Files
linguist/samples/Chapel/distributions.chpl
2015-04-15 07:43:25 -07:00

393 lines
12 KiB
Chapel

//
// Distributions Primer
//
// This primer demonstrates uses of some of Chapel's standard
// distributions. To use these distributions in a Chapel program,
// the respective module must be used:
//
use BlockDist, CyclicDist, BlockCycDist, ReplicatedDist;
use DimensionalDist2D, ReplicatedDim, BlockCycDim;
//
// For each distribution, we'll create a distributed domain and array
// and then initialize it just to give a brief flavor of how the
// distribution maps across locales. Running this example on 6
// locales does a nice job of illustrating the distribution
// characteristics.
//
// All of these distributions support options to map to a different
// virtual locale grid than the one used by default (a
// multidimensional factoring of the built-in Locales array), as well
// as to control the amount of parallelism used in data parallel
// loops. See the Standard Distributions chapter of the language spec
// for more details.
//
//
// Make the program size configurable from the command line.
//
config const n = 8;
//
// Declare a 2-dimensional domain Space that we will later use to
// initialize the distributed domains.
//
const Space = {1..n, 1..n};
//
// The Block distribution distributes a bounding box from
// n-dimensional space across the target locale array viewed as an
// n-dimensional virtual locale grid. The bounding box is blocked
// into roughly equal portions across the locales. Note that domains
// declared over a Block distribution can also store indices outside
// of the bounding box; the bounding box is merely used to compute
// the blocking of space.
//
// In this example, we declare a 2-dimensional Block-distributed
// domain BlockSpace and a Block-distributed array BA declared over
// the domain.
//
const BlockSpace = Space dmapped Block(boundingBox=Space);
var BA: [BlockSpace] int;
//
// To illustrate how the index set is distributed across locales,
// we'll use a forall loop to initialize each array element to the
// locale ID that stores that index/element/iteration.
//
forall ba in BA do
ba = here.id;
//
// The 'hasSingleLocalSubdomain' method on arrays will return true if the
// index set for a locale can be represented by a single domain.
//
if !BA.hasSingleLocalSubdomain() then
halt("For a Block distribution, the index set per locale should be \
represented by a single domain");
//
// If the distribution's subdomains can be represented as single subdomain,
// we can use the 'localSubdomain' method to get the index set for the
// current locale.
//
// Below, we'll use the index set to confirm that the array elements have the
// correct locale id.
//
for L in Locales {
on L {
const indices = BA.localSubdomain();
for i in indices {
if BA[i] != L.id then
halt("Error: incorrect locale id");
}
}
}
//
// Output the Block-distributed array to visually see how the elements
// are partitioned across the locales.
//
writeln("Block Array Index Map");
writeln(BA);
writeln();
//
// Most of Chapel's standard distributions support an optional
// targetLocales argument that permits you to pass in your own
// array of locales to be targeted. In general, the targetLocales
// argument should match the rank of the distribution. So for
// example, to map a Block to a [numLocales x 1] view of the
// locale set, one could do something like this:
//
// We start by creating our own array of the locale values. Here
// we use the standard array reshape function for convenience,
// but more generally, this array could be accessed/assigned like any
// other.
//
var MyLocaleView = {0..#numLocales, 1..1};
var MyLocales: [MyLocaleView] locale = reshape(Locales, MyLocaleView);
//
// Then we'll declare a distributed domain/array that targets
// this view of the locales:
//
const BlockSpace2 = Space dmapped Block(boundingBox=Space,
targetLocales=MyLocales);
var BA2: [BlockSpace2] int;
//
// Then we'll do a similar computation as before to verify where
// everything ended up:
//
forall ba in BA2 do
ba = here.id;
writeln("Block Array Index Map");
writeln(BA2);
writeln();
//
// We can use the 'targetLocales' method available on an array to get the
// locales array used as targets.
//
for (L, ML) in zip(BA2.targetLocales(), MyLocales) do
if L != ML then
halt("Error: BA2.targetLocales() should equal MyLocales");
//
// Next, we'll perform a similar computation for the Cyclic distribution.
// Cyclic distributions start at a designated n-dimensional index and
// distribute the n-dimensional space across an n-dimensional array
// of locales in a round-robin fashion (in each dimension). As with
// the Block distribution, domains may be declared using the
// distribution who have lower indices that the starting index; that
// value should just be considered a parameterization of how the
// distribution is defined.
//
const CyclicSpace = Space dmapped Cyclic(startIdx=Space.low);
var CA: [CyclicSpace] int;
forall ca in CA do
ca = here.id;
writeln("Cyclic Array Index Map");
writeln(CA);
writeln();
//
// The domain returned by 'localSubdomain' need not be a dense block, as is
// the case for the Cyclic Distribution.
//
on Locales[0] {
const indices = CA.localSubdomain();
for i in indices {
if CA[i] != 0 then
halt("Error: Cyclic array values on Locale 0 should be zero");
}
}
//
// Next, we'll declare a Block-Cyclic distribution. These
// distributions also deal out indices in a round-robin fashion,
// but rather than dealing out singleton indices, they deal out blocks
// of indices. Thus, the BlockCyclic distribution is parameterized
// by a starting index (as with Cyclic) and a block size (per
// dimension) specifying how large the chunks to be dealt out are.
//
const BlkCycSpace = Space dmapped BlockCyclic(startIdx=Space.low,
blocksize=(2, 3));
var BCA: [BlkCycSpace] int;
forall bca in BCA do
bca = here.id;
writeln("Block-Cyclic Array Index Map");
writeln(BCA);
writeln();
//
// A locale's index set for a Block-Cyclic distribution cannot be represented
// by a single subdomain.
//
if BCA.hasSingleLocalSubdomain() then
halt("A Block-Cyclic index set cannot be represented by a single subdomain");
//
// If the local index set cannot be represented by a single subdomain,
// we can use the 'localSubdomains' iterator to yield a number of domains
// that represent the whole index set.
//
// Let's write a function that will use 'localSubdomains' to verify the
// correctness of the array values.
//
proc verifyID(Data: []) {
for L in Locales {
on L {
for indices in Data.localSubdomains() {
for i in indices {
if Data[i] != L.id then
halt("Error: incorrect locale id");
}
}
}
}
}
verifyID(BCA);
//
// The 'localSubdomains' iterator is also available on distributions that
// can represent a locale's index set with a single domain. This allows us to
// write more general code that will work for all distributions.
//
// This means that we can call the 'verifyID' function on any array, like the
// 'BA' array from earlier.
//
verifyID(BA);
//
// The ReplicatedDist distribution is different: each of the
// original domain's indices - and the corresponding array elements -
// is replicated onto each locale. (Note: consistency among these
// array replicands is NOT maintained automatically.)
//
// This replication is observable in some cases but not others,
// as shown below. Note: this behavior may change in the future.
//
const ReplicatedSpace = Space dmapped ReplicatedDist();
var RA: [ReplicatedSpace] int;
// The replication is observable - this visits each replicand.
forall ra in RA do
ra = here.id;
writeln("Replicated Array Index Map, ", RA.numElements, " elements total");
writeln(RA);
writeln();
//
// The replication is observable when the replicated array is
// on the left-hand side. If the right-hand side is not replicated,
// it is copied into each replicand.
// We illustrate this using a non-distributed array.
//
var A: [Space] int = [(i,j) in Space] i*100 + j;
RA = A;
writeln("Replicated Array after being array-assigned into");
writeln(RA);
writeln();
//
// Analogously, each replicand will be visited and
// other participated expressions will be computed on each locale
// (a) when the replicated array is assigned a scalar:
// RA = 5;
// (b) when it appears first in a zippered forall loop:
// forall (ra, a) in zip(RA, A) do ...;
// (c) when it appears in a for loop:
// for ra in RA do ...;
//
// Zippering (RA,A) or (A,RA) in a 'for' loop will generate
// an error due to their different number of elements.
// Let RA store the Index Map again, for the examples below.
forall ra in RA do
ra = here.id;
//
// Only the local replicand is accessed - replication is NOT observable
// and consistency is NOT maintained - when:
// (a) the replicated array is indexed - an individual element is read...
//
on Locales(0) do
writeln("on ", here, ": ", RA(Space.low));
on Locales(LocaleSpace.high) do
writeln("on ", here, ": ", RA(Space.low));
writeln();
// ...or an individual element is written;
on Locales(LocaleSpace.high) do
RA(Space.low) = 7777;
writeln("Replicated Array after being indexed into");
writeln(RA);
writeln();
//
// (b) the replicated array is on the right-hand side of an assignment...
//
on Locales(LocaleSpace.high) do
A = RA + 4;
writeln("Non-Replicated Array after assignment from Replicated Array + 4");
writeln(A);
writeln();
//
// (c) ...or, generally, the replicated array or domain participates
// in a zippered forall loop, but not in the first position.
// The loop could look like:
//
// forall (a, (i,j), ra) in (A, ReplicatedSpace, RA) do ...;
//
//
// The DimensionalDist2D distribution lets us build a 2D distribution
// as a composition of specifiers for individual dimensions.
// Under such a "dimensional" distribution each dimension is handled
// independently of the other.
//
// The dimension specifiers are similar to the corresponding multi-dimensional
// distributions in constructor arguments and index-to-locale mapping rules.
// However, instead of an array of locales, a specifier constructor
// accepts just the number of locales that the indices in the corresponding
// dimension will be distributed across.
//
// The DimensionalDist2D constructor requires:
// * an [0..nl1-1, 0..nl2-1] array of locales, where
// nl1 and nl2 are the number of locales in each dimension, and
// * two dimension specifiers, created for nl1 and nl2 locale counts, resp.
//
// Presently, the following dimension specifiers are available
// (shown here with their constructor arguments):
//
// * ReplicatedDim(numLocales)
// * BlockDim(numLocales, boundingBoxLow, boundingBoxHigh)
// * BlockCyclicDim(lowIdx, blockSize, numLocales)
//
//
// The following example creates a dimensional distribution that
// replicates over 2 locales (when available) in the first dimemsion
// and distributes using block-cyclic distribution in the second dimension.
// The example computes nl1 and nl2 and reshapes MyLocales correspondingly.
//
var (nl1, nl2) = if numLocales == 1 then (1, 1) else (2, numLocales/2);
MyLocaleView = {0..#nl1, 0..#nl2};
MyLocales = reshape(Locales[0..#nl1*nl2], MyLocaleView);
const DimReplicatedBlockcyclicSpace = Space
dmapped DimensionalDist2D(MyLocales,
new ReplicatedDim(numLocales = nl1),
new BlockCyclicDim(numLocales = nl2,
lowIdx = 1, blockSize = 2));
var DRBA: [DimReplicatedBlockcyclicSpace] int;
// The ReplicatedDim specifier always accesses the local replicand.
// (This differs from how the ReplicatedDist distribution works.)
//
// This example visits each replicand. The behavior is the same
// regardless of the second index into MyLocales below.
for locId1 in 0..#nl1 do on MyLocales[locId1, 0] {
forall drba in DRBA do
drba = here.id;
writeln("Dimensional2D(Replicated,BlockCyclic) Array Index Map",
" from ", here);
// Technicality: 'writeln(DRBA)' would read DRBA always on Locale 0.
// Since we want to see what DRBA contains on the current locale,
// we use 'Helper' that is mapped using the default distribution.
// 'Helper = DRBA' captures the view of DRBA on the current locale,
// which we then print out.
const Helper: [Space] int = DRBA;
writeln(Helper);
writeln();
}