mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 01:30:22 +00:00
325 lines
9.9 KiB
Python
325 lines
9.9 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright © 2013 Martin Ueding <dev@martin-ueding.de>
|
|
|
|
import argparse
|
|
import matplotlib.pyplot as pl
|
|
import numpy as np
|
|
import scipy.optimize as op
|
|
from prettytable import PrettyTable
|
|
|
|
__docformat__ = "restructuredtext en"
|
|
|
|
# Sensitivität der Thermosäule
|
|
S = 30e-6
|
|
|
|
def phif(U):
|
|
return U / S
|
|
|
|
def main():
|
|
options = _parse_args()
|
|
|
|
V = 1000
|
|
|
|
data = np.genfromtxt("a-leer.csv", delimiter="\t")
|
|
t = data[:,0]
|
|
U = data[:,1] / V / 1000
|
|
U_err = 0.7e-3 / V
|
|
|
|
offset = np.mean(U[-3:])
|
|
|
|
x = np.linspace(min(t), max(t))
|
|
y = np.ones(x.size) * offset
|
|
pl.plot(x, y * 10**6, label="Offset")
|
|
|
|
print "Offset: {:.3g} V".format(offset)
|
|
|
|
pl.errorbar(t, U * 10**6, yerr=U_err * 10**6, linestyle="none", marker="+",
|
|
label="Messdaten")
|
|
pl.grid(True)
|
|
pl.legend(loc="best")
|
|
pl.title(u"Bestimmung des Offsets")
|
|
pl.xlabel(ur"Zeit $t / \mathrm{s}$")
|
|
pl.ylabel(ur"Thermospannung $U / \mathrm{\mu V}$")
|
|
pl.savefig("Plot_a-leer.pdf")
|
|
pl.clf()
|
|
|
|
V = 100
|
|
|
|
data = np.genfromtxt("a-Lampe.csv", delimiter="\t")
|
|
t = data[:,0]
|
|
U = data[:,1] / V / 1000 - offset
|
|
U_err = 0.7e-3 / V
|
|
|
|
x = np.linspace(min(t), max(t))
|
|
y = np.ones(x.size) * max(U) * 0.9
|
|
pl.plot(x, y * 10**6, label=ur"$90\%$")
|
|
|
|
pl.errorbar(t, U * 10**6, yerr=U_err * 10**6, linestyle="none", marker="+",
|
|
label="Messdaten")
|
|
pl.grid(True)
|
|
pl.legend(loc="best")
|
|
pl.title(u"Bestimmung der Ansprechzeit")
|
|
pl.xlabel(ur"Zeit $t / \mathrm{s}$")
|
|
pl.ylabel(ur"Thermospannung $U / \mathrm{\mu V}$")
|
|
pl.savefig("Plot_a-Lampe.pdf")
|
|
pl.clf()
|
|
|
|
# Lesliewürfel
|
|
print """
|
|
Lesliewürfel
|
|
============
|
|
"""
|
|
|
|
glanz = np.genfromtxt("b-glanz.csv", delimiter="\t")
|
|
matt = np.genfromtxt("b-matt.csv", delimiter="\t")
|
|
schwarz = np.genfromtxt("b-schwarz.csv", delimiter="\t")
|
|
weiss = np.genfromtxt("b-weiss.csv", delimiter="\t")
|
|
|
|
T0 = 19.0 + 273.15
|
|
T0_err = 1.0
|
|
|
|
glanz[:,0] += 273.15
|
|
matt[:,0] += 273.15
|
|
schwarz[:,0] += 273.15
|
|
weiss[:,0] += 273.15
|
|
|
|
glanz[:,1] /= 1000 * V
|
|
matt[:,1] /= 1000 * V
|
|
schwarz[:,1] /= 1000 * V
|
|
weiss[:,1] /= 1000 * V
|
|
|
|
glanz[:,1] -= offset
|
|
matt[:,1] -= offset
|
|
schwarz[:,1] -= offset
|
|
weiss[:,1] -= offset
|
|
|
|
glanz_phi = phif(glanz[:,1])
|
|
matt_phi = phif(matt[:,1])
|
|
schwarz_phi = phif(schwarz[:,1])
|
|
weiss_phi = phif(weiss[:,1])
|
|
|
|
T_err = 0.3
|
|
|
|
sigma = 5.670373e-8
|
|
|
|
def boltzmann(T, epsilon, offset):
|
|
return epsilon * sigma * T**4 + offset
|
|
|
|
glanz_popt, glanz_pconv = op.curve_fit(boltzmann, glanz[:,0], glanz_phi)
|
|
matt_popt, matt_pconv = op.curve_fit(boltzmann, matt[:,0], matt_phi)
|
|
schwarz_popt, schwarz_pconv = op.curve_fit(boltzmann, schwarz[:,0], schwarz_phi)
|
|
weiss_popt, weiss_pconv = op.curve_fit(boltzmann, weiss[:,0], weiss_phi)
|
|
|
|
glanz_x = np.linspace(min(glanz[:,0]), max(glanz[:,0]))
|
|
glanz_y = boltzmann(glanz_x, *glanz_popt)
|
|
pl.plot(glanz_x, glanz_y, label="Fit glanz", color="gold")
|
|
|
|
matt_x = np.linspace(min(matt[:,0]), max(matt[:,0]))
|
|
matt_y = boltzmann(matt_x, *matt_popt)
|
|
pl.plot(matt_x, matt_y, label="Fit matt", color="yellow")
|
|
|
|
schwarz_x = np.linspace(min(schwarz[:,0]), max(schwarz[:,0]))
|
|
schwarz_y = boltzmann(schwarz_x, *schwarz_popt)
|
|
pl.plot(schwarz_x, schwarz_y, label="Fit schwarz", color="black")
|
|
|
|
weiss_x = np.linspace(min(weiss[:,0]), max(weiss[:,0]))
|
|
weiss_y = boltzmann(weiss_x, *weiss_popt)
|
|
pl.plot(weiss_x, weiss_y, label="Fit weiss", color="gray")
|
|
|
|
print "glanz ε = {:.3g} ± {:.3g}".format(glanz_popt[0], np.sqrt(glanz_pconv.diagonal()[0]))
|
|
print "glanz offset = {:.3g} ± {:.3g}".format(glanz_popt[1], np.sqrt(glanz_pconv.diagonal()[1]))
|
|
print "matt ε = {:.3g} ± {:.3g}".format(matt_popt[0], np.sqrt(matt_pconv.diagonal()[0]))
|
|
print "matt offset = {:.3g} ± {:.3g}".format(matt_popt[1], np.sqrt(matt_pconv.diagonal()[1]))
|
|
print "schwarz ε = {:.3g} ± {:.3g}".format(schwarz_popt[0], np.sqrt(schwarz_pconv.diagonal()[0]))
|
|
print "schwarz offset = {:.3g} ± {:.3g}".format(schwarz_popt[1], np.sqrt(schwarz_pconv.diagonal()[1]))
|
|
print "weiss ε = {:.3g} ± {:.3g}".format(weiss_popt[0], np.sqrt(weiss_pconv.diagonal()[0]))
|
|
print "weiss offset = {:.3g} ± {:.3g}".format(weiss_popt[1], np.sqrt(weiss_pconv.diagonal()[1]))
|
|
|
|
pl.errorbar(glanz[:,0], glanz_phi, xerr=T_err, yerr=U_err/S,
|
|
label="glanz", color="gold", linestyle="none")
|
|
pl.errorbar(matt[:,0], matt_phi, xerr=T_err, yerr=U_err/S,
|
|
label="matt", color="yellow", linestyle="none")
|
|
pl.errorbar(schwarz[:,0], schwarz_phi, xerr=T_err, yerr=U_err/S,
|
|
label="schwarz", color="black", linestyle="none")
|
|
pl.errorbar(weiss[:,0], weiss_phi, xerr=T_err, yerr=U_err/S,
|
|
label="weiss", color="gray", linestyle="none")
|
|
|
|
header = ["T / K", "Phi/F in W/m^2", "Fehler T", "Fehler Phi/F"]
|
|
|
|
print """
|
|
Tabellen für den Lesliewürfel-Plot
|
|
----------------------------------
|
|
"""
|
|
|
|
print "Glanz"
|
|
glanz_table = PrettyTable(header)
|
|
for row in zip(glanz[:,0], glanz_phi, np.ones(glanz[:,0].size)*T_err, np.ones(glanz_phi.size)*U_err/S):
|
|
glanz_table.add_row(row)
|
|
print glanz_table
|
|
print
|
|
|
|
print "Matt"
|
|
matt_table = PrettyTable(header)
|
|
for row in zip(matt[:,0], matt_phi, np.ones(matt[:,0].size)*T_err, np.ones(matt_phi.size)*U_err/S):
|
|
matt_table.add_row(row)
|
|
print matt_table
|
|
print
|
|
|
|
print "Schwarz"
|
|
schwarz_table = PrettyTable(header)
|
|
for row in zip(schwarz[:,0], schwarz_phi, np.ones(schwarz[:,0].size)*T_err, np.ones(schwarz_phi.size)*U_err/S):
|
|
schwarz_table.add_row(row)
|
|
print schwarz_table
|
|
print
|
|
|
|
print "Weiß"
|
|
weiss_table = PrettyTable(header)
|
|
for row in zip(weiss[:,0], weiss_phi, np.ones(weiss[:,0].size)*T_err, np.ones(weiss_phi.size)*U_err/S):
|
|
weiss_table.add_row(row)
|
|
print weiss_table
|
|
print
|
|
|
|
epsilon = 0.1
|
|
|
|
x = np.linspace(min([min(x) for x in [glanz[:,0], matt[:,0], schwarz[:,0],
|
|
weiss[:,0]]]),
|
|
max([max(x) for x in [glanz[:,0], matt[:,0], schwarz[:,0],
|
|
weiss[:,0]]]),
|
|
100)
|
|
offset = - epsilon * sigma * T0**4
|
|
print "ideal offset = {:.3g}".format(offset)
|
|
y = boltzmann(x, epsilon, offset)
|
|
pl.plot(x, y, label=ur"$\epsilon = 0.1$")
|
|
|
|
|
|
pl.grid(True)
|
|
pl.title(u"Lesliewürfel")
|
|
pl.xlabel(ur"Temperatur $T / \mathrm{K}$")
|
|
pl.ylabel(ur"Strahlungsfluss $\frac{\Phi}{F} / \mathrm{\frac{W}{m^2}}$")
|
|
pl.legend(loc="best", prop={"size": 12})
|
|
pl.savefig("Plot_b.pdf")
|
|
pl.clf()
|
|
|
|
# Aufgabe c
|
|
print """
|
|
Aufgabe c
|
|
=========
|
|
"""
|
|
|
|
data = np.genfromtxt("c-erste.csv", delimiter="\t")
|
|
d = data[:,0] / 100
|
|
U = data[:,1] / V
|
|
phi = phif(U)
|
|
|
|
def c(x, a, b):
|
|
return a*x + b
|
|
|
|
|
|
dx = d**(-2)
|
|
dy = phi
|
|
|
|
dx_err = np.abs(-2 * d**(-3)) * 0.001
|
|
dy_err = 0.001 / S
|
|
|
|
popt, pconv = op.curve_fit(c, dx, dy)
|
|
x = np.linspace(min(dx), max(dx))
|
|
y = c(x, *popt)
|
|
pl.plot(x, y, label="Fit")
|
|
|
|
print "Fitparameter"
|
|
print "a", popt[0], "±", np.sqrt(pconv.diagonal()[0])
|
|
print "b", popt[1], "±", np.sqrt(pconv.diagonal()[1])
|
|
|
|
pl.errorbar(dx, dy, xerr=dx_err, yerr=dy_err, linestyle="none",
|
|
marker="+", label="Messdaten")
|
|
pl.grid(True)
|
|
pl.title(u"Halogenlampe bei verschiedenen Abständen")
|
|
pl.xlabel(ur"Abstand $d^{-2} / \mathrm{m^{-2}}$")
|
|
pl.ylabel(ur"Strahlungsfluss $\frac{\Phi}{F} / \mathrm{\frac{W}{m^2}}$")
|
|
pl.legend(loc="best")
|
|
pl.savefig("Plot_c-erste.pdf")
|
|
pl.clf()
|
|
|
|
print
|
|
print "Tabelle für Aufgabe c"
|
|
fields = ["d^-2 in m^-2", "Phi/F in W/m^2", "Fehler d^-2", "Fehler Phi/F"]
|
|
table = PrettyTable(fields)
|
|
table.align = "l"
|
|
for row in zip(dx, dy, dx_err, np.ones(dy.size)*dy_err):
|
|
table.add_row(row)
|
|
print table
|
|
print
|
|
|
|
data = np.genfromtxt("c-zweite.csv", delimiter="\t")
|
|
U1 = data[:,0]
|
|
I1 = data[:,1]
|
|
U2 = data[:,2] / V
|
|
|
|
U_err = 0.001
|
|
I_err = 0.01
|
|
|
|
p = U1 * I1
|
|
R = U1 / I1
|
|
R_err = np.sqrt(
|
|
(1/I1 * U_err)**2
|
|
+ (U1/I1**2 * I_err)**2
|
|
)
|
|
|
|
phi = phif(U2)
|
|
phi_err = U_err / S
|
|
|
|
alpha = 4.82e-3
|
|
beta = 6.76e-7
|
|
|
|
R0 = 0.35
|
|
R0_err = 0.05
|
|
|
|
T = (-alpha*R0 + np.sqrt(R0)*np.sqrt(4*beta*R + alpha**2*R0 - 4*beta*R0) +
|
|
2*beta*R0*T0)/(2*beta*R0)
|
|
|
|
popt, pconv = op.curve_fit(boltzmann, T, phi, sigma=phi_err)
|
|
x = np.linspace(min(T), max(T))
|
|
y = boltzmann(x, *popt)
|
|
pl.plot(x, y, label="Fit")
|
|
|
|
epsilon = popt[0]
|
|
epsilon_err = np.sqrt(pconv.diagonal()[0])
|
|
|
|
print "ε = {:.3g} ± {:.3g}".format(epsilon, epsilon_err)
|
|
|
|
f1 = (1/(np.sqrt(R0)*np.sqrt(4*beta*R + alpha**2*R0 - 4*beta*R0))) * R_err
|
|
f2 = T0_err
|
|
f3 = ((-alpha + ((alpha**2 - 4*beta)*np.sqrt(R0))/( 2*np.sqrt(4*beta*R + alpha**2*R0 - 4*beta*R0)) + np.sqrt( 4*beta*R + alpha**2*R0 - 4*beta*R0)/(2*np.sqrt(R0)) + 2*beta*T0)/( 2*beta*R0) - (-alpha*R0 + np.sqrt(R0)*np.sqrt(4*beta*R + alpha**2*R0 - 4*beta*R0) + 2*beta*R0*T0)/( 2*beta*R0**2)) * R0_err
|
|
|
|
T_err = np.sqrt(f1**2 + f2**2 + f3**2)
|
|
|
|
pl.errorbar(T, phi, xerr=T_err, yerr=phi_err, label="Messdaten",
|
|
linestyle="none", marker="+")
|
|
pl.grid(True)
|
|
pl.legend(loc="best")
|
|
pl.title(u"Halogenlampe bei verschiedenen Leistungen")
|
|
pl.xlabel(u"Temperatur $T / \mathrm{K}$")
|
|
pl.ylabel(ur"Strahlungsfluss $\frac{\Phi}{F} / \mathrm{\frac{W}{m^2}}$")
|
|
pl.savefig("Plot_c-zweite.pdf")
|
|
pl.clf()
|
|
|
|
def _parse_args():
|
|
"""
|
|
Parses the command line arguments.
|
|
|
|
:return: Namespace with arguments.
|
|
:rtype: Namespace
|
|
"""
|
|
parser = argparse.ArgumentParser(description="")
|
|
#parser.add_argument("args", metavar="N", type=str, nargs="*", help="Positional arguments.")
|
|
#parser.add_argument("", dest="", type="", default=, help=)
|
|
#parser.add_argument("--version", action="version", version="<the version>")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|