mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			71 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Lean4
		
	
	
	
	
	
			
		
		
	
	
			71 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Lean4
		
	
	
	
	
	
-- Copyright (c) 2015 Jakob von Raumer. All rights reserved.
 | 
						|
-- Released under Apache 2.0 license as described in the file LICENSE.
 | 
						|
-- Authors: Jakob von Raumer
 | 
						|
-- Category of sets
 | 
						|
 | 
						|
import .basic types.pi trunc
 | 
						|
 | 
						|
open truncation sigma sigma.ops pi function eq morphism precategory
 | 
						|
open equiv
 | 
						|
 | 
						|
namespace precategory
 | 
						|
 | 
						|
  universe variable l
 | 
						|
 | 
						|
  definition set_precategory : precategory.{l+1 l} (Σ (A : Type.{l}), is_hset A) :=
 | 
						|
  begin
 | 
						|
    fapply precategory.mk.{l+1 l},
 | 
						|
                  intros, apply (a.1 → a_1.1),
 | 
						|
                intros, apply trunc_pi, intros, apply b.2,
 | 
						|
              intros, intro x, exact (a_1 (a_2 x)),
 | 
						|
            intros, exact (λ (x : a.1), x),
 | 
						|
          intros, apply funext.path_pi, intro x, apply idp,
 | 
						|
        intros, apply funext.path_pi, intro x, apply idp,
 | 
						|
      intros, apply funext.path_pi, intro x, apply idp,
 | 
						|
  end
 | 
						|
 | 
						|
end precategory
 | 
						|
 | 
						|
namespace category
 | 
						|
 | 
						|
  universe variable l
 | 
						|
  local attribute precategory.set_precategory.{l+1 l} [instance]
 | 
						|
 | 
						|
  definition set_category_equiv_iso (a b : (Σ (A : Type.{l}), is_hset A))
 | 
						|
    : (a ≅ b) = (a.1 ≃ b.1) :=
 | 
						|
  /-begin
 | 
						|
    apply ua, fapply equiv.mk,
 | 
						|
      intro H,
 | 
						|
        apply (isomorphic.rec_on H), intros (H1, H2),
 | 
						|
        apply (is_iso.rec_on H2), intros (H3, H4, H5),
 | 
						|
        fapply equiv.mk,
 | 
						|
        apply (isomorphic.rec_on H), intros (H1, H2),
 | 
						|
        exact H1,
 | 
						|
      fapply is_equiv.adjointify, exact H3,
 | 
						|
          exact sorry,
 | 
						|
        exact sorry,
 | 
						|
  end-/ sorry
 | 
						|
 | 
						|
  definition set_category : category.{l+1 l} (Σ (A : Type.{l}), is_hset A) :=
 | 
						|
  /-begin
 | 
						|
    assert (C : precategory.{l+1 l} (Σ (A : Type.{l}), is_hset A)),
 | 
						|
      apply precategory.set_precategory,
 | 
						|
    apply category.mk,
 | 
						|
    assert (p : (λ A B p, (set_category_equiv_iso A B) ▹ iso_of_path p) = (λ A B p, @equiv_path A.1 B.1 p)),
 | 
						|
    apply is_equiv.adjointify,
 | 
						|
        intros,
 | 
						|
        apply (isomorphic.rec_on a_1), intros (iso', is_iso'),
 | 
						|
        apply (is_iso.rec_on is_iso'), intros (f', f'sect, f'retr),
 | 
						|
        fapply sigma.path,
 | 
						|
          apply ua, fapply equiv.mk, exact iso',
 | 
						|
          fapply is_equiv.adjointify,
 | 
						|
              exact f',
 | 
						|
            intros, apply (f'retr ▹ _),
 | 
						|
          intros, apply (f'sect ▹ _),
 | 
						|
        apply (@is_hprop.elim),
 | 
						|
        apply is_trunc_is_hprop,
 | 
						|
      intros,
 | 
						|
  end -/ sorry
 | 
						|
 | 
						|
end category
 |