | ||||
|  | ||||
| for i=2:n-1 | ||||
| 	for j=2:n-1 | ||||
| 		if filtro(i,j) && ... % Check for interesting point | ||||
| 				filtro(i,j-1) && ... | ||||
| 				filtro(i,j+1) && ... | ||||
| 				filtro(i-1,j) && ... | ||||
| 				filtro(i+1,j) | ||||
| 			 | ||||
| 			dphi(1,1)=(x_T(i-1,j)-x_T(i+1,j))/(x_0(i-1,j)-x_0(i+1,j)); | ||||
| 			 | ||||
| 			dphi(1,2)=(x_T(i,j-1)-x_T(i,j+1))/(vx_0(i,j-1)-vx_0(i,j+1)); | ||||
| 			 | ||||
| 			dphi(2,1)=(vx_T(i-1,j)-vx_T(i+1,j))/(x_0(i-1,j)-x_0(i+1,j)); | ||||
| 			 | ||||
| 			dphi(2,2)=(vx_T(i,j-1)-vx_T(i,j+1))/(vx_0(i,j-1)-vx_0(i,j+1)); | ||||
|              | ||||
| 			if filtro(i,j)==2 % Manual setting to visualize bad integrated points  | ||||
| 				ftle(i-1,j-1)=-Inf; | ||||
| 			else | ||||
| 				ftle(i-1,j-1)=1/(2*T)*log(max(abs(eig(dphi'*dphi)))); | ||||
| 			end | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
|  | ||||
| %% Plotting results | ||||
| % figure | ||||
| % plot(t,Y) | ||||
| % figure | ||||
| % plot(Y(:,1),Y(:,2)) | ||||
| % figure | ||||
|  | ||||
| xx=linspace(x_0_min,x_0_max,n); | ||||
| vvx=linspace(vx_0_min,vx_0_max,n); | ||||
| [x,vx]=ndgrid(xx(2:n-1),vvx(2:n-1)); | ||||
| figure | ||||
| pcolor(x,vx,ftle) | ||||
| shading flat | ||||
|  | ||||
| t_ftle=toc; | ||||
| fprintf('tempo per integrare      \t%.2f s\n',t_integrazione) | ||||
| fprintf('tempo per calcolare ftle \t%.2f s\n',t_ftle) | ||||
|  | ||||
| % save(['var_' num2str(n) '_' num2str(clock(4)]) | ||||
|  | ||||
| nome=['var_xvx_', 'ode00', '_n',num2str(n),'_e',num2str(energy_tol),'_H']; | ||||
| save(nome) | ||||
							
								
								
									
										178
									
								
								samples/Matlab/FTLE_reg.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										178
									
								
								samples/Matlab/FTLE_reg.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,178 @@ | ||||
| tic | ||||
| clear all | ||||
| %% Elements for grid definition | ||||
| n=100; | ||||
|  | ||||
| %% Dimensionless integrating time | ||||
| T=2; | ||||
|  | ||||
| %% Choice of the mass parameter | ||||
| mu=0.1; | ||||
|  | ||||
| %% Computation of Lagrangian Points | ||||
| [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu); | ||||
|  | ||||
| %% Computation of initial total energy | ||||
| E_L1=-Omega(xl1,yl1,mu); | ||||
| C_L1=-2*E_L1; % C_L1 = 3.6869532299 from Szebehely | ||||
| E=E_L1+0.03715; % Offset as in figure 2.2 "LCS in the ER3BP" | ||||
|  | ||||
| %% Initial conditions range | ||||
| x_0_min=-0.8; | ||||
| x_0_max=-0.2; | ||||
|  | ||||
| vx_0_min=-2; | ||||
| vx_0_max=2; | ||||
|  | ||||
| y_0=0; | ||||
|  | ||||
| % Grid initializing | ||||
| [x_0,vx_0]=ndgrid(linspace(x_0_min,x_0_max,n),linspace(vx_0_min,vx_0_max,n)); | ||||
| vy_0=sqrt(2*E+2.*Omega(x_0,y_0,mu)-vx_0.^2); | ||||
| % Kinetic energy computation | ||||
| E_cin=E+Omega(x_0,y_0,mu); | ||||
|  | ||||
| % Inizializing | ||||
| x_T=zeros(n,n); | ||||
| y_T=zeros(n,n); | ||||
| vx_T=zeros(n,n); | ||||
| vy_T=zeros(n,n); | ||||
| filtro=ones(n,n); | ||||
| E_T=zeros(n,n); | ||||
| delta_E=zeros(n,n); | ||||
| a=zeros(n,n); % matrix of numbers of integration steps for each integration | ||||
| np=0; % number of integrated points | ||||
|  | ||||
| fprintf('integro con n = %i\n',n) | ||||
|  | ||||
| %% Energy tolerance setting | ||||
| energy_tol=0.1; | ||||
|  | ||||
| %% Setting the options for the integrator | ||||
| RelTol=1e-12;AbsTol=1e-12; % From Short | ||||
| % RelTol=1e-13;AbsTol=1e-22; % From JD James Mireles | ||||
| % RelTol=3e-14;AbsTol=1e-16; % HIGH accuracy from Ross | ||||
| options=odeset('AbsTol',AbsTol,'RelTol',RelTol); | ||||
| %% Parallel integration of equations of motion | ||||
| h=waitbar(0,'','Name','Integration in progress, please wait!'); | ||||
| S=zeros(n,n); | ||||
| r1=zeros(n,n); | ||||
| r2=zeros(n,n); | ||||
| g=zeros(n,n); | ||||
| for i=1:n | ||||
|     waitbar(i/n,h,sprintf('Computing i=%i',i)); | ||||
| 	parfor j=1:n | ||||
|         r1(i,j)=sqrt((x_0(i,j)+mu).^2+y_0.^2); | ||||
| 		r2(i,j)=sqrt((x_0(i,j)-1+mu).^2+y_0.^2); | ||||
| 		g(i,j)=((1-mu)./(r1(i,j).^3)+mu./(r2(i,j).^3)); | ||||
| 		if E_cin(i,j)>0 && isreal(vy_0(i,j)) % Check for real velocity and positive Kinetic energy | ||||
|             S(i,j)=g(i,j)*T; | ||||
|             [s,Y]=ode45(@f_reg,[0 S(i,j)],[x_0(i,j); y_0; vx_0(i,j); vy_0(i,j)],options,mu); | ||||
| 			a(i,j)=length(Y); | ||||
| %             if s(a(i,j)) < 2 | ||||
| %                 filtro(i,j)=3; | ||||
| %             end | ||||
| 			% Saving solutions | ||||
| 			x_T(i,j)=Y(a(i,j),1); | ||||
| 			vx_T(i,j)=Y(a(i,j),3); | ||||
| 			y_T(i,j)=Y(a(i,j),2); | ||||
| 			vy_T(i,j)=Y(a(i,j),4); | ||||
|  | ||||
| 			% Computation of final total energy and difference with | ||||
| 			% initial one | ||||
| 			E_T(i,j)=Energy(x_T(i,j),y_T(i,j),vx_T(i,j),vy_T(i,j),mu); | ||||
|             delta_E(i,j)=abs(E_T(i,j)-E); | ||||
|             if  delta_E(i,j) > energy_tol; % Check of total energy conservation | ||||
|                 fprintf(' Ouch! Wrong Integration: i,j=(%i,%i)\n E_T=%.2f \n delta_E=%f\n\n',i,j,E_T(i,j),delta_E(i,j)); | ||||
|                 filtro(i,j)=2; % Saving position of the point | ||||
|             end | ||||
|             np=np+1; | ||||
|         else | ||||
| 			filtro(i,j)=0; % 1 = interesting point; 0 = non-sense point; 2 = bad integration point		 | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
| close(h); | ||||
| t_integrazione=toc; | ||||
| %% | ||||
| filtro_1=filtro; | ||||
| for i=2:n-1 | ||||
|     for j=2:n-1 | ||||
|         if filtro(i,j)==2 || filtro (i,j)==3 | ||||
|             filtro_1(i,j)=2; | ||||
| 			filtro_1(i+1,j)=2; | ||||
|             filtro_1(i-1,j)=2; | ||||
|             filtro_1(i,j+1)=2; | ||||
|             filtro_1(i,j-1)=2; | ||||
|         end | ||||
|     end | ||||
| end | ||||
|  | ||||
| fprintf('integato con n = %i\n',n) | ||||
| fprintf('integato con energy_tol = %f\n',energy_tol) | ||||
| fprintf('numero punti totali	\t%i\n',n^2) | ||||
| fprintf('numero punti integrati	\t%i\n',np) | ||||
| fprintf('tempo per integrare	\t%.2f s\n',t_integrazione) | ||||
|  | ||||
| %% FTLE Computation | ||||
| fprintf('adesso calcolo ftle\n') | ||||
| tic | ||||
| dphi=zeros(2,2); | ||||
| ftle=zeros(n-2,n-2); | ||||
| ftle_norm=zeros(n-2,n-2); | ||||
|  | ||||
| ds_x=(x_0_max-x_0_min)/(n-1); | ||||
| ds_vx=(vx_0_max-vx_0_min)/(n-1); | ||||
|  | ||||
| for i=2:n-1 | ||||
| 	for j=2:n-1 | ||||
| 		if filtro_1(i,j) && ... % Check for interesting point | ||||
| 				filtro_1(i,j-1) && ... | ||||
| 				filtro_1(i,j+1) && ... | ||||
| 				filtro_1(i-1,j) && ... | ||||
| 				filtro_1(i+1,j) | ||||
| 			% La direzione dello spostamento la decide il denominatore | ||||
| 			 | ||||
| 			% TODO spiegarsi teoricamente come mai la matrice pu<EFBFBD> | ||||
| 			% essere ridotta a 2x2 | ||||
| 			dphi(1,1)=(x_T(i+1,j)-x_T(i-1,j))/(2*ds_x); %(x_0(i-1,j)-x_0(i+1,j)); | ||||
| 			 | ||||
| 			dphi(1,2)=(x_T(i,j+1)-x_T(i,j-1))/(2*ds_vx); %(vx_0(i,j-1)-vx_0(i,j+1)); | ||||
| 	 | ||||
| 			dphi(2,1)=(vx_T(i+1,j)-vx_T(i-1,j))/(2*ds_x); %(x_0(i-1,j)-x_0(i+1,j)); | ||||
|              | ||||
| 			dphi(2,2)=(vx_T(i,j+1)-vx_T(i,j-1))/(2*ds_vx); %(vx_0(i,j-1)-vx_0(i,j+1)); | ||||
|      | ||||
| 			if filtro_1(i,j)==2 % Manual setting to visualize bad integrated points  | ||||
| 				ftle(i-1,j-1)=0; | ||||
| 			else | ||||
| 				ftle(i-1,j-1)=(1/abs(T))*log(max(sqrt(abs(eig(dphi*dphi'))))); | ||||
|                 ftle_norm(i-1,j-1)=(1/abs(T))*log(norm(dphi)); | ||||
| 			end | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
|  | ||||
| %% Plotting results | ||||
| % figure | ||||
| % plot(t,Y) | ||||
| % figure | ||||
| % plot(Y(:,1),Y(:,2)) | ||||
| % figure | ||||
|  | ||||
| xx=linspace(x_0_min,x_0_max,n); | ||||
| vvx=linspace(vx_0_min,vx_0_max,n); | ||||
| [x,vx]=ndgrid(xx(2:n-1),vvx(2:n-1)); | ||||
| figure | ||||
| pcolor(x,vx,ftle) | ||||
| shading flat | ||||
|  | ||||
| t_ftle=toc; | ||||
| fprintf('tempo per integrare      \t%.2f s\n',t_integrazione) | ||||
| fprintf('tempo per calcolare ftle \t%.2f s\n',t_ftle) | ||||
|  | ||||
| % ora=fstringf %TODO | ||||
| % save(['var_' num2str(n) '_' num2str(clock(4)]) | ||||
|  | ||||
| nome=['var_xvx_', 'ode00', '_n',num2str(n)]; | ||||
| save(nome) | ||||
							
								
								
									
										40
									
								
								samples/Matlab/Integrate1.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								samples/Matlab/Integrate1.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,40 @@ | ||||
| function [ x_T, y_T, vx_T, e_T, filter ] = Integrate_FILE( x_0, y_0, vx_0, e_0, T, N, mu, options) | ||||
| %Integrate | ||||
| %   This function performs Runge-Kutta-Fehlberg integration for given | ||||
| %   initial conditions to compute FILE | ||||
| nx=length(x_0); | ||||
| ny=length(y_0); | ||||
| nvx=length(vx_0); | ||||
| ne=length(e_0); | ||||
| vy_0=zeros(nx,ny,nvx,ne); | ||||
| x_T=zeros(nx,ny,nvx,ne); | ||||
| y_T=zeros(nx,ny,nvx,ne); | ||||
| vx_T=zeros(nx,ny,nvx,ne); | ||||
| vy_T=zeros(nx,ny,nvx,ne); | ||||
| e_T=zeros(nx,ny,nvx,ne); | ||||
| %% Look for phisically meaningful points | ||||
| filter=zeros(nx,ny,nvx,ne);  %0=meaningless point 1=meaningful point | ||||
|  | ||||
| %% Integrate only meaningful points | ||||
| h=waitbar(0,'','Name','Integration in progress, please wait!'); | ||||
| for i=1:nx | ||||
| 	waitbar(i/nx,h,sprintf('Computing i=%i',i)); | ||||
| 	for j=1:ny | ||||
| 		parfor k=1:nvx | ||||
| 			for l=1:ne | ||||
| 				vy_0(i,j,k,l)=sqrt(2*Potential(x_0(i),y_0(j),mu)+2*e_0(l)-vx_0(k)^2); | ||||
| 				if isreal(vy_0(i,j,k,l)) | ||||
| 					filter(i,j,k,l)=1; | ||||
| 					ci=[x_0(i), y_0(j), vx_0(k), vy_0(i,j,k,l)]; | ||||
| 					[t,Y,te,ye,ie]=ode45(@f,[0 T], ci, options, mu); | ||||
| 					x_T(i,j,k,l)=ye(N+1,1); | ||||
| 					y_T(i,j,k,l)=ye(N+1,2); | ||||
| 					vx_T(i,j,k,l)=ye(N+1,3); | ||||
| 					vy_T(i,j,k,l)=ye(N+1,4); | ||||
| 					e_T(i,j,k,l)=0.5*(vx_T(i,j,k,l)^2+vy_T(i,j,k,l)^2)-Potential(x_T(i,j,k,l),y_T(i,j,k,l),mu); | ||||
| 				end | ||||
| 			end | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
| close(h); | ||||
							
								
								
									
										60
									
								
								samples/Matlab/Integrate2.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								samples/Matlab/Integrate2.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,60 @@ | ||||
| function [ x_T, y_T, vx_T, e_T, filter, delta_e ] = Integrate_FTLE_Gawlick_ell( x_0, y_0, vx_0, e_0, T, mu, ecc, nu, options) | ||||
| %Integrate | ||||
| %   This function performs Runge-Kutta-Fehlberg integration for given | ||||
| %   initial conditions to compute FTLE to obtain the image in the Gawlick's | ||||
| %   article "Lagrangian Coherent Structures in the Elliptic Restricted | ||||
| %   Three-Body Problem". | ||||
| nx=length(x_0); | ||||
| ny=length(y_0); | ||||
| nvx=length(vx_0); | ||||
| ne=length(e_0); | ||||
| vy_0=zeros(nx,ny,nvx,ne); | ||||
| x_T=zeros(nx,ny,nvx,ne); | ||||
| y_T=zeros(nx,ny,nvx,ne); | ||||
| vx_T=zeros(nx,ny,nvx,ne); | ||||
| vy_T=zeros(nx,ny,nvx,ne); | ||||
| e_T=zeros(nx,ny,nvx,ne); | ||||
| delta_e=zeros(nx,ny,nvx,ne); | ||||
| %% Look for phisically meaningful points | ||||
| filter=zeros(nx,ny,nvx,ne);  %0=meaningless point 1=meaningful point | ||||
| useful=ones(nx,ny,nvx,ne); | ||||
| %% Integrate only useful points | ||||
| useful(:,1,:,1)=0; | ||||
| useful(:,1,:,3)=0; | ||||
| useful(:,3,:,1)=0; | ||||
| useful(:,3,:,3)=0; | ||||
|  | ||||
| %% Integrate only meaningful points | ||||
| h=waitbar(0,'','Name','Integration in progress, please wait!'); | ||||
| for i=1:nx | ||||
| 	waitbar(i/nx,h,sprintf('Computing i=%i',i)); | ||||
| 	for j=1:ny | ||||
| 		parfor k=1:nvx | ||||
| 			for l=1:ne | ||||
| 				if useful(i,j,k,l) | ||||
| 					vy_0(i,j,k,l)=-sqrt(2*(Omega(x_0(i),y_0(j),mu)/(1+ecc*cos(nu)))+2*e_0(l)-vx_0(k)^2); | ||||
| 					if isreal(vy_0(i,j,k,l)) | ||||
| 						filter(i,j,k,l)=1; | ||||
| 						 | ||||
| 						ci=[x_0(i), y_0(j), vx_0(k), vy_0(i,j,k,l)]; | ||||
| 						[t,Y]=ode45(@f_ell,[0 T], ci, options, mu, ecc); | ||||
| 						 | ||||
| 						if abs(t(end)) < abs(T) % Consider also negative time | ||||
| 							filter(i,j,k,l)=3 | ||||
| 						end | ||||
| 						 | ||||
| 						x_T(i,j,k,l)=Y(end,1); | ||||
| 						y_T(i,j,k,l)=Y(end,2); | ||||
| 						vx_T(i,j,k,l)=Y(end,3); | ||||
| 						vy_T(i,j,k,l)=Y(end,4); | ||||
| 						e_T(i,j,k,l)=0.5*(vx_T(i,j,k,l)^2+vy_T(i,j,k,l)^2)-Omega(x_T(i,j,k,l),y_T(i,j,k,l),mu); | ||||
| 						 | ||||
| 						% Compute the goodness of the integration | ||||
| 						delta_e(i,j,k,l)=abs(e_T(i,j,k,l)-e_0(l)); | ||||
| 					end | ||||
| 				end | ||||
| 			end | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
| close(h); | ||||
							
								
								
									
										28
									
								
								samples/Matlab/Lagr.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										28
									
								
								samples/Matlab/Lagr.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,28 @@ | ||||
| function [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu) | ||||
| % [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu) | ||||
| % Lagr This function computes the coordinates of the Lagrangian points, | ||||
| % given the mass parameter | ||||
| yl1=0; | ||||
| yl2=0; | ||||
| yl3=0; | ||||
| yl4=sqrt(3)/2; | ||||
| yl5=-sqrt(3)/2; | ||||
| c1=roots([1 mu-3 3-2*mu -mu 2*mu -mu]); | ||||
| c2=roots([1 3-mu 3-2*mu -mu -2*mu -mu]); | ||||
| c3=roots([1 2+mu 1+2*mu mu-1 2*mu-2 mu-1]); | ||||
| xl1=0; | ||||
| xl2=0; | ||||
| for i=1:5 | ||||
|     if isreal(c1(i)) | ||||
|         xl1=1-mu-c1(i); | ||||
|     end | ||||
|     if isreal(c2(i)) | ||||
|         xl2=1-mu+c2(i); | ||||
|     end | ||||
|     if isreal(c3(i)) | ||||
|         xl3=-mu-c3(i); | ||||
|     end | ||||
| end | ||||
| xl4=0.5-mu; | ||||
| xl5=xl4; | ||||
| end | ||||
							
								
								
									
										16
									
								
								samples/Matlab/Lagrangian_points.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								samples/Matlab/Lagrangian_points.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,16 @@ | ||||
| % Plot dei Lagrangian points | ||||
| n=5; | ||||
| mu=linspace(0,0.5,n); | ||||
| for i=1:n | ||||
|     [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu(i)); | ||||
|     figure (1) | ||||
|     hold all | ||||
|     plot(xl1, yl1, 's') | ||||
|     plot(xl2, yl2, 's') | ||||
|     plot(xl3, yl3, 's') | ||||
|     plot(xl4, yl4, 's') | ||||
|     plot(xl5, yl5, 's') | ||||
|     plot(-mu,0,'o') | ||||
|     plot(1-mu,0, 'o') | ||||
|     plot([-mu(i) xl4],[0 yl4]) | ||||
| end | ||||
							
								
								
									
										18
									
								
								samples/Matlab/Poincare.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								samples/Matlab/Poincare.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,18 @@ | ||||
| clear | ||||
| %% Initial Conditions | ||||
| mu=0.012277471; | ||||
| T=10; | ||||
| N=5; | ||||
| C=3.17; | ||||
| x_0=0.30910452642073; | ||||
| y_0=0.07738174525518; | ||||
| vx_0=-0.72560796964234; | ||||
| vy_0=sqrt(-C-vx_0^2+2*Potential(x_0,y_0,mu)); | ||||
| k=0; | ||||
| %% Integration | ||||
| options=odeset('AbsTol',1e-22,'RelTol',1e-13,'Events',@cross_y); | ||||
| [t,y,te,ye,ie]=ode113(@f,[0 T],[x_0; y_0; vx_0; vy_0],options,mu); | ||||
|  | ||||
| figure | ||||
| %plot(ye(:,1),ye(:,3),'rs') | ||||
| plot(ye(:,1),0,'rs') | ||||
							
								
								
									
										24
									
								
								samples/Matlab/RK4.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								samples/Matlab/RK4.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,24 @@ | ||||
| function x = RK4( fun, tspan, ci, mu ) | ||||
| %RK4 4th-order Runge Kutta integrator | ||||
| %   Detailed explanation goes here | ||||
| h=1e-5; | ||||
| t=tspan(1); | ||||
| T=tspan(length(tspan)); | ||||
| dim=length(ci); | ||||
| %x=zeros(l,dim); | ||||
| x(:,1)=ci; | ||||
| i=1; | ||||
| while t<T | ||||
| 	k1=fun(t,x(:,i),mu); | ||||
| 	k2=fun(t+h/2,x(:,i)+k1*h/2,mu); | ||||
| 	k3=fun(t+h/2,x(:,i)+k2*h/2,mu); | ||||
| 	k4=fun(t+h,x(:,i)+h*k3,mu); | ||||
| 	x(:,i+1)=x(:,i)+(h/6*(k1+2*k2+2*k3+k4)); | ||||
| 	t=t+h; | ||||
| 	i=i+1; | ||||
| end | ||||
| x=x'; | ||||
| % 	function events(x) | ||||
| % 	dist= | ||||
| % 	return  | ||||
| end | ||||
							
								
								
									
										13
									
								
								samples/Matlab/distance.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								samples/Matlab/distance.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,13 @@ | ||||
| function [ value,isterminal,direction ] = distance( t,y,mu ) | ||||
| % DISTANCE compute the distance from the attactors | ||||
| %   [ value,terminal,direction ] = distance( t,y ) | ||||
|  | ||||
| d=1e-2; % FIXME | ||||
|  | ||||
| % TODO mettere if se tolleranza D-d<tol -> value=0 | ||||
| D=sqrt((y(1)+mu).^2+y(2).^2); % distance from the largest primary | ||||
|  | ||||
| value=d-D; | ||||
| isterminal=1; | ||||
| direction=0; | ||||
| end | ||||
							
								
								
									
										49
									
								
								samples/Matlab/double_gyre.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								samples/Matlab/double_gyre.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,49 @@ | ||||
| clear all | ||||
| tic | ||||
| % initialize integration time T, f(x,t), discretization size n ---------------- | ||||
| T = 8; | ||||
| x_min=0; | ||||
| x_max=2; | ||||
| y_min=0; | ||||
| y_max=1; | ||||
| n=50; % how many points per one measure unit (both in x and in y) | ||||
| ds=1/(n-1); | ||||
| x_res=(x_max-x_min)*n; | ||||
| y_res=(y_max-y_min)*n; | ||||
| grid_x=linspace(x_min,x_max,x_res); | ||||
| grid_y=linspace(y_min,y_max,y_res); | ||||
|  | ||||
| advected_x=zeros(x_res,y_res); | ||||
| advected_y=zeros(x_res,y_res); | ||||
| % integrate all initial points for t in [0,T] -------------------------------- | ||||
| parfor i = 1:x_res | ||||
| 	for j = 1:y_res | ||||
| 		[t,X] = ode45(@dg,[0,T],[grid_x(i),grid_y(j)]); | ||||
| 		% store advected positions as they would appear in (x,y) coords ------ | ||||
| 		advected_x(i,j) = X(length(X(:,1)),1); | ||||
| 		advected_y(i,j) = X(length(X(:,2)),2); | ||||
| 	end | ||||
| end | ||||
| %% Compute FTLE | ||||
| sigma=zeros(x_res,y_res); | ||||
| % at each point in interior of grid, store FTLE ------------------------------ | ||||
| for i = 2:x_res-1 | ||||
| 	for j = 2:y_res-1 | ||||
| 		% compute Jacobian phi ----------------------------------------------- | ||||
| 		phi(1,1) = (advected_x(i+1,j)-advected_x(i-1,j))/(2*ds); | ||||
| 		phi(1,2) = (advected_x(i,j-1)-advected_x(i,j+1))/(2*ds); | ||||
| 		phi(2,1) = (advected_y(i+1,j)-advected_y(i-1,j))/(2*ds); | ||||
| 		phi(2,2) = (advected_y(i,j-1)-advected_y(i,j+1))/(2*ds); | ||||
| 		% find max eigenvalue of phi'*phi ------------------------------------ | ||||
| 		lambda_max = max(abs(eig(phi'*phi))); | ||||
| 		% store FTLE --------------------------------------------------------- | ||||
| 		sigma(i,j) = log(lambda_max)/abs(2*T); | ||||
| 	end | ||||
| end | ||||
| toc | ||||
| %% plot FTLE field ------------------------------------------------------------ | ||||
| figure | ||||
| contourf(grid_x,grid_y,sigma'); | ||||
| colorbar('location','EastOutside'); | ||||
| axis equal | ||||
| shading flat | ||||
							
								
								
									
										41
									
								
								samples/Matlab/example.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								samples/Matlab/example.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,41 @@ | ||||
| clear all | ||||
| tic | ||||
| % initialize integration time T, f(x,t), discretization size n ---------------- | ||||
| T = 20; | ||||
| f_x_t = inline('[v(2);-sin(v(1))]','t','v'); | ||||
| grid_min = -3.4; | ||||
| grid_max = 3.4; | ||||
| grid_width = grid_max-grid_min; | ||||
| n = 35; | ||||
| grid_spacing = grid_min:(grid_width/(n-1)):grid_max; | ||||
| advected_x=zeros(n,n); | ||||
| advected_y=zeros(n,n); | ||||
| % integrate all initial points for t in [0,T] -------------------------------- | ||||
| for i = 1:n | ||||
| 	for j = 1:n | ||||
| 		[t,x] = ode45(f_x_t,[0,T],[grid_spacing(i),grid_spacing(j)]); | ||||
| 		% store advected positions as they would appear in (x,y) coords ------ | ||||
| 		advected_x(n-j+1,i) = x(length(x(:,1)),1); | ||||
| 		advected_y(n-j+1,i) = x(length(x(:,2)),2); | ||||
| 	end | ||||
| end | ||||
| sigma=zeros(n,n); | ||||
| % at each point in interior of grid, store FTLE ------------------------------ | ||||
| for i = 2:n-1 | ||||
| 	for j = 2:n-1 | ||||
| 		% compute Jacobian phi ----------------------------------------------- | ||||
| 		phi(1,1) = (advected_x(i,j+1)-advected_x(i,j-1))/(2*grid_width/(n-1)); | ||||
| 		phi(1,2) = (advected_x(i-1,j)-advected_x(i+1,j))/(2*grid_width/(n-1)); | ||||
| 		phi(2,1) = (advected_y(i,j+1)-advected_y(i,j-1))/(2*grid_width/(n-1)); | ||||
| 		phi(2,2) = (advected_y(i-1,j)-advected_y(i+1,j))/(2*grid_width/(n-1)); | ||||
| 		% find max eigenvalue of phi'*phi ------------------------------------ | ||||
| 		lambda_max = max(abs(eig(phi'*phi))); | ||||
| 		% store FTLE --------------------------------------------------------- | ||||
| 		sigma(i,j) = log(lambda_max)/abs(T); | ||||
| 	end | ||||
| end | ||||
| toc | ||||
| %% plot FTLE field ------------------------------------------------------------ | ||||
| figure | ||||
| contourf(grid_spacing,grid_spacing,sigma); | ||||
| colorbar('location','EastOutside'); | ||||
							
								
								
									
										156
									
								
								samples/Matlab/gpu_RKF45_FILE.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										156
									
								
								samples/Matlab/gpu_RKF45_FILE.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,156 @@ | ||||
| tic | ||||
| clear | ||||
| %% Range definition | ||||
| n=200; | ||||
|  | ||||
| mu=0.1; | ||||
| [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5]=Lagr(mu); | ||||
| C_L1=2*Omega(xl1,yl1,mu); | ||||
| E_0=-C_L1/2+0.03715; | ||||
| Y_0=0; | ||||
|  | ||||
| nx=n; | ||||
| x_0_min=-0.8; | ||||
| x_0_max=-0.15; | ||||
| x_0=linspace(x_0_min, x_0_max, nx); | ||||
| dx=(x_0_max-x_0_min)/(nx-1); | ||||
|  | ||||
| nvx=n; | ||||
| vx_0_min=-2; | ||||
| vx_0_max=2; | ||||
| vx_0=linspace(vx_0_min, vx_0_max, nvx); | ||||
| dvx=(vx_0_max-vx_0_min)/(nvx-1); | ||||
|  | ||||
| ny=3; | ||||
| dy=(dx+dvx)/2; | ||||
| y_0=[Y_0-dy Y_0 Y_0+dy]; | ||||
|  | ||||
|  | ||||
|  | ||||
| ne=3; | ||||
| de=dy; | ||||
| e_0=[E_0-de E_0 E_0+de]; | ||||
|  | ||||
| %% Definition of arrays of initial conditions | ||||
|  | ||||
| %In this approach, only useful pints are stored and integrated | ||||
|  | ||||
| m=1; | ||||
| % x=zeros(1,nx*ny*nvx*ne); | ||||
| % y=zeros(1,nx*ny*nvx*ne); | ||||
| % vx=zeros(1,nx*ny*nvx*ne); | ||||
| % e=zeros(1,nx*ny*nvx*ne); | ||||
| % vy=zeros(1,nx*ny*nvx*ne); | ||||
| filter=zeros(nx,3,nvx,3); | ||||
|  | ||||
| for i=1:nx | ||||
| 	for j=1:ny | ||||
| 		for k=1:nvx | ||||
| 			for l=1:ne | ||||
| 				v_y=-sqrt(2*Omega(x_0(i),y_0(j),mu)+2*e_0(l)-vx_0(k)^2); | ||||
| 				if ~((j~=2) && (l~=2)) && isreal(v_y) | ||||
| 					x(m)=x_0(i); | ||||
| 					y(m)=y_0(j); | ||||
| 					vx(m)=vx_0(k); | ||||
| 					e(m)=e_0(l); | ||||
| 					vy(m)=v_y; | ||||
| 					filter(i,j,k,l)=1; | ||||
| 					m=m+1; | ||||
| 				end | ||||
| 			end | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
|  | ||||
| %% Selection of useful points | ||||
|  | ||||
| %% Data transfer to GPU | ||||
| x_gpu=gpuArray(x); | ||||
| y_gpu=gpuArray(y); | ||||
| vx_gpu=gpuArray(vx); | ||||
| vy_gpu=gpuArray(vy); | ||||
|  | ||||
| %% Integration on GPU | ||||
| N=1; | ||||
| t0=0; | ||||
|  | ||||
| [x_f,y_f,vx_f,vy_f]=arrayfun(@RKF45_FILE_gpu,t0,N,x_gpu,y_gpu,vx_gpu,vy_gpu,mu); | ||||
|  | ||||
| %% Data back to CPU and GPU memory cleaning | ||||
| clear x_gpu y_gpu vx_gpu vy_gpu | ||||
| x_T=gather(x_f); | ||||
| clear x_f | ||||
| y_T=gather(y_f); | ||||
| clear y_f | ||||
| vx_T=gather(vx_f); | ||||
| clear vx_f | ||||
| vy_T=gather(vy_f); | ||||
| clear vy_f | ||||
|  | ||||
| %% Construction of matrix for FTLE computation | ||||
|  | ||||
| X_T=zeros(nx,ny,nvx,ne); | ||||
| Y_T=zeros(nx,ny,nvx,ne); | ||||
| VX_T=zeros(nx,ny,nvx,ne); | ||||
| VY_T=zeros(nx,ny,nvx,ne); | ||||
| E_T=zeros(nx,ny,nvx,ne); | ||||
| m=1; | ||||
| for i=1:nx | ||||
|     for j=1:ny | ||||
|         for k=1:nvx | ||||
|             for l=1:ne | ||||
|                 if filter(i,j,k,l)==1 | ||||
|                     X_T(i,j,k,l)=x_T(m); | ||||
|                     Y_T(i,j,k,l)=y_T(m); | ||||
|                     VX_T(i,j,k,l)=vx_T(m); | ||||
|                     VY_T(i,j,k,l)=vy_T(m); | ||||
|                     E_T(i,j,k,l)=0.5*(VX_T(i,j,k,l)^2+VY_T(i,j,k,l)^2)-Omega(X_T(i,j,k,l),Y_T(i,j,k,l),mu); | ||||
|                     m=m+1; | ||||
|                 end | ||||
|             end | ||||
|         end | ||||
|     end | ||||
| end | ||||
|  | ||||
| %% Compute filter for FTLE | ||||
| filter_ftle=filter; | ||||
| for i=2:(nx-1) | ||||
| 	for j=2:(ny-1) | ||||
| 		for k=2:(nvx-1) | ||||
| 			for l=2:(ne-1) | ||||
| 				if filter(i,j,k,l)==0 || filter (i,j,k,l)==3 | ||||
| 					filter_ftle(i,j,k,l)=0; | ||||
| 					 | ||||
| 					filter_ftle(i+1,j,k,l)=0; | ||||
| 					filter_ftle(i-1,j,k,l)=0; | ||||
| 					 | ||||
| 					filter_ftle(i,j+1,k,l)=0; | ||||
| 					filter_ftle(i,j-1,k,l)=0; | ||||
| 					 | ||||
| 					filter_ftle(i,j,k+1,l)=0; | ||||
| 					filter_ftle(i,j,k-1,l)=0; | ||||
| 					 | ||||
| 					filter_ftle(i,j,k,l+1)=0; | ||||
| 					filter_ftle(i,j,k,l-1)=0; | ||||
| 				end | ||||
| 			end | ||||
| 			 | ||||
| 		end | ||||
| 	end | ||||
| end | ||||
| %% FTLE computation | ||||
|  | ||||
| [ftle, dphi]=Compute_FILE_gpu( X_T, Y_T, VX_T, E_T, dx, dy, dvx, de, N, filter_ftle); | ||||
|  | ||||
| %% Plot results | ||||
| figure | ||||
| FTLE=squeeze(ftle(:,2,:,2)); | ||||
| FTLE(1,:)=[]; | ||||
| % FTLE(2,:)=[]; | ||||
| FTLE(:,1)=[]; | ||||
| % FTLE(:,2)=[]; | ||||
| x_0(1)=[]; | ||||
| vx_0(1)=[]; | ||||
| pcolor(x_0, vx_0, FTLE') | ||||
| shading flat | ||||
| toc | ||||
							
								
								
									
										19
									
								
								samples/Matlab/test_rk_par.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								samples/Matlab/test_rk_par.m
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,19 @@ | ||||
| clear | ||||
| mu=0.1; | ||||
| x_0=linspace(-0.8, -0.15, 2) | ||||
| y_0=zeros(1,2) | ||||
| vx_0=linspace(-2, 2, 2) | ||||
| vy_0=zeros(1,2) | ||||
| ci=[1-mu-0.05 0 0.005 0.5290] | ||||
| t0=[0;0] | ||||
| T=[2;2] | ||||
| tspan=2 | ||||
| arg1={@f;@f} | ||||
| %tspan={[0 2],[0 2]}; | ||||
| arg=[mu;mu] | ||||
| [X]=arrayfun(RK4_par,t0,T,x_0',y_0',vx_0',vy_0',arg) | ||||
| % [X]=arrayfun(@f,[0;1],[ci;ci],[mu;mu]); | ||||
| %Y=RK4(@f,tspan,ci,mu); | ||||
| % figure | ||||
| % plot(Y(:,1),Y(:,2)) | ||||
| % Y(end,1) | ||||
		Reference in New Issue
	
	Block a user