add agda and literate agda support

This commit is contained in:
Tim Baumann
2013-06-29 12:28:43 +02:00
parent fdc81d8818
commit cf15832504
3 changed files with 134 additions and 0 deletions

39
samples/Agda/NatCat.agda Normal file
View File

@@ -0,0 +1,39 @@
module NatCat where
open import Relation.Binary.PropositionalEquality
-- If you can show that a relation only ever has one inhabitant
-- you get the category laws for free
module
EasyCategory
(obj : Set)
(_⟶_ : obj obj Set)
(_∘_ : {x y z} x y y z x z)
(id : x x x)
(single-inhabitant : (x y : obj) (r s : x y) r s)
where
idʳ : x y (r : x y) r id y r
idʳ x y r = single-inhabitant x y (r id y) r
idˡ : x y (r : x y) id x r r
idˡ x y r = single-inhabitant x y (id x r) r
∘-assoc : w x y z (r : w x) (s : x y) (t : y z) (r s) t r (s t)
∘-assoc w x y z r s t = single-inhabitant w z ((r s) t) (r (s t))
open import Data.Nat
same : (x y : ) (r s : x y) r s
same .0 y z≤n z≤n = refl
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)
≤-trans : x y z x y y z x z
≤-trans .0 y z z≤n s = z≤n
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)
≤-refl : x x x
≤-refl zero = z≤n
≤-refl (suc x) = s≤s (≤-refl x)
module Nat-EasyCategory = EasyCategory _≤_ (λ {x}{y}{z} ≤-trans x y z) ≤-refl same