tic clear all %% Choice of the mass parameter mu=0.1; %% Computation of Lagrangian Points [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu); %% Computation of initial total energy E_L1=-Omega(xl1,yl1,mu); E=E_L1+0.03715; % Offset as in figure 2.2 "LCS in the ER3BP" %% Initial conditions range x_0_min=-0.8; x_0_max=-0.2; vx_0_min=-2; vx_0_max=2; y_0=0; % Elements for grid definition n=200; % Dimensionless integrating time T=2; % Grid initializing [x_0,vx_0]=ndgrid(linspace(x_0_min,x_0_max,n),linspace(vx_0_min,vx_0_max,n)); vy_0=sqrt(2*E+2*Omega(x_0,y_0,mu)-vx_0.^2); % Kinetic energy computation E_cin=E+Omega(x_0,y_0,mu); %% Transforming into Hamiltonian variables px_0=vx_0-y_0; py_0=vy_0+x_0; % Inizializing x_T=zeros(n,n); y_T=zeros(n,n); px_T=zeros(n,n); py_T=zeros(n,n); filtro=ones(n,n); E_T=zeros(n,n); a=zeros(n,n); % matrix of numbers of integration steps for each integration np=0; % number of integrated points fprintf(' con n = %i\n',n) %% Energy tolerance setting energy_tol=inf; %% Computation of the Jacobian of the system options=odeset('Jacobian',@cr3bp_jac); %% Parallel integration of equations of motion parfor i=1:n for j=1:n if E_cin(i,j)>0 && isreal(vy_0(i,j)) % Check for real velocity and positive Kinetic energy [t,Y]=ode45(@fH,[0 T],[x_0(i,j); y_0; px_0(i,j); py_0(i,j)],options); % Try to obtain the name of the solver for a following use % sol=ode45(@f,[0 T],[x_0(i,j); y_0; vx_0(i,j); vy_0(i,j)],options); % Y=sol.y'; % solver=sol.solver; a(i,j)=length(Y); %Saving solutions x_T(i,j)=Y(a(i,j),1); px_T(i,j)=Y(a(i,j),3); y_T(i,j)=Y(a(i,j),2); py_T(i,j)=Y(a(i,j),4); %Computation of final total energy and difference with %initial one E_T(i,j)=EnergyH(x_T(i,j),y_T(i,j),px_T(i,j),py_T(i,j),mu); delta_E=abs(E_T(i,j)-E); if delta_E > energy_tol; %Check of total energy conservation fprintf(' Ouch! Wrong Integration: i,j=(%i,%i)\n E_T=%.2f \n delta_E=%.2f\n\n',i,j,E_T(i,j),delta_E); filtro(i,j)=2; %Saving position of the point end np=np+1; else filtro(i,j)=0; % 1=interesting point; 0=non-sense point; 2= bad integration point end end end t_integrazione=toc; fprintf(' n = %i\n',n) fprintf(' energy_tol = %.2f\n',energy_tol) fprintf('total \t%i\n',n^2) fprintf('nunber \t%i\n',np) fprintf('time to integrate \t%.2f s\n',t_integr) %% Back to Lagrangian variables vx_T=px_T+y_T; vy_T=py_T-x_T; %% FTLE Computation fprintf('adesso calcolo ftle\n') tic dphi=zeros(2,2); ftle=zeros(n-2,n-2); for i=2:n-1 for j=2:n-1 if filtro(i,j) && ... % Check for interesting point filtro(i,j-1) && ... filtro(i,j+1) && ... filtro(i-1,j) && ... filtro(i+1,j) dphi(1,1)=(x_T(i-1,j)-x_T(i+1,j))/(x_0(i-1,j)-x_0(i+1,j)); dphi(1,2)=(x_T(i,j-1)-x_T(i,j+1))/(vx_0(i,j-1)-vx_0(i,j+1)); dphi(2,1)=(vx_T(i-1,j)-vx_T(i+1,j))/(x_0(i-1,j)-x_0(i+1,j)); dphi(2,2)=(vx_T(i,j-1)-vx_T(i,j+1))/(vx_0(i,j-1)-vx_0(i,j+1)); if filtro(i,j)==2 % Manual setting to visualize bad integrated points ftle(i-1,j-1)=-Inf; else ftle(i-1,j-1)=1/(2*T)*log(max(abs(eig(dphi'*dphi)))); end end end end %% Plotting results % figure % plot(t,Y) % figure % plot(Y(:,1),Y(:,2)) % figure xx=linspace(x_0_min,x_0_max,n); vvx=linspace(vx_0_min,vx_0_max,n); [x,vx]=ndgrid(xx(2:n-1),vvx(2:n-1)); figure pcolor(x,vx,ftle) shading flat t_ftle=toc; fprintf('tempo per integrare \t%.2f s\n',t_integrazione) fprintf('tempo per calcolare ftle \t%.2f s\n',t_ftle) % save(['var_' num2str(n) '_' num2str(clock(4)]) nome=['var_xvx_', 'ode00', '_n',num2str(n),'_e',num2str(energy_tol),'_H']; save(nome)