mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			76 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Lean4
		
	
	
	
	
	
			
		
		
	
	
			76 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Lean4
		
	
	
	
	
	
| /-
 | |
| Copyright (c) 2014 Microsoft Corporation. All rights reserved.
 | |
| Released under Apache 2.0 license as described in the file LICENSE.
 | |
| 
 | |
| Module: algebra.binary
 | |
| Authors: Leonardo de Moura, Jeremy Avigad
 | |
| 
 | |
| General properties of binary operations.
 | |
| -/
 | |
| 
 | |
| import logic.eq
 | |
| open eq.ops
 | |
| 
 | |
| namespace binary
 | |
|   section
 | |
|     variable {A : Type}
 | |
|     variables (op₁ : A → A → A) (inv : A → A) (one : A)
 | |
| 
 | |
|     local notation a * b := op₁ a b
 | |
|     local notation a ⁻¹  := inv a
 | |
|     local notation 1     := one
 | |
| 
 | |
|     definition commutative := ∀a b, a * b = b * a
 | |
|     definition associative := ∀a b c, (a * b) * c = a * (b * c)
 | |
|     definition left_identity := ∀a, 1 * a = a
 | |
|     definition right_identity := ∀a, a * 1 = a
 | |
|     definition left_inverse := ∀a, a⁻¹ * a = 1
 | |
|     definition right_inverse := ∀a, a * a⁻¹ = 1
 | |
|     definition left_cancelative := ∀a b c, a * b = a * c → b = c
 | |
|     definition right_cancelative := ∀a b c, a * b = c * b → a = c
 | |
| 
 | |
|     definition inv_op_cancel_left := ∀a b, a⁻¹ * (a * b) = b
 | |
|     definition op_inv_cancel_left := ∀a b, a * (a⁻¹ * b) = b
 | |
|     definition inv_op_cancel_right := ∀a b, a * b⁻¹ * b =  a
 | |
|     definition op_inv_cancel_right := ∀a b, a * b * b⁻¹ = a
 | |
| 
 | |
|     variable (op₂ : A → A → A)
 | |
| 
 | |
|     local notation a + b := op₂ a b
 | |
| 
 | |
|     definition left_distributive := ∀a b c, a * (b + c) = a * b + a * c
 | |
|     definition right_distributive := ∀a b c, (a + b) * c = a * c + b * c
 | |
|   end
 | |
| 
 | |
|   context
 | |
|     variable {A : Type}
 | |
|     variable {f : A → A → A}
 | |
|     variable H_comm : commutative f
 | |
|     variable H_assoc : associative f
 | |
|     infixl `*` := f
 | |
|     theorem left_comm : ∀a b c, a*(b*c) = b*(a*c) :=
 | |
|     take a b c, calc
 | |
|       a*(b*c) = (a*b)*c  : H_assoc
 | |
|         ...   = (b*a)*c  : H_comm
 | |
|         ...   = b*(a*c)  : H_assoc
 | |
| 
 | |
|     theorem right_comm : ∀a b c, (a*b)*c = (a*c)*b :=
 | |
|     take a b c, calc
 | |
|       (a*b)*c = a*(b*c) : H_assoc
 | |
|         ...   = a*(c*b) : H_comm
 | |
|         ...   = (a*c)*b : H_assoc
 | |
|   end
 | |
| 
 | |
|   context
 | |
|     variable {A : Type}
 | |
|     variable {f : A → A → A}
 | |
|     variable H_assoc : associative f
 | |
|     infixl `*` := f
 | |
|     theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) :=
 | |
|     calc
 | |
|       (a*b)*(c*d) = a*(b*(c*d)) : H_assoc
 | |
|               ... = a*((b*c)*d) : H_assoc
 | |
|   end
 | |
| 
 | |
| end binary
 |