Files
linguist/samples/Agda/NatCat.agda
2013-06-29 12:28:43 +02:00

40 lines
1.4 KiB
Agda
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module NatCat where
open import Relation.Binary.PropositionalEquality
-- If you can show that a relation only ever has one inhabitant
-- you get the category laws for free
module
EasyCategory
(obj : Set)
(_⟶_ : obj obj Set)
(_∘_ : {x y z} x y y z x z)
(id : x x x)
(single-inhabitant : (x y : obj) (r s : x y) r s)
where
idʳ : x y (r : x y) r id y r
idʳ x y r = single-inhabitant x y (r id y) r
idˡ : x y (r : x y) id x r r
idˡ x y r = single-inhabitant x y (id x r) r
∘-assoc : w x y z (r : w x) (s : x y) (t : y z) (r s) t r (s t)
∘-assoc w x y z r s t = single-inhabitant w z ((r s) t) (r (s t))
open import Data.Nat
same : (x y : ) (r s : x y) r s
same .0 y z≤n z≤n = refl
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)
≤-trans : x y z x y y z x z
≤-trans .0 y z z≤n s = z≤n
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)
≤-refl : x x x
≤-refl zero = z≤n
≤-refl (suc x) = s≤s (≤-refl x)
module Nat-EasyCategory = EasyCategory _≤_ (λ {x}{y}{z} ≤-trans x y z) ≤-refl same