module NatCat where open import Relation.Binary.PropositionalEquality -- If you can show that a relation only ever has one inhabitant -- you get the category laws for free module EasyCategory (obj : Set) (_⟶_ : obj → obj → Set) (_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z) (id : ∀ x → x ⟶ x) (single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s) where idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r idʳ x y r = single-inhabitant x y (r ∘ id y) r idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r idˡ x y r = single-inhabitant x y (id x ∘ r) r ∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t) ∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t)) open import Data.Nat same : (x y : ℕ) (r s : x ≤ y) → r ≡ s same .0 y z≤n z≤n = refl same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s) ≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z ≤-trans .0 y z z≤n s = z≤n ≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s) ≤-refl : ∀ x → x ≤ x ≤-refl zero = z≤n ≤-refl (suc x) = s≤s (≤-refl x) module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same