diff --git a/lib/linguist/languages.yml b/lib/linguist/languages.yml index 7350bb2a..c8efc7ed 100644 --- a/lib/linguist/languages.yml +++ b/lib/linguist/languages.yml @@ -705,6 +705,12 @@ Game Maker Language: extensions: - .gml +GAMS: + type: programming + lexer: Text only + extensions: + - .gms + GAP: type: programming lexer: Text only diff --git a/samples/GAMS/transport.gms b/samples/GAMS/transport.gms new file mode 100644 index 00000000..fb6ccbc9 --- /dev/null +++ b/samples/GAMS/transport.gms @@ -0,0 +1,76 @@ +*Basic example of transport model from GAMS model library + +$Title A Transportation Problem (TRNSPORT,SEQ=1) +$Ontext + +This problem finds a least cost shipping schedule that meets +requirements at markets and supplies at factories. + + +Dantzig, G B, Chapter 3.3. In Linear Programming and Extensions. +Princeton University Press, Princeton, New Jersey, 1963. + +This formulation is described in detail in: +Rosenthal, R E, Chapter 2: A GAMS Tutorial. In GAMS: A User's Guide. +The Scientific Press, Redwood City, California, 1988. + +The line numbers will not match those in the book because of these +comments. + +$Offtext + + + Sets + i canning plants / seattle, san-diego / + j markets / new-york, chicago, topeka / ; + Parameters + a(i) capacity of plant i in cases + / seattle 350 + san-diego 600 / + b(j) demand at market j in cases + / new-york 325 + chicago 300 + topeka 275 / ; + Table d(i,j) distance in thousands of miles + new-york chicago topeka + seattle 2.5 1.7 1.8 + san-diego 2.5 1.8 1.4 ; + Scalar f freight in dollars per case per thousand miles /90/ ; + Parameter c(i,j) transport cost in thousands of dollars per case ; + c(i,j) = f * d(i,j) / 1000 ; + Variables + x(i,j) shipment quantities in cases + z total transportation costs in thousands of dollars ; + + Positive Variable x ; + + Equations + cost define objective function + supply(i) observe supply limit at plant i + demand(j) satisfy demand at market j ; + + cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ; + + supply(i) .. sum(j, x(i,j)) =l= a(i) ; + + demand(j) .. sum(i, x(i,j)) =g= b(j) ; + + Model transport /all/ ; + + Solve transport using lp minimizing z ; + + Display x.l, x.m ; + +$ontext +#user model library stuff +Main topic Basic GAMS +Featured item 1 Trnsport model +Featured item 2 +Featured item 3 +Featured item 4 +Description +Basic example of transport model from GAMS model library + + + +$offtext \ No newline at end of file