__global__ void scalarProdGPU( float *d_C, float *d_A, float *d_B, int vectorN, int elementN ) { //Accumulators cache __shared__ float accumResult[ACCUM_N]; //////////////////////////////////////////////////////////////////////////// // Cycle through every pair of vectors, // taking into account that vector counts can be different // from total number of thread blocks //////////////////////////////////////////////////////////////////////////// for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x) { int vectorBase = IMUL(elementN, vec); int vectorEnd = vectorBase + elementN; //////////////////////////////////////////////////////////////////////// // Each accumulator cycles through vectors with // stride equal to number of total number of accumulators ACCUM_N // At this stage ACCUM_N is only preferred be a multiple of warp size // to meet memory coalescing alignment constraints. //////////////////////////////////////////////////////////////////////// for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x) { float sum = 0; for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N) sum += d_A[pos] * d_B[pos]; accumResult[iAccum] = sum; } //////////////////////////////////////////////////////////////////////// // Perform tree-like reduction of accumulators' results. // ACCUM_N has to be power of two at this stage //////////////////////////////////////////////////////////////////////// for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1) { __syncthreads(); for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x) accumResult[iAccum] += accumResult[stride + iAccum]; } if (threadIdx.x == 0) d_C[vec] = accumResult[0]; } }