Merge branch 'master' into 1206

Conflicts:
	lib/linguist/samples.json
This commit is contained in:
Arfon Smith
2014-05-31 09:13:42 -05:00
22 changed files with 16493 additions and 14839 deletions

View File

@@ -241,7 +241,25 @@ module Linguist
def lines
@lines ||=
if viewable? && data
data.split(/\r\n|\r|\n/, -1)
# `data` is usually encoded as ASCII-8BIT even when the content has
# been detected as a different encoding. However, we are not allowed
# to change the encoding of `data` because we've made the implicit
# guarantee that each entry in `lines` is encoded the same way as
# `data`.
#
# Instead, we re-encode each possible newline sequence as the
# detected encoding, then force them back to the encoding of `data`
# (usually a binary encoding like ASCII-8BIT). This means that the
# byte sequence will match how newlines are likely encoded in the
# file, but we don't have to change the encoding of `data` as far as
# Ruby is concerned. This allows us to correctly parse out each line
# without changing the encoding of `data`, and
# also--importantly--without having to duplicate many (potentially
# large) strings.
encoded_newlines = ["\r\n", "\r", "\n"].
map { |nl| nl.encode(encoding).force_encoding(data.encoding) }
data.split(Regexp.union(encoded_newlines), -1)
else
[]
end

View File

@@ -293,6 +293,7 @@ C++:
- .inl
- .tcc
- .tpp
- .ipp
C-ObjDump:
type: data
@@ -819,6 +820,9 @@ Groovy:
color: "#e69f56"
extensions:
- .groovy
- .grt
- .gtpl
- .gvy
interpreters:
- groovy
@@ -907,7 +911,7 @@ Haskell:
Haxe:
type: programming
ace_mode: haxe
color: "#346d51"
color: "#f7941e"
extensions:
- .hx
- .hxsl
@@ -1059,6 +1063,7 @@ JavaScript:
- ._js
- .bones
- .es6
- .frag
- .jake
- .jsfl
- .jsm
@@ -1250,6 +1255,7 @@ Markdown:
- .md
- .markdown
- .mkd
- .mkdn
- .mkdown
- .ron
@@ -1471,6 +1477,14 @@ Org:
extensions:
- .org
Ox:
type: programming
lexer: Text only
extensions:
- .ox
- .oxh
- .oxo
Oxygene:
type: programming
lexer: Text only
@@ -1705,6 +1719,8 @@ R:
extensions:
- .r
- .R
- .Rd
- .rd
- .rsx
filenames:
- .Rprofile
@@ -1849,6 +1865,13 @@ Rust:
extensions:
- .rs
SAS:
type: programming
color: "#1E90FF"
lexer: Text only
extensions:
- .sas
SCSS:
type: markup
group: CSS
@@ -1857,7 +1880,7 @@ SCSS:
- .scss
SQL:
type: programming
type: data
ace_mode: sql
extensions:
- .sql
@@ -2207,6 +2230,7 @@ XML:
- .clixml
- .cproject
- .csproj
- .ct
- .dita
- .ditamap
- .ditaval

File diff suppressed because it is too large Load Diff

View File

@@ -148,7 +148,7 @@
- (^|/)[Mm]icrosoft([Mm]vc)?([Aa]jax|[Vv]alidation)(\.debug)?\.js$
# NuGet
- ^[Pp]ackages/
- ^[Pp]ackages\/.+\.\d+\/
# ExtJS
- (^|/)extjs/.*?\.js$

View File

@@ -1,3 +1,3 @@
module Linguist
VERSION = "2.10.15"
VERSION = "2.11.1"
end

View File

@@ -0,0 +1,664 @@
//
// detail/impl/epoll_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2013 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#define BOOST_ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#if defined(BOOST_ASIO_HAS_EPOLL)
#include <cstddef>
#include <sys/epoll.h>
#include <boost/asio/detail/epoll_reactor.hpp>
#include <boost/asio/detail/throw_error.hpp>
#include <boost/asio/error.hpp>
#if defined(BOOST_ASIO_HAS_TIMERFD)
# include <sys/timerfd.h>
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
namespace detail {
epoll_reactor::epoll_reactor(boost::asio::io_service& io_service)
: boost::asio::detail::service_base<epoll_reactor>(io_service),
io_service_(use_service<io_service_impl>(io_service)),
mutex_(),
interrupter_(),
epoll_fd_(do_epoll_create()),
timer_fd_(do_timerfd_create()),
shutdown_(false)
{
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
interrupter_.interrupt();
// Add the timer descriptor to epoll.
if (timer_fd_ != -1)
{
ev.events = EPOLLIN | EPOLLERR;
ev.data.ptr = &timer_fd_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
}
}
epoll_reactor::~epoll_reactor()
{
if (epoll_fd_ != -1)
close(epoll_fd_);
if (timer_fd_ != -1)
close(timer_fd_);
}
void epoll_reactor::shutdown_service()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
while (descriptor_state* state = registered_descriptors_.first())
{
for (int i = 0; i < max_ops; ++i)
ops.push(state->op_queue_[i]);
state->shutdown_ = true;
registered_descriptors_.free(state);
}
timer_queues_.get_all_timers(ops);
io_service_.abandon_operations(ops);
}
void epoll_reactor::fork_service(boost::asio::io_service::fork_event fork_ev)
{
if (fork_ev == boost::asio::io_service::fork_child)
{
if (epoll_fd_ != -1)
::close(epoll_fd_);
epoll_fd_ = -1;
epoll_fd_ = do_epoll_create();
if (timer_fd_ != -1)
::close(timer_fd_);
timer_fd_ = -1;
timer_fd_ = do_timerfd_create();
interrupter_.recreate();
// Add the interrupter's descriptor to epoll.
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, interrupter_.read_descriptor(), &ev);
interrupter_.interrupt();
// Add the timer descriptor to epoll.
if (timer_fd_ != -1)
{
ev.events = EPOLLIN | EPOLLERR;
ev.data.ptr = &timer_fd_;
epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, timer_fd_, &ev);
}
update_timeout();
// Re-register all descriptors with epoll.
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
for (descriptor_state* state = registered_descriptors_.first();
state != 0; state = state->next_)
{
ev.events = state->registered_events_;
ev.data.ptr = state;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, state->descriptor_, &ev);
if (result != 0)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "epoll re-registration");
}
}
}
}
void epoll_reactor::init_task()
{
io_service_.init_task();
}
int epoll_reactor::register_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data)
{
descriptor_data = allocate_descriptor_state();
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
descriptor_data->reactor_ = this;
descriptor_data->descriptor_ = descriptor;
descriptor_data->shutdown_ = false;
}
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
descriptor_data->registered_events_ = ev.events;
ev.data.ptr = descriptor_data;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
return errno;
return 0;
}
int epoll_reactor::register_internal_descriptor(
int op_type, socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
{
descriptor_data = allocate_descriptor_state();
{
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
descriptor_data->reactor_ = this;
descriptor_data->descriptor_ = descriptor;
descriptor_data->shutdown_ = false;
descriptor_data->op_queue_[op_type].push(op);
}
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLHUP | EPOLLPRI | EPOLLET;
descriptor_data->registered_events_ = ev.events;
ev.data.ptr = descriptor_data;
int result = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, descriptor, &ev);
if (result != 0)
return errno;
return 0;
}
void epoll_reactor::move_descriptor(socket_type,
epoll_reactor::per_descriptor_data& target_descriptor_data,
epoll_reactor::per_descriptor_data& source_descriptor_data)
{
target_descriptor_data = source_descriptor_data;
source_descriptor_data = 0;
}
void epoll_reactor::start_op(int op_type, socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
bool is_continuation, bool allow_speculative)
{
if (!descriptor_data)
{
op->ec_ = boost::asio::error::bad_descriptor;
post_immediate_completion(op, is_continuation);
return;
}
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
{
post_immediate_completion(op, is_continuation);
return;
}
if (descriptor_data->op_queue_[op_type].empty())
{
if (allow_speculative
&& (op_type != read_op
|| descriptor_data->op_queue_[except_op].empty()))
{
if (op->perform())
{
descriptor_lock.unlock();
io_service_.post_immediate_completion(op, is_continuation);
return;
}
if (op_type == write_op)
{
if ((descriptor_data->registered_events_ & EPOLLOUT) == 0)
{
epoll_event ev = { 0, { 0 } };
ev.events = descriptor_data->registered_events_ | EPOLLOUT;
ev.data.ptr = descriptor_data;
if (epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev) == 0)
{
descriptor_data->registered_events_ |= ev.events;
}
else
{
op->ec_ = boost::system::error_code(errno,
boost::asio::error::get_system_category());
io_service_.post_immediate_completion(op, is_continuation);
return;
}
}
}
}
else
{
if (op_type == write_op)
{
descriptor_data->registered_events_ |= EPOLLOUT;
}
epoll_event ev = { 0, { 0 } };
ev.events = descriptor_data->registered_events_;
ev.data.ptr = descriptor_data;
epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, descriptor, &ev);
}
}
descriptor_data->op_queue_[op_type].push(op);
io_service_.work_started();
}
void epoll_reactor::cancel_ops(socket_type,
epoll_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
io_service_.post_deferred_completions(ops);
}
void epoll_reactor::deregister_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data, bool closing)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
if (closing)
{
// The descriptor will be automatically removed from the epoll set when
// it is closed.
}
else
{
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
}
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
free_descriptor_state(descriptor_data);
descriptor_data = 0;
io_service_.post_deferred_completions(ops);
}
}
void epoll_reactor::deregister_internal_descriptor(socket_type descriptor,
epoll_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
epoll_event ev = { 0, { 0 } };
epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, descriptor, &ev);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
ops.push(descriptor_data->op_queue_[i]);
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
free_descriptor_state(descriptor_data);
descriptor_data = 0;
}
}
void epoll_reactor::run(bool block, op_queue<operation>& ops)
{
// This code relies on the fact that the task_io_service queues the reactor
// task behind all descriptor operations generated by this function. This
// means, that by the time we reach this point, any previously returned
// descriptor operations have already been dequeued. Therefore it is now safe
// for us to reuse and return them for the task_io_service to queue again.
// Calculate a timeout only if timerfd is not used.
int timeout;
if (timer_fd_ != -1)
timeout = block ? -1 : 0;
else
{
mutex::scoped_lock lock(mutex_);
timeout = block ? get_timeout() : 0;
}
// Block on the epoll descriptor.
epoll_event events[128];
int num_events = epoll_wait(epoll_fd_, events, 128, timeout);
#if defined(BOOST_ASIO_HAS_TIMERFD)
bool check_timers = (timer_fd_ == -1);
#else // defined(BOOST_ASIO_HAS_TIMERFD)
bool check_timers = true;
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
void* ptr = events[i].data.ptr;
if (ptr == &interrupter_)
{
// No need to reset the interrupter since we're leaving the descriptor
// in a ready-to-read state and relying on edge-triggered notifications
// to make it so that we only get woken up when the descriptor's epoll
// registration is updated.
#if defined(BOOST_ASIO_HAS_TIMERFD)
if (timer_fd_ == -1)
check_timers = true;
#else // defined(BOOST_ASIO_HAS_TIMERFD)
check_timers = true;
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
}
#if defined(BOOST_ASIO_HAS_TIMERFD)
else if (ptr == &timer_fd_)
{
check_timers = true;
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
else
{
// The descriptor operation doesn't count as work in and of itself, so we
// don't call work_started() here. This still allows the io_service to
// stop if the only remaining operations are descriptor operations.
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
descriptor_data->set_ready_events(events[i].events);
ops.push(descriptor_data);
}
}
if (check_timers)
{
mutex::scoped_lock common_lock(mutex_);
timer_queues_.get_ready_timers(ops);
#if defined(BOOST_ASIO_HAS_TIMERFD)
if (timer_fd_ != -1)
{
itimerspec new_timeout;
itimerspec old_timeout;
int flags = get_timeout(new_timeout);
timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
}
}
void epoll_reactor::interrupt()
{
epoll_event ev = { 0, { 0 } };
ev.events = EPOLLIN | EPOLLERR | EPOLLET;
ev.data.ptr = &interrupter_;
epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, interrupter_.read_descriptor(), &ev);
}
int epoll_reactor::do_epoll_create()
{
#if defined(EPOLL_CLOEXEC)
int fd = epoll_create1(EPOLL_CLOEXEC);
#else // defined(EPOLL_CLOEXEC)
int fd = -1;
errno = EINVAL;
#endif // defined(EPOLL_CLOEXEC)
if (fd == -1 && (errno == EINVAL || errno == ENOSYS))
{
fd = epoll_create(epoll_size);
if (fd != -1)
::fcntl(fd, F_SETFD, FD_CLOEXEC);
}
if (fd == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "epoll");
}
return fd;
}
int epoll_reactor::do_timerfd_create()
{
#if defined(BOOST_ASIO_HAS_TIMERFD)
# if defined(TFD_CLOEXEC)
int fd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
# else // defined(TFD_CLOEXEC)
int fd = -1;
errno = EINVAL;
# endif // defined(TFD_CLOEXEC)
if (fd == -1 && errno == EINVAL)
{
fd = timerfd_create(CLOCK_MONOTONIC, 0);
if (fd != -1)
::fcntl(fd, F_SETFD, FD_CLOEXEC);
}
return fd;
#else // defined(BOOST_ASIO_HAS_TIMERFD)
return -1;
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
}
epoll_reactor::descriptor_state* epoll_reactor::allocate_descriptor_state()
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
return registered_descriptors_.alloc();
}
void epoll_reactor::free_descriptor_state(epoll_reactor::descriptor_state* s)
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
registered_descriptors_.free(s);
}
void epoll_reactor::do_add_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&queue);
}
void epoll_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&queue);
}
void epoll_reactor::update_timeout()
{
#if defined(BOOST_ASIO_HAS_TIMERFD)
if (timer_fd_ != -1)
{
itimerspec new_timeout;
itimerspec old_timeout;
int flags = get_timeout(new_timeout);
timerfd_settime(timer_fd_, flags, &new_timeout, &old_timeout);
return;
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
interrupt();
}
int epoll_reactor::get_timeout()
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
return timer_queues_.wait_duration_msec(5 * 60 * 1000);
}
#if defined(BOOST_ASIO_HAS_TIMERFD)
int epoll_reactor::get_timeout(itimerspec& ts)
{
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
long usec = timer_queues_.wait_duration_usec(5 * 60 * 1000 * 1000);
ts.it_value.tv_sec = usec / 1000000;
ts.it_value.tv_nsec = usec ? (usec % 1000000) * 1000 : 1;
return usec ? 0 : TFD_TIMER_ABSTIME;
}
#endif // defined(BOOST_ASIO_HAS_TIMERFD)
struct epoll_reactor::perform_io_cleanup_on_block_exit
{
explicit perform_io_cleanup_on_block_exit(epoll_reactor* r)
: reactor_(r), first_op_(0)
{
}
~perform_io_cleanup_on_block_exit()
{
if (first_op_)
{
// Post the remaining completed operations for invocation.
if (!ops_.empty())
reactor_->io_service_.post_deferred_completions(ops_);
// A user-initiated operation has completed, but there's no need to
// explicitly call work_finished() here. Instead, we'll take advantage of
// the fact that the task_io_service will call work_finished() once we
// return.
}
else
{
// No user-initiated operations have completed, so we need to compensate
// for the work_finished() call that the task_io_service will make once
// this operation returns.
reactor_->io_service_.work_started();
}
}
epoll_reactor* reactor_;
op_queue<operation> ops_;
operation* first_op_;
};
epoll_reactor::descriptor_state::descriptor_state()
: operation(&epoll_reactor::descriptor_state::do_complete)
{
}
operation* epoll_reactor::descriptor_state::perform_io(uint32_t events)
{
mutex_.lock();
perform_io_cleanup_on_block_exit io_cleanup(reactor_);
mutex::scoped_lock descriptor_lock(mutex_, mutex::scoped_lock::adopt_lock);
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
static const int flag[max_ops] = { EPOLLIN, EPOLLOUT, EPOLLPRI };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events & (flag[j] | EPOLLERR | EPOLLHUP))
{
while (reactor_op* op = op_queue_[j].front())
{
if (op->perform())
{
op_queue_[j].pop();
io_cleanup.ops_.push(op);
}
else
break;
}
}
}
// The first operation will be returned for completion now. The others will
// be posted for later by the io_cleanup object's destructor.
io_cleanup.first_op_ = io_cleanup.ops_.front();
io_cleanup.ops_.pop();
return io_cleanup.first_op_;
}
void epoll_reactor::descriptor_state::do_complete(
io_service_impl* owner, operation* base,
const boost::system::error_code& ec, std::size_t bytes_transferred)
{
if (owner)
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(base);
uint32_t events = static_cast<uint32_t>(bytes_transferred);
if (operation* op = descriptor_data->perform_io(events))
{
op->complete(*owner, ec, 0);
}
}
}
} // namespace detail
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // defined(BOOST_ASIO_HAS_EPOLL)
#endif // BOOST_ASIO_DETAIL_IMPL_EPOLL_REACTOR_IPP

View File

@@ -0,0 +1,9 @@
static const char* SimpleFragmentShader = STRINGIFY(
varying vec4 FrontColor;
void main(void)
{
gl_FragColor = FrontColor;
}
);

View File

@@ -0,0 +1,48 @@
#version 330 core
// cross-unit recursion
void main() {}
// two-level recursion
float cbar(int);
void cfoo(float)
{
cbar(2);
}
// four-level, out of order
void CB();
void CD();
void CA() { CB(); }
void CC() { CD(); }
// high degree
void CBT();
void CDT();
void CAT() { CBT(); CBT(); CBT(); }
void CCT() { CDT(); CDT(); CBT(); }
// not recursive
void norA() {}
void norB() { norA(); }
void norC() { norA(); }
void norD() { norA(); }
void norE() { norB(); }
void norF() { norB(); }
void norG() { norE(); }
void norH() { norE(); }
void norI() { norE(); }
// not recursive, but with a call leading into a cycle if ignoring direction
void norcA() { }
void norcB() { norcA(); }
void norcC() { norcB(); }
void norcD() { norcC(); norcB(); } // head of cycle
void norcE() { norcD(); } // lead into cycle

View File

@@ -0,0 +1,2 @@
#!/usr/bin/env groovy
println "Hello World"

View File

@@ -0,0 +1,9 @@
html {
head {
component "bootstrap"
title "Bootstrap Template"
}
html {
}
}

View File

@@ -0,0 +1,9 @@
html {
head {
title "Example Template"
}
body {
p "This is a quick template example"
}
}

View File

@@ -0,0 +1,7 @@
(function(window, angular) {
Array.prototype.last = function() {
return this[this.length-1];
};
var app = angular.module('ConwayGameOfLife', []);

View File

@@ -0,0 +1,3 @@
})(window, window.angular);

View File

@@ -0,0 +1,72 @@
/** Replicate Imai, Jain and Ching Econometrica 2009 (incomplete).
**/
#include "IJCEmet2009.h"
Kapital::Kapital(L,const N,const entrant,const exit,const KP){
StateVariable(L,N);
this.entrant = entrant;
this.exit = exit;
this.KP = KP;
actual = Kbar*vals/(N-1);
upper = log(actual~.Inf);
}
Kapital::Transit(FeasA) {
decl ent =CV(entrant), stayout = FeasA[][exit.pos], tprob, sigu = CV(KP[SigU]);
if (!v && !ent) return { <0>, ones(stayout) };
tprob = ent ? probn( (upper-CV(KP[Kbe]))/sigu )
: probn( (upper-(CV(KP[Kb0])+CV(KP[Kb2])*upper[v])) / sigu );
tprob = tprob[1:] - tprob[:N-1];
return { vals, tprob.*(1-stayout)+(1.0~zeros(1,N-1)).*stayout };
}
FirmEntry::Run() {
Initialize();
GenerateSample();
BDP->BayesianDP();
}
FirmEntry::Initialize() {
Rust::Initialize(Reachable,0);
sige = new StDeviations("sige",<0.3,0.3>,0);
entrant = new LaggedAction("entrant",d);
KP = new array[Kparams];
KP[Kbe] = new Positive("be",0.5);
KP[Kb0] = new Free("b0",0.0);
KP[Kb1] = new Determined("b1",0.0);
KP[Kb2] = new Positive("b2",0.4);
KP[SigU] = new Positive("sigu",0.4);
EndogenousStates(K = new Kapital("K",KN,entrant,d,KP),entrant);
SetDelta(new Probability("delta",0.85));
kcoef = new Positive("kcoef",0.1);
ecost = new Negative("ec",-0.4);
CreateSpaces();
}
FirmEntry::GenerateSample() {
Volume = LOUD;
EM = new ValueIteration(0);
// EM -> Solve(0,0);
data = new DataSet(0,EM);
data->Simulate(DataN,DataT,0,FALSE);
data->Print("firmentry.xls");
BDP = new ImaiJainChing("FMH",data,EM,ecost,sige,kcoef,KP,delta);
}
/** Capital stock can be positive only for incumbents.
**/
FirmEntry::Reachable() { return CV(entrant)*CV(K) ? 0 : new FirmEntry() ; }
/** The one period return.
<DD>
<pre>U = </pre>
</DD>
**/
FirmEntry::Utility() {
decl ent = CV(entrant),
u =
ent*CV(ecost)+(1-ent)*CV(kcoef)*AV(K)
| 0.0;
return u;
}

View File

@@ -0,0 +1,63 @@
/** Client and Server classes for parallel optimization using CFMPI.**/
#include "ParallelObjective.h"
/** Set up MPI Client-Server support for objective optimization.
@param obj `Objective' to parallelize
@param DONOTUSECLIENT TRUE (default): client node does no object evaluation<br>FALSE after putting servers to work Client node does one evaluation.
**/
ParallelObjective(obj,DONOTUSECLIENT) {
if (isclass(obj.p2p)) {oxwarning("P2P object already exists for "+obj.L+". Nothing changed"); return;}
obj.p2p = new P2P(DONOTUSECLIENT,new ObjClient(obj),new ObjServer(obj));
}
ObjClient::ObjClient(obj) { this.obj = obj; }
ObjClient::Execute() { }
ObjServer::ObjServer(obj) {
this.obj = obj;
basetag = P2P::STOP_TAG+1;
iml = obj.NvfuncTerms;
Nparams = obj.nstruct;
}
/** Wait on the objective client.
**/
ObjServer::Loop(nxtmsgsz) {
Nparams = nxtmsgsz; //free param length is no greater than Nparams
if (Volume>QUIET) println("ObjServer server ",ID," Nparams ",Nparams);
Server::Loop(Nparams);
Recv(ANY_TAG); //receive the ending parameter vector
obj->Encode(Buffer[:Nparams-1]); //encode it.
}
/** Do the objective evaluation.
Receive structural parameter vector and `Objective::Encode`() it.
Call `Objective::vfunc`().
@return Nparams (max. length of next expected message);
**/
ObjServer::Execute() {
obj->Decode(Buffer[:obj.nfree-1]);
Buffer = obj.cur.V[] = obj->vfunc();
if (Volume>QUIET) println("Server Executive: ",ID," vfunc[0]= ",Buffer[0]);
return obj.nstruct;
}
CstrServer::CstrServer(obj) { ObjServer(obj); }
SepServer::SepServer(obj) { ObjServer(obj); }
CstrServer::Execute() {
obj->Encode(Buffer);
obj->Lagrangian(0);
return rows(Buffer = obj.cur->Vec());
}
/** Separable objective evaluations.
**/
SepServer::Execute() {
obj.Kvar.v = imod(Tag-basetag,obj.K);
obj->Encode(Buffer,TRUE);
Buffer = obj.Kvar->PDF() * obj->vfunc();
return obj.NvfuncTerms;
}

38
samples/Ox/particle.oxo Normal file
View File

@@ -0,0 +1,38 @@
nldge::ParticleLogLikeli()
{ decl it, ip,
mss, mbas, ms, my, mx, vw, vwi, dws,
mhi, mhdet, loglikeli, mData,
vxm, vxs, mxm=<>, mxsu=<>, mxsl=<>,
time, timeall, timeran=0, timelik=0, timefun=0, timeint=0, timeres=0;
mData = GetData(m_asY);
mhdet = sqrt((2*M_PI)^m_cY * determinant(m_mMSbE.^2)); // covariance determinant
mhi = invert(m_mMSbE.^2); // invert covariance of measurement shocks
ms = m_vSss + zeros(m_cPar, m_cS); // start particles
mx = m_vXss + zeros(m_cPar, m_cX); // steady state of state and policy
loglikeli = 0; // init likelihood
//timeall=timer();
for(it = 0; it < sizer(mData); it++)
{
mss = rann(m_cPar, m_cSS) * m_mSSbE; // state noise
fg(&ms, ms, mx, mss); // transition prior as proposal
mx = m_oApprox.FastInterpolate(ms); // interpolate
fy(&my, ms, mx, zeros(m_cPar, m_cMS)); // evaluate importance weights
my -= mData[it][]; // observation error
vw = exp(-0.5 * outer(my,mhi,'d')' )/mhdet; // vw = exp(-0.5 * sumr(my*mhi .*my ) )/mhdet;
vw = vw .== .NaN .? 0 .: vw; // no policy can happen for extrem particles
dws = sumc(vw);
if(dws==0) return -.Inf; // or extremely wrong parameters
loglikeli += log(dws/m_cPar) ; // loglikelihood contribution
//timelik += (timer()-time)/100;
//time=timer();
vwi = resample(vw/dws)-1; // selection step in c++
ms = ms[vwi][]; // on normalized weights
mx = mx[vwi][];
}
return loglikeli;
}

25
samples/R/scholar.Rd Normal file
View File

@@ -0,0 +1,25 @@
\docType{package}
\name{scholar}
\alias{scholar}
\alias{scholar-package}
\title{scholar}
\source{
The package reads data from
\url{http://scholar.google.com}. Dates and citation
counts are estimated and are determined automatically by
a computer program. Use at your own risk.
}
\description{
The \code{scholar} package provides functions to extract
citation data from Google Scholar. There are also
convenience functions for comparing multiple scholars and
predicting h-index scores based on past publication
records.
}
\note{
A complementary set of Google Scholar functions can be
found at
\url{http://biostat.jhsph.edu/~jleek/code/googleCite.r}.
The \code{scholar} package was developed independently.
}

17
samples/SAS/data.sas Normal file
View File

@@ -0,0 +1,17 @@
/* Example DATA step code for linguist */
libname source 'C:\path\to\file'
data work.working_copy;
set source.original_file.sas7bdat;
run;
data work.working_copy;
set work.working_copy;
if Purge = 1 then delete;
run;
data work.working_copy;
set work.working_copy;
if ImportantVariable = . then MissingFlag = 1;
run;

15
samples/SAS/proc.sas Normal file
View File

@@ -0,0 +1,15 @@
/* PROC examples for Linguist */
proc surveyselect data=work.data out=work.boot method=urs reps=20000 seed=2156 sampsize=28 outhits;
samplingunit Site;
run;
PROC MI data=work.boot out=work.bootmi nimpute=30 seed=5686 round = 1;
By Replicate;
VAR Variable1 Variable2;
run;
proc logistic data=work.bootmi descending;
By Replicate _Imputation_;
model Outcome = Variable1 Variable2 / risklimits;
run;

Binary file not shown.

BIN
samples/Text/utf16le.txt Normal file

Binary file not shown.

View File

@@ -11,6 +11,17 @@ class TestBlob < Test::Unit::TestCase
Lexer = Pygments::Lexer
def setup
# git blobs are normally loaded as ASCII-8BIT since they may contain data
# with arbitrary encoding not known ahead of time
@original_external = Encoding.default_external
Encoding.default_external = Encoding.find("ASCII-8BIT")
end
def teardown
Encoding.default_external = @original_external
end
def samples_path
File.expand_path("../../samples", __FILE__)
end
@@ -67,6 +78,14 @@ class TestBlob < Test::Unit::TestCase
assert_equal 475, blob("Emacs Lisp/ess-julia.el").lines.length
end
def test_lines_maintains_original_encoding
# Even if the file's encoding is detected as something like UTF-16LE,
# earlier versions of the gem made implicit guarantees that the encoding of
# each `line` is in the same encoding as the file was originally read (in
# practice, UTF-8 or ASCII-8BIT)
assert_equal Encoding.default_external, blob("Text/utf16le.txt").lines.first.encoding
end
def test_size
assert_equal 15, blob("Ruby/foo.rb").size
end
@@ -77,12 +96,15 @@ class TestBlob < Test::Unit::TestCase
def test_sloc
assert_equal 2, blob("Ruby/foo.rb").sloc
assert_equal 3, blob("Text/utf16le-windows.txt").sloc
end
def test_encoding
assert_equal "ISO-8859-2", blob("Text/README").encoding
assert_equal "ISO-8859-1", blob("Text/dump.sql").encoding
assert_equal "UTF-8", blob("Text/foo.txt").encoding
assert_equal "UTF-16LE", blob("Text/utf16le.txt").encoding
assert_equal "UTF-16LE", blob("Text/utf16le-windows.txt").encoding
assert_nil blob("Binary/dog.o").encoding
end