Files
linguist/samples/X10/KMeans.x10
2015-08-24 13:26:43 -04:00

152 lines
4.8 KiB
Plaintext

/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
import x10.util.Random;
/**
* A KMeans object o can compute K means of a given set of
* points of dimension o.myDim.
* <p>
* This class implements a sequential program, that is readily parallelizable.
*
* For a scalable, high-performance version of this benchmark see
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
*/
public class KMeans(myDim:Long) {
static val DIM=2;
static val K=4;
static val POINTS=2000;
static val ITERATIONS=50;
static val EPS=0.01F;
static type ValVector(k:Long) = Rail[Float]{self.size==k};
static type ValVector = ValVector(DIM);
static type Vector(k:Long) = Rail[Float]{self.size==k};
static type Vector = Vector(DIM);
static type SumVector(d:Long) = V{self.dim==d};
static type SumVector = SumVector(DIM);
/**
* V represents the sum of 'count' number of vectors of dimension 'dim'.
*/
static class V(dim:Long) implements (Long)=>Float {
var vec: Vector(dim);
var count:Int;
def this(dim:Long, init:(Long)=>Float): SumVector(dim) {
property(dim);
vec = new Rail[Float](this.dim, init);
count = 0n;
}
public operator this(i:Long) = vec(i);
def makeZero() {
for (i in 0..(dim-1))
vec(i) =0.0F;
count=0n;
}
def addIn(a:ValVector(dim)) {
for (i in 0..(dim-1))
vec(i) += a(i);
count++;
}
def div(f:Int) {
for (i in 0..(dim-1))
vec(i) /= f;
}
def dist(a:ValVector(dim)):Float {
var dist:Float=0.0F;
for (i in 0..(dim-1)) {
val tmp = vec(i)-a(i);
dist += tmp*tmp;
}
return dist;
}
def dist(a:SumVector(dim)):Float {
var dist:Float=0.0F;
for (i in 0..(dim-1)) {
val tmp = vec(i)-a(i);
dist += tmp*tmp;
}
return dist;
}
def print() {
Console.OUT.println();
for (i in 0..(dim-1)) {
Console.OUT.print((i>0? " " : "") + vec(i));
}
}
def normalize() { div(count);}
def count() = count;
}
def this(myDim:Long):KMeans{self.myDim==myDim} {
property(myDim);
}
static type KMeansData(myK:Long, myDim:Long)= Rail[SumVector(myDim)]{self.size==myK};
/**
* Compute myK means for the given set of points of dimension myDim.
*/
def computeMeans(myK:Long, points:Rail[ValVector(myDim)]):KMeansData(myK, myDim) {
var redCluster : KMeansData(myK, myDim) =
new Rail[SumVector(myDim)](myK, (i:long)=> new V(myDim, (j:long)=>points(i)(j)));
var blackCluster: KMeansData(myK, myDim) =
new Rail[SumVector(myDim)](myK, (i:long)=> new V(myDim, (j:long)=>0.0F));
for (i in 1..ITERATIONS) {
val tmp = redCluster;
redCluster = blackCluster;
blackCluster=tmp;
for (p in 0..(POINTS-1)) {
var closest:Long = -1;
var closestDist:Float = Float.MAX_VALUE;
val point = points(p);
for (k in 0..(myK-1)) { // compute closest mean in cluster.
val dist = blackCluster(k).dist(point);
if (dist < closestDist) {
closestDist = dist;
closest = k;
}
}
redCluster(closest).addIn(point);
}
for (k in 0..(myK-1))
redCluster(k).normalize();
var b:Boolean = true;
for (k in 0..(myK-1)) {
if (redCluster(k).dist(blackCluster(k)) > EPS) {
b=false;
break;
}
}
if (b)
break;
for (k in 0..(myK-1))
blackCluster(k).makeZero();
}
return redCluster;
}
public static def main (Rail[String]) {
val rnd = new Random(0);
val points = new Rail[ValVector](POINTS,
(long)=>new Rail[Float](DIM, (long)=>rnd.nextFloat()));
val result = new KMeans(DIM).computeMeans(K, points);
for (k in 0..(K-1)) result(k).print();
}
}
// vim: shiftwidth=4:tabstop=4:expandtab