mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			15670 lines
		
	
	
		
			652 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			15670 lines
		
	
	
		
			652 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Generated by Cython 0.17.4 on Mon Jan  7 18:29:40 2013 */
 | |
| 
 | |
| #define PY_SSIZE_T_CLEAN
 | |
| #include "Python.h"
 | |
| #ifndef Py_PYTHON_H
 | |
|     #error Python headers needed to compile C extensions, please install development version of Python.
 | |
| #elif PY_VERSION_HEX < 0x02040000
 | |
|     #error Cython requires Python 2.4+.
 | |
| #else
 | |
| #include <stddef.h> /* For offsetof */
 | |
| #ifndef offsetof
 | |
| #define offsetof(type, member) ( (size_t) & ((type*)0) -> member )
 | |
| #endif
 | |
| #if !defined(WIN32) && !defined(MS_WINDOWS)
 | |
|   #ifndef __stdcall
 | |
|     #define __stdcall
 | |
|   #endif
 | |
|   #ifndef __cdecl
 | |
|     #define __cdecl
 | |
|   #endif
 | |
|   #ifndef __fastcall
 | |
|     #define __fastcall
 | |
|   #endif
 | |
| #endif
 | |
| #ifndef DL_IMPORT
 | |
|   #define DL_IMPORT(t) t
 | |
| #endif
 | |
| #ifndef DL_EXPORT
 | |
|   #define DL_EXPORT(t) t
 | |
| #endif
 | |
| #ifndef PY_LONG_LONG
 | |
|   #define PY_LONG_LONG LONG_LONG
 | |
| #endif
 | |
| #ifndef Py_HUGE_VAL
 | |
|   #define Py_HUGE_VAL HUGE_VAL
 | |
| #endif
 | |
| #ifdef PYPY_VERSION
 | |
| #define CYTHON_COMPILING_IN_PYPY 1
 | |
| #define CYTHON_COMPILING_IN_CPYTHON 0
 | |
| #else
 | |
| #define CYTHON_COMPILING_IN_PYPY 0
 | |
| #define CYTHON_COMPILING_IN_CPYTHON 1
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x02050000
 | |
|   typedef int Py_ssize_t;
 | |
|   #define PY_SSIZE_T_MAX INT_MAX
 | |
|   #define PY_SSIZE_T_MIN INT_MIN
 | |
|   #define PY_FORMAT_SIZE_T ""
 | |
|   #define CYTHON_FORMAT_SSIZE_T ""
 | |
|   #define PyInt_FromSsize_t(z) PyInt_FromLong(z)
 | |
|   #define PyInt_AsSsize_t(o)   __Pyx_PyInt_AsInt(o)
 | |
|   #define PyNumber_Index(o)    ((PyNumber_Check(o) && !PyFloat_Check(o)) ? PyNumber_Int(o) : \
 | |
|                                 (PyErr_Format(PyExc_TypeError, \
 | |
|                                               "expected index value, got %.200s", Py_TYPE(o)->tp_name), \
 | |
|                                  (PyObject*)0))
 | |
|   #define __Pyx_PyIndex_Check(o) (PyNumber_Check(o) && !PyFloat_Check(o) && \
 | |
|                                   !PyComplex_Check(o))
 | |
|   #define PyIndex_Check __Pyx_PyIndex_Check
 | |
|   #define PyErr_WarnEx(category, message, stacklevel) PyErr_Warn(category, message)
 | |
|   #define __PYX_BUILD_PY_SSIZE_T "i"
 | |
| #else
 | |
|   #define __PYX_BUILD_PY_SSIZE_T "n"
 | |
|   #define CYTHON_FORMAT_SSIZE_T "z"
 | |
|   #define __Pyx_PyIndex_Check PyIndex_Check
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x02060000
 | |
|   #define Py_REFCNT(ob) (((PyObject*)(ob))->ob_refcnt)
 | |
|   #define Py_TYPE(ob)   (((PyObject*)(ob))->ob_type)
 | |
|   #define Py_SIZE(ob)   (((PyVarObject*)(ob))->ob_size)
 | |
|   #define PyVarObject_HEAD_INIT(type, size) \
 | |
|           PyObject_HEAD_INIT(type) size,
 | |
|   #define PyType_Modified(t)
 | |
|   typedef struct {
 | |
|      void *buf;
 | |
|      PyObject *obj;
 | |
|      Py_ssize_t len;
 | |
|      Py_ssize_t itemsize;
 | |
|      int readonly;
 | |
|      int ndim;
 | |
|      char *format;
 | |
|      Py_ssize_t *shape;
 | |
|      Py_ssize_t *strides;
 | |
|      Py_ssize_t *suboffsets;
 | |
|      void *internal;
 | |
|   } Py_buffer;
 | |
|   #define PyBUF_SIMPLE 0
 | |
|   #define PyBUF_WRITABLE 0x0001
 | |
|   #define PyBUF_FORMAT 0x0004
 | |
|   #define PyBUF_ND 0x0008
 | |
|   #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
 | |
|   #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
 | |
|   #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
 | |
|   #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
 | |
|   #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
 | |
|   #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_FORMAT | PyBUF_WRITABLE)
 | |
|   #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_FORMAT | PyBUF_WRITABLE)
 | |
|   typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
 | |
|   typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
 | |
| #endif
 | |
| #if PY_MAJOR_VERSION < 3
 | |
|   #define __Pyx_BUILTIN_MODULE_NAME "__builtin__"
 | |
|   #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \
 | |
|           PyCode_New(a, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
 | |
| #else
 | |
|   #define __Pyx_BUILTIN_MODULE_NAME "builtins"
 | |
|   #define __Pyx_PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos) \
 | |
|           PyCode_New(a, k, l, s, f, code, c, n, v, fv, cell, fn, name, fline, lnos)
 | |
| #endif
 | |
| #if PY_MAJOR_VERSION < 3 && PY_MINOR_VERSION < 6
 | |
|   #define PyUnicode_FromString(s) PyUnicode_Decode(s, strlen(s), "UTF-8", "strict")
 | |
| #endif
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
|   #define Py_TPFLAGS_CHECKTYPES 0
 | |
|   #define Py_TPFLAGS_HAVE_INDEX 0
 | |
| #endif
 | |
| #if (PY_VERSION_HEX < 0x02060000) || (PY_MAJOR_VERSION >= 3)
 | |
|   #define Py_TPFLAGS_HAVE_NEWBUFFER 0
 | |
| #endif
 | |
| #if PY_VERSION_HEX > 0x03030000 && defined(PyUnicode_KIND)
 | |
|   #define CYTHON_PEP393_ENABLED 1
 | |
|   #define __Pyx_PyUnicode_READY(op)       (likely(PyUnicode_IS_READY(op)) ? \
 | |
|                                               0 : _PyUnicode_Ready((PyObject *)(op)))
 | |
|   #define __Pyx_PyUnicode_GET_LENGTH(u)   PyUnicode_GET_LENGTH(u)
 | |
|   #define __Pyx_PyUnicode_READ_CHAR(u, i) PyUnicode_READ_CHAR(u, i)
 | |
|   #define __Pyx_PyUnicode_READ(k, d, i)   PyUnicode_READ(k, d, i)
 | |
| #else
 | |
|   #define CYTHON_PEP393_ENABLED 0
 | |
|   #define __Pyx_PyUnicode_READY(op)       (0)
 | |
|   #define __Pyx_PyUnicode_GET_LENGTH(u)   PyUnicode_GET_SIZE(u)
 | |
|   #define __Pyx_PyUnicode_READ_CHAR(u, i) ((Py_UCS4)(PyUnicode_AS_UNICODE(u)[i]))
 | |
|   #define __Pyx_PyUnicode_READ(k, d, i)   ((k=k), (Py_UCS4)(((Py_UNICODE*)d)[i]))
 | |
| #endif
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
|   #define PyBaseString_Type            PyUnicode_Type
 | |
|   #define PyStringObject               PyUnicodeObject
 | |
|   #define PyString_Type                PyUnicode_Type
 | |
|   #define PyString_Check               PyUnicode_Check
 | |
|   #define PyString_CheckExact          PyUnicode_CheckExact
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x02060000
 | |
|   #define PyBytesObject                PyStringObject
 | |
|   #define PyBytes_Type                 PyString_Type
 | |
|   #define PyBytes_Check                PyString_Check
 | |
|   #define PyBytes_CheckExact           PyString_CheckExact
 | |
|   #define PyBytes_FromString           PyString_FromString
 | |
|   #define PyBytes_FromStringAndSize    PyString_FromStringAndSize
 | |
|   #define PyBytes_FromFormat           PyString_FromFormat
 | |
|   #define PyBytes_DecodeEscape         PyString_DecodeEscape
 | |
|   #define PyBytes_AsString             PyString_AsString
 | |
|   #define PyBytes_AsStringAndSize      PyString_AsStringAndSize
 | |
|   #define PyBytes_Size                 PyString_Size
 | |
|   #define PyBytes_AS_STRING            PyString_AS_STRING
 | |
|   #define PyBytes_GET_SIZE             PyString_GET_SIZE
 | |
|   #define PyBytes_Repr                 PyString_Repr
 | |
|   #define PyBytes_Concat               PyString_Concat
 | |
|   #define PyBytes_ConcatAndDel         PyString_ConcatAndDel
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x02060000
 | |
|   #define PySet_Check(obj)             PyObject_TypeCheck(obj, &PySet_Type)
 | |
|   #define PyFrozenSet_Check(obj)       PyObject_TypeCheck(obj, &PyFrozenSet_Type)
 | |
| #endif
 | |
| #ifndef PySet_CheckExact
 | |
|   #define PySet_CheckExact(obj)        (Py_TYPE(obj) == &PySet_Type)
 | |
| #endif
 | |
| #define __Pyx_TypeCheck(obj, type) PyObject_TypeCheck(obj, (PyTypeObject *)type)
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
|   #define PyIntObject                  PyLongObject
 | |
|   #define PyInt_Type                   PyLong_Type
 | |
|   #define PyInt_Check(op)              PyLong_Check(op)
 | |
|   #define PyInt_CheckExact(op)         PyLong_CheckExact(op)
 | |
|   #define PyInt_FromString             PyLong_FromString
 | |
|   #define PyInt_FromUnicode            PyLong_FromUnicode
 | |
|   #define PyInt_FromLong               PyLong_FromLong
 | |
|   #define PyInt_FromSize_t             PyLong_FromSize_t
 | |
|   #define PyInt_FromSsize_t            PyLong_FromSsize_t
 | |
|   #define PyInt_AsLong                 PyLong_AsLong
 | |
|   #define PyInt_AS_LONG                PyLong_AS_LONG
 | |
|   #define PyInt_AsSsize_t              PyLong_AsSsize_t
 | |
|   #define PyInt_AsUnsignedLongMask     PyLong_AsUnsignedLongMask
 | |
|   #define PyInt_AsUnsignedLongLongMask PyLong_AsUnsignedLongLongMask
 | |
| #endif
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
|   #define PyBoolObject                 PyLongObject
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x03020000
 | |
|   typedef long Py_hash_t;
 | |
|   #define __Pyx_PyInt_FromHash_t PyInt_FromLong
 | |
|   #define __Pyx_PyInt_AsHash_t   PyInt_AsLong
 | |
| #else
 | |
|   #define __Pyx_PyInt_FromHash_t PyInt_FromSsize_t
 | |
|   #define __Pyx_PyInt_AsHash_t   PyInt_AsSsize_t
 | |
| #endif
 | |
| #if (PY_MAJOR_VERSION < 3) || (PY_VERSION_HEX >= 0x03010300)
 | |
|   #define __Pyx_PySequence_GetSlice(obj, a, b) PySequence_GetSlice(obj, a, b)
 | |
|   #define __Pyx_PySequence_SetSlice(obj, a, b, value) PySequence_SetSlice(obj, a, b, value)
 | |
|   #define __Pyx_PySequence_DelSlice(obj, a, b) PySequence_DelSlice(obj, a, b)
 | |
| #else
 | |
|   #define __Pyx_PySequence_GetSlice(obj, a, b) (unlikely(!(obj)) ? \
 | |
|         (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), (PyObject*)0) : \
 | |
|         (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_GetSlice(obj, a, b)) : \
 | |
|             (PyErr_Format(PyExc_TypeError, "'%.200s' object is unsliceable", (obj)->ob_type->tp_name), (PyObject*)0)))
 | |
|   #define __Pyx_PySequence_SetSlice(obj, a, b, value) (unlikely(!(obj)) ? \
 | |
|         (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \
 | |
|         (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_SetSlice(obj, a, b, value)) : \
 | |
|             (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice assignment", (obj)->ob_type->tp_name), -1)))
 | |
|   #define __Pyx_PySequence_DelSlice(obj, a, b) (unlikely(!(obj)) ? \
 | |
|         (PyErr_SetString(PyExc_SystemError, "null argument to internal routine"), -1) : \
 | |
|         (likely((obj)->ob_type->tp_as_mapping) ? (PySequence_DelSlice(obj, a, b)) : \
 | |
|             (PyErr_Format(PyExc_TypeError, "'%.200s' object doesn't support slice deletion", (obj)->ob_type->tp_name), -1)))
 | |
| #endif
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
|   #define PyMethod_New(func, self, klass) ((self) ? PyMethod_New(func, self) : PyInstanceMethod_New(func))
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x02050000
 | |
|   #define __Pyx_GetAttrString(o,n)   PyObject_GetAttrString((o),((char *)(n)))
 | |
|   #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),((char *)(n)),(a))
 | |
|   #define __Pyx_DelAttrString(o,n)   PyObject_DelAttrString((o),((char *)(n)))
 | |
| #else
 | |
|   #define __Pyx_GetAttrString(o,n)   PyObject_GetAttrString((o),(n))
 | |
|   #define __Pyx_SetAttrString(o,n,a) PyObject_SetAttrString((o),(n),(a))
 | |
|   #define __Pyx_DelAttrString(o,n)   PyObject_DelAttrString((o),(n))
 | |
| #endif
 | |
| #if PY_VERSION_HEX < 0x02050000
 | |
|   #define __Pyx_NAMESTR(n) ((char *)(n))
 | |
|   #define __Pyx_DOCSTR(n)  ((char *)(n))
 | |
| #else
 | |
|   #define __Pyx_NAMESTR(n) (n)
 | |
|   #define __Pyx_DOCSTR(n)  (n)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
|   #define __Pyx_PyNumber_Divide(x,y)         PyNumber_TrueDivide(x,y)
 | |
|   #define __Pyx_PyNumber_InPlaceDivide(x,y)  PyNumber_InPlaceTrueDivide(x,y)
 | |
| #else
 | |
|   #define __Pyx_PyNumber_Divide(x,y)         PyNumber_Divide(x,y)
 | |
|   #define __Pyx_PyNumber_InPlaceDivide(x,y)  PyNumber_InPlaceDivide(x,y)
 | |
| #endif
 | |
| 
 | |
| #ifndef __PYX_EXTERN_C
 | |
|   #ifdef __cplusplus
 | |
|     #define __PYX_EXTERN_C extern "C"
 | |
|   #else
 | |
|     #define __PYX_EXTERN_C extern
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(WIN32) || defined(MS_WINDOWS)
 | |
| #define _USE_MATH_DEFINES
 | |
| #endif
 | |
| #include <math.h>
 | |
| #define __PYX_HAVE__sklearn__linear_model__sgd_fast
 | |
| #define __PYX_HAVE_API__sklearn__linear_model__sgd_fast
 | |
| #include "math.h"
 | |
| #include "stdio.h"
 | |
| #include "stdlib.h"
 | |
| #include "numpy/arrayobject.h"
 | |
| #include "numpy/ufuncobject.h"
 | |
| #ifdef _OPENMP
 | |
| #include <omp.h>
 | |
| #endif /* _OPENMP */
 | |
| 
 | |
| #ifdef PYREX_WITHOUT_ASSERTIONS
 | |
| #define CYTHON_WITHOUT_ASSERTIONS
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* inline attribute */
 | |
| #ifndef CYTHON_INLINE
 | |
|   #if defined(__GNUC__)
 | |
|     #define CYTHON_INLINE __inline__
 | |
|   #elif defined(_MSC_VER)
 | |
|     #define CYTHON_INLINE __inline
 | |
|   #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
 | |
|     #define CYTHON_INLINE inline
 | |
|   #else
 | |
|     #define CYTHON_INLINE
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| /* unused attribute */
 | |
| #ifndef CYTHON_UNUSED
 | |
| # if defined(__GNUC__)
 | |
| #   if !(defined(__cplusplus)) || (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4))
 | |
| #     define CYTHON_UNUSED __attribute__ ((__unused__))
 | |
| #   else
 | |
| #     define CYTHON_UNUSED
 | |
| #   endif
 | |
| # elif defined(__ICC) || (defined(__INTEL_COMPILER) && !defined(_MSC_VER))
 | |
| #   define CYTHON_UNUSED __attribute__ ((__unused__))
 | |
| # else
 | |
| #   define CYTHON_UNUSED
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| typedef struct {PyObject **p; char *s; const long n; const char* encoding; const char is_unicode; const char is_str; const char intern; } __Pyx_StringTabEntry; /*proto*/
 | |
| 
 | |
| 
 | |
| /* Type Conversion Predeclarations */
 | |
| 
 | |
| #define __Pyx_PyBytes_FromUString(s) PyBytes_FromString((char*)s)
 | |
| #define __Pyx_PyBytes_AsUString(s)   ((unsigned char*) PyBytes_AsString(s))
 | |
| 
 | |
| #define __Pyx_Owned_Py_None(b) (Py_INCREF(Py_None), Py_None)
 | |
| #define __Pyx_PyBool_FromLong(b) ((b) ? (Py_INCREF(Py_True), Py_True) : (Py_INCREF(Py_False), Py_False))
 | |
| static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*);
 | |
| static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x);
 | |
| 
 | |
| static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*);
 | |
| static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t);
 | |
| static CYTHON_INLINE size_t __Pyx_PyInt_AsSize_t(PyObject*);
 | |
| 
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
| #define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x))
 | |
| #else
 | |
| #define __pyx_PyFloat_AsDouble(x) PyFloat_AsDouble(x)
 | |
| #endif
 | |
| #define __pyx_PyFloat_AsFloat(x) ((float) __pyx_PyFloat_AsDouble(x))
 | |
| 
 | |
| #ifdef __GNUC__
 | |
|   /* Test for GCC > 2.95 */
 | |
|   #if __GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))
 | |
|     #define likely(x)   __builtin_expect(!!(x), 1)
 | |
|     #define unlikely(x) __builtin_expect(!!(x), 0)
 | |
|   #else /* __GNUC__ > 2 ... */
 | |
|     #define likely(x)   (x)
 | |
|     #define unlikely(x) (x)
 | |
|   #endif /* __GNUC__ > 2 ... */
 | |
| #else /* __GNUC__ */
 | |
|   #define likely(x)   (x)
 | |
|   #define unlikely(x) (x)
 | |
| #endif /* __GNUC__ */
 | |
|     
 | |
| static PyObject *__pyx_m;
 | |
| static PyObject *__pyx_b;
 | |
| static PyObject *__pyx_empty_tuple;
 | |
| static PyObject *__pyx_empty_bytes;
 | |
| static int __pyx_lineno;
 | |
| static int __pyx_clineno = 0;
 | |
| static const char * __pyx_cfilenm= __FILE__;
 | |
| static const char *__pyx_filename;
 | |
| 
 | |
| #if !defined(CYTHON_CCOMPLEX)
 | |
|   #if defined(__cplusplus)
 | |
|     #define CYTHON_CCOMPLEX 1
 | |
|   #elif defined(_Complex_I)
 | |
|     #define CYTHON_CCOMPLEX 1
 | |
|   #else
 | |
|     #define CYTHON_CCOMPLEX 0
 | |
|   #endif
 | |
| #endif
 | |
| #if CYTHON_CCOMPLEX
 | |
|   #ifdef __cplusplus
 | |
|     #include <complex>
 | |
|   #else
 | |
|     #include <complex.h>
 | |
|   #endif
 | |
| #endif
 | |
| #if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__)
 | |
|   #undef _Complex_I
 | |
|   #define _Complex_I 1.0fj
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static const char *__pyx_f[] = {
 | |
|   "sgd_fast.pyx",
 | |
|   "numpy.pxd",
 | |
|   "type.pxd",
 | |
|   "weight_vector.pxd",
 | |
|   "seq_dataset.pxd",
 | |
| };
 | |
| #define IS_UNSIGNED(type) (((type) -1) > 0)
 | |
| struct __Pyx_StructField_;
 | |
| #define __PYX_BUF_FLAGS_PACKED_STRUCT (1 << 0)
 | |
| typedef struct {
 | |
|   const char* name; /* for error messages only */
 | |
|   struct __Pyx_StructField_* fields;
 | |
|   size_t size;     /* sizeof(type) */
 | |
|   size_t arraysize[8]; /* length of array in each dimension */
 | |
|   int ndim;
 | |
|   char typegroup; /* _R_eal, _C_omplex, Signed _I_nt, _U_nsigned int, _S_truct, _P_ointer, _O_bject, c_H_ar */
 | |
|   char is_unsigned;
 | |
|   int flags;
 | |
| } __Pyx_TypeInfo;
 | |
| typedef struct __Pyx_StructField_ {
 | |
|   __Pyx_TypeInfo* type;
 | |
|   const char* name;
 | |
|   size_t offset;
 | |
| } __Pyx_StructField;
 | |
| typedef struct {
 | |
|   __Pyx_StructField* field;
 | |
|   size_t parent_offset;
 | |
| } __Pyx_BufFmt_StackElem;
 | |
| typedef struct {
 | |
|   __Pyx_StructField root;
 | |
|   __Pyx_BufFmt_StackElem* head;
 | |
|   size_t fmt_offset;
 | |
|   size_t new_count, enc_count;
 | |
|   size_t struct_alignment;
 | |
|   int is_complex;
 | |
|   char enc_type;
 | |
|   char new_packmode;
 | |
|   char enc_packmode;
 | |
|   char is_valid_array;
 | |
| } __Pyx_BufFmt_Context;
 | |
| 
 | |
| 
 | |
| /* "numpy.pxd":723
 | |
|  * # in Cython to enable them only on the right systems.
 | |
|  * 
 | |
|  * ctypedef npy_int8       int8_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_int16      int16_t
 | |
|  * ctypedef npy_int32      int32_t
 | |
|  */
 | |
| typedef npy_int8 __pyx_t_5numpy_int8_t;
 | |
| 
 | |
| /* "numpy.pxd":724
 | |
|  * 
 | |
|  * ctypedef npy_int8       int8_t
 | |
|  * ctypedef npy_int16      int16_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_int32      int32_t
 | |
|  * ctypedef npy_int64      int64_t
 | |
|  */
 | |
| typedef npy_int16 __pyx_t_5numpy_int16_t;
 | |
| 
 | |
| /* "numpy.pxd":725
 | |
|  * ctypedef npy_int8       int8_t
 | |
|  * ctypedef npy_int16      int16_t
 | |
|  * ctypedef npy_int32      int32_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_int64      int64_t
 | |
|  * #ctypedef npy_int96      int96_t
 | |
|  */
 | |
| typedef npy_int32 __pyx_t_5numpy_int32_t;
 | |
| 
 | |
| /* "numpy.pxd":726
 | |
|  * ctypedef npy_int16      int16_t
 | |
|  * ctypedef npy_int32      int32_t
 | |
|  * ctypedef npy_int64      int64_t             # <<<<<<<<<<<<<<
 | |
|  * #ctypedef npy_int96      int96_t
 | |
|  * #ctypedef npy_int128     int128_t
 | |
|  */
 | |
| typedef npy_int64 __pyx_t_5numpy_int64_t;
 | |
| 
 | |
| /* "numpy.pxd":730
 | |
|  * #ctypedef npy_int128     int128_t
 | |
|  * 
 | |
|  * ctypedef npy_uint8      uint8_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_uint16     uint16_t
 | |
|  * ctypedef npy_uint32     uint32_t
 | |
|  */
 | |
| typedef npy_uint8 __pyx_t_5numpy_uint8_t;
 | |
| 
 | |
| /* "numpy.pxd":731
 | |
|  * 
 | |
|  * ctypedef npy_uint8      uint8_t
 | |
|  * ctypedef npy_uint16     uint16_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_uint32     uint32_t
 | |
|  * ctypedef npy_uint64     uint64_t
 | |
|  */
 | |
| typedef npy_uint16 __pyx_t_5numpy_uint16_t;
 | |
| 
 | |
| /* "numpy.pxd":732
 | |
|  * ctypedef npy_uint8      uint8_t
 | |
|  * ctypedef npy_uint16     uint16_t
 | |
|  * ctypedef npy_uint32     uint32_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_uint64     uint64_t
 | |
|  * #ctypedef npy_uint96     uint96_t
 | |
|  */
 | |
| typedef npy_uint32 __pyx_t_5numpy_uint32_t;
 | |
| 
 | |
| /* "numpy.pxd":733
 | |
|  * ctypedef npy_uint16     uint16_t
 | |
|  * ctypedef npy_uint32     uint32_t
 | |
|  * ctypedef npy_uint64     uint64_t             # <<<<<<<<<<<<<<
 | |
|  * #ctypedef npy_uint96     uint96_t
 | |
|  * #ctypedef npy_uint128    uint128_t
 | |
|  */
 | |
| typedef npy_uint64 __pyx_t_5numpy_uint64_t;
 | |
| 
 | |
| /* "numpy.pxd":737
 | |
|  * #ctypedef npy_uint128    uint128_t
 | |
|  * 
 | |
|  * ctypedef npy_float32    float32_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_float64    float64_t
 | |
|  * #ctypedef npy_float80    float80_t
 | |
|  */
 | |
| typedef npy_float32 __pyx_t_5numpy_float32_t;
 | |
| 
 | |
| /* "numpy.pxd":738
 | |
|  * 
 | |
|  * ctypedef npy_float32    float32_t
 | |
|  * ctypedef npy_float64    float64_t             # <<<<<<<<<<<<<<
 | |
|  * #ctypedef npy_float80    float80_t
 | |
|  * #ctypedef npy_float128   float128_t
 | |
|  */
 | |
| typedef npy_float64 __pyx_t_5numpy_float64_t;
 | |
| 
 | |
| /* "numpy.pxd":747
 | |
|  * # The int types are mapped a bit surprising --
 | |
|  * # numpy.int corresponds to 'l' and numpy.long to 'q'
 | |
|  * ctypedef npy_long       int_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_longlong   long_t
 | |
|  * ctypedef npy_longlong   longlong_t
 | |
|  */
 | |
| typedef npy_long __pyx_t_5numpy_int_t;
 | |
| 
 | |
| /* "numpy.pxd":748
 | |
|  * # numpy.int corresponds to 'l' and numpy.long to 'q'
 | |
|  * ctypedef npy_long       int_t
 | |
|  * ctypedef npy_longlong   long_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_longlong   longlong_t
 | |
|  * 
 | |
|  */
 | |
| typedef npy_longlong __pyx_t_5numpy_long_t;
 | |
| 
 | |
| /* "numpy.pxd":749
 | |
|  * ctypedef npy_long       int_t
 | |
|  * ctypedef npy_longlong   long_t
 | |
|  * ctypedef npy_longlong   longlong_t             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * ctypedef npy_ulong      uint_t
 | |
|  */
 | |
| typedef npy_longlong __pyx_t_5numpy_longlong_t;
 | |
| 
 | |
| /* "numpy.pxd":751
 | |
|  * ctypedef npy_longlong   longlong_t
 | |
|  * 
 | |
|  * ctypedef npy_ulong      uint_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_ulonglong  ulong_t
 | |
|  * ctypedef npy_ulonglong  ulonglong_t
 | |
|  */
 | |
| typedef npy_ulong __pyx_t_5numpy_uint_t;
 | |
| 
 | |
| /* "numpy.pxd":752
 | |
|  * 
 | |
|  * ctypedef npy_ulong      uint_t
 | |
|  * ctypedef npy_ulonglong  ulong_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_ulonglong  ulonglong_t
 | |
|  * 
 | |
|  */
 | |
| typedef npy_ulonglong __pyx_t_5numpy_ulong_t;
 | |
| 
 | |
| /* "numpy.pxd":753
 | |
|  * ctypedef npy_ulong      uint_t
 | |
|  * ctypedef npy_ulonglong  ulong_t
 | |
|  * ctypedef npy_ulonglong  ulonglong_t             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * ctypedef npy_intp       intp_t
 | |
|  */
 | |
| typedef npy_ulonglong __pyx_t_5numpy_ulonglong_t;
 | |
| 
 | |
| /* "numpy.pxd":755
 | |
|  * ctypedef npy_ulonglong  ulonglong_t
 | |
|  * 
 | |
|  * ctypedef npy_intp       intp_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_uintp      uintp_t
 | |
|  * 
 | |
|  */
 | |
| typedef npy_intp __pyx_t_5numpy_intp_t;
 | |
| 
 | |
| /* "numpy.pxd":756
 | |
|  * 
 | |
|  * ctypedef npy_intp       intp_t
 | |
|  * ctypedef npy_uintp      uintp_t             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * ctypedef npy_double     float_t
 | |
|  */
 | |
| typedef npy_uintp __pyx_t_5numpy_uintp_t;
 | |
| 
 | |
| /* "numpy.pxd":758
 | |
|  * ctypedef npy_uintp      uintp_t
 | |
|  * 
 | |
|  * ctypedef npy_double     float_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_double     double_t
 | |
|  * ctypedef npy_longdouble longdouble_t
 | |
|  */
 | |
| typedef npy_double __pyx_t_5numpy_float_t;
 | |
| 
 | |
| /* "numpy.pxd":759
 | |
|  * 
 | |
|  * ctypedef npy_double     float_t
 | |
|  * ctypedef npy_double     double_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_longdouble longdouble_t
 | |
|  * 
 | |
|  */
 | |
| typedef npy_double __pyx_t_5numpy_double_t;
 | |
| 
 | |
| /* "numpy.pxd":760
 | |
|  * ctypedef npy_double     float_t
 | |
|  * ctypedef npy_double     double_t
 | |
|  * ctypedef npy_longdouble longdouble_t             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * ctypedef npy_cfloat      cfloat_t
 | |
|  */
 | |
| typedef npy_longdouble __pyx_t_5numpy_longdouble_t;
 | |
| 
 | |
| /* "sklearn/utils/weight_vector.pxd":10
 | |
|  * 
 | |
|  * 
 | |
|  * ctypedef np.float64_t DOUBLE             # <<<<<<<<<<<<<<
 | |
|  * ctypedef np.int32_t INTEGER
 | |
|  * 
 | |
|  */
 | |
| typedef __pyx_t_5numpy_float64_t __pyx_t_7sklearn_5utils_13weight_vector_DOUBLE;
 | |
| 
 | |
| /* "sklearn/utils/weight_vector.pxd":11
 | |
|  * 
 | |
|  * ctypedef np.float64_t DOUBLE
 | |
|  * ctypedef np.int32_t INTEGER             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
| typedef __pyx_t_5numpy_int32_t __pyx_t_7sklearn_5utils_13weight_vector_INTEGER;
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":5
 | |
|  * cimport numpy as np
 | |
|  * 
 | |
|  * ctypedef np.float64_t DOUBLE             # <<<<<<<<<<<<<<
 | |
|  * ctypedef np.int32_t INTEGER
 | |
|  * 
 | |
|  */
 | |
| typedef __pyx_t_5numpy_float64_t __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE;
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":6
 | |
|  * 
 | |
|  * ctypedef np.float64_t DOUBLE
 | |
|  * ctypedef np.int32_t INTEGER             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
| typedef __pyx_t_5numpy_int32_t __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER;
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":25
 | |
|  * 
 | |
|  * 
 | |
|  * ctypedef np.float64_t DOUBLE             # <<<<<<<<<<<<<<
 | |
|  * ctypedef np.int32_t INTEGER
 | |
|  * 
 | |
|  */
 | |
| typedef __pyx_t_5numpy_float64_t __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE;
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":26
 | |
|  * 
 | |
|  * ctypedef np.float64_t DOUBLE
 | |
|  * ctypedef np.int32_t INTEGER             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
| typedef __pyx_t_5numpy_int32_t __pyx_t_7sklearn_12linear_model_8sgd_fast_INTEGER;
 | |
| #if CYTHON_CCOMPLEX
 | |
|   #ifdef __cplusplus
 | |
|     typedef ::std::complex< float > __pyx_t_float_complex;
 | |
|   #else
 | |
|     typedef float _Complex __pyx_t_float_complex;
 | |
|   #endif
 | |
| #else
 | |
|     typedef struct { float real, imag; } __pyx_t_float_complex;
 | |
| #endif
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
|   #ifdef __cplusplus
 | |
|     typedef ::std::complex< double > __pyx_t_double_complex;
 | |
|   #else
 | |
|     typedef double _Complex __pyx_t_double_complex;
 | |
|   #endif
 | |
| #else
 | |
|     typedef struct { double real, imag; } __pyx_t_double_complex;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*--- Type declarations ---*/
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber;
 | |
| struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
| struct __pyx_obj_7sklearn_5utils_11seq_dataset_CSRDataset;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge;
 | |
| struct __pyx_obj_7sklearn_5utils_11seq_dataset_ArrayDataset;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber;
 | |
| struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss;
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive;
 | |
| 
 | |
| /* "numpy.pxd":762
 | |
|  * ctypedef npy_longdouble longdouble_t
 | |
|  * 
 | |
|  * ctypedef npy_cfloat      cfloat_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_cdouble     cdouble_t
 | |
|  * ctypedef npy_clongdouble clongdouble_t
 | |
|  */
 | |
| typedef npy_cfloat __pyx_t_5numpy_cfloat_t;
 | |
| 
 | |
| /* "numpy.pxd":763
 | |
|  * 
 | |
|  * ctypedef npy_cfloat      cfloat_t
 | |
|  * ctypedef npy_cdouble     cdouble_t             # <<<<<<<<<<<<<<
 | |
|  * ctypedef npy_clongdouble clongdouble_t
 | |
|  * 
 | |
|  */
 | |
| typedef npy_cdouble __pyx_t_5numpy_cdouble_t;
 | |
| 
 | |
| /* "numpy.pxd":764
 | |
|  * ctypedef npy_cfloat      cfloat_t
 | |
|  * ctypedef npy_cdouble     cdouble_t
 | |
|  * ctypedef npy_clongdouble clongdouble_t             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * ctypedef npy_cdouble     complex_t
 | |
|  */
 | |
| typedef npy_clongdouble __pyx_t_5numpy_clongdouble_t;
 | |
| 
 | |
| /* "numpy.pxd":766
 | |
|  * ctypedef npy_clongdouble clongdouble_t
 | |
|  * 
 | |
|  * ctypedef npy_cdouble     complex_t             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew1(a):
 | |
|  */
 | |
| typedef npy_cdouble __pyx_t_5numpy_complex_t;
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":46
 | |
|  * # ----------------------------------------
 | |
|  * 
 | |
|  * cdef class LossFunction:             # <<<<<<<<<<<<<<
 | |
|  *     """Base class for convex loss functions"""
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction {
 | |
|   PyObject_HEAD
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_vtab;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":84
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Regression(LossFunction):             # <<<<<<<<<<<<<<
 | |
|  *     """Base class for loss functions for regression"""
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_base;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":235
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Huber(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Huber regression loss
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
|   double c;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":9
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SequentialDataset:             # <<<<<<<<<<<<<<
 | |
|  *     cdef Py_ssize_t n_samples
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset {
 | |
|   PyObject_HEAD
 | |
|   struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset *__pyx_vtab;
 | |
|   Py_ssize_t n_samples;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":271
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class EpsilonInsensitive(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Epsilon-Insensitive loss (used by SVR).
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
|   double epsilon;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":94
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Classification(LossFunction):             # <<<<<<<<<<<<<<
 | |
|  *     """Base class for loss functions for classification"""
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_base;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":34
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class CSRDataset(SequentialDataset):             # <<<<<<<<<<<<<<
 | |
|  *     cdef int current_index
 | |
|  *     cdef int stride
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_5utils_11seq_dataset_CSRDataset {
 | |
|   struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset __pyx_base;
 | |
|   int current_index;
 | |
|   int stride;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *X_data_ptr;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER *X_indptr_ptr;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER *X_indices_ptr;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *Y_data_ptr;
 | |
|   PyArrayObject *feature_indices;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER *feature_indices_ptr;
 | |
|   PyArrayObject *index;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER *index_data_ptr;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *sample_weight_data;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":198
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Log(Classification):             # <<<<<<<<<<<<<<
 | |
|  *     """Logistic regression loss for binary classification with y in {-1, 1}"""
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification __pyx_base;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":134
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Hinge(Classification):             # <<<<<<<<<<<<<<
 | |
|  *     """Hinge loss for binary classification tasks with y in {-1,1}
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification __pyx_base;
 | |
|   double threshold;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":17
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class ArrayDataset(SequentialDataset):             # <<<<<<<<<<<<<<
 | |
|  *     cdef Py_ssize_t n_features
 | |
|  *     cdef int current_index
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_5utils_11seq_dataset_ArrayDataset {
 | |
|   struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset __pyx_base;
 | |
|   Py_ssize_t n_features;
 | |
|   int current_index;
 | |
|   int stride;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *X_data_ptr;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *Y_data_ptr;
 | |
|   PyArrayObject *feature_indices;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER *feature_indices_ptr;
 | |
|   PyArrayObject *index;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER *index_data_ptr;
 | |
|   __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *sample_weight_data;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":166
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SquaredHinge(LossFunction):             # <<<<<<<<<<<<<<
 | |
|  *     """Squared Hinge loss for binary classification tasks with y in {-1,1}
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_base;
 | |
|   double threshold;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":104
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class ModifiedHuber(Classification):             # <<<<<<<<<<<<<<
 | |
|  *     """Modified Huber loss for binary classification with y in {-1, 1}
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification __pyx_base;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/weight_vector.pxd":14
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class WeightVector(object):             # <<<<<<<<<<<<<<
 | |
|  *     cdef np.ndarray w
 | |
|  *     cdef DOUBLE *w_data_ptr
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector {
 | |
|   PyObject_HEAD
 | |
|   struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *__pyx_vtab;
 | |
|   PyArrayObject *w;
 | |
|   __pyx_t_7sklearn_5utils_13weight_vector_DOUBLE *w_data_ptr;
 | |
|   double wscale;
 | |
|   Py_ssize_t n_features;
 | |
|   double sq_norm;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":223
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SquaredLoss(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Squared loss traditional used in linear regression."""
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
| };
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":298
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SquaredEpsilonInsensitive(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Epsilon-Insensitive loss.
 | |
|  * 
 | |
|  */
 | |
| struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
|   double epsilon;
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":46
 | |
|  * # ----------------------------------------
 | |
|  * 
 | |
|  * cdef class LossFunction:             # <<<<<<<<<<<<<<
 | |
|  *     """Base class for convex loss functions"""
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction {
 | |
|   double (*loss)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch);
 | |
|   double (*dloss)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch);
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":84
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Regression(LossFunction):             # <<<<<<<<<<<<<<
 | |
|  *     """Base class for loss functions for regression"""
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":223
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SquaredLoss(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Squared loss traditional used in linear regression."""
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredLoss {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredLoss;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":94
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Classification(LossFunction):             # <<<<<<<<<<<<<<
 | |
|  *     """Base class for loss functions for classification"""
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":104
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class ModifiedHuber(Classification):             # <<<<<<<<<<<<<<
 | |
|  *     """Modified Huber loss for binary classification with y in {-1, 1}
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_ModifiedHuber {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_ModifiedHuber;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":198
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Log(Classification):             # <<<<<<<<<<<<<<
 | |
|  *     """Logistic regression loss for binary classification with y in {-1, 1}"""
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Log {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Log *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Log;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":298
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SquaredEpsilonInsensitive(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Epsilon-Insensitive loss.
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive;
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":9
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SequentialDataset:             # <<<<<<<<<<<<<<
 | |
|  *     cdef Py_ssize_t n_samples
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset {
 | |
|   void (*next)(struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset *, __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE **, __pyx_t_7sklearn_5utils_11seq_dataset_INTEGER **, int *, __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *, __pyx_t_7sklearn_5utils_11seq_dataset_DOUBLE *);
 | |
|   void (*shuffle)(struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset *, PyObject *);
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset *__pyx_vtabptr_7sklearn_5utils_11seq_dataset_SequentialDataset;
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":17
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class ArrayDataset(SequentialDataset):             # <<<<<<<<<<<<<<
 | |
|  *     cdef Py_ssize_t n_features
 | |
|  *     cdef int current_index
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_ArrayDataset {
 | |
|   struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_ArrayDataset *__pyx_vtabptr_7sklearn_5utils_11seq_dataset_ArrayDataset;
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/seq_dataset.pxd":34
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class CSRDataset(SequentialDataset):             # <<<<<<<<<<<<<<
 | |
|  *     cdef int current_index
 | |
|  *     cdef int stride
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_CSRDataset {
 | |
|   struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_CSRDataset *__pyx_vtabptr_7sklearn_5utils_11seq_dataset_CSRDataset;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":271
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class EpsilonInsensitive(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Epsilon-Insensitive loss (used by SVR).
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":166
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class SquaredHinge(LossFunction):             # <<<<<<<<<<<<<<
 | |
|  *     """Squared Hinge loss for binary classification tasks with y in {-1,1}
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredHinge {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredHinge;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":235
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Huber(Regression):             # <<<<<<<<<<<<<<
 | |
|  *     """Huber regression loss
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Huber {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Huber;
 | |
| 
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":134
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class Hinge(Classification):             # <<<<<<<<<<<<<<
 | |
|  *     """Hinge loss for binary classification tasks with y in {-1,1}
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Hinge {
 | |
|   struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification __pyx_base;
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Hinge;
 | |
| 
 | |
| 
 | |
| /* "sklearn/utils/weight_vector.pxd":14
 | |
|  * 
 | |
|  * 
 | |
|  * cdef class WeightVector(object):             # <<<<<<<<<<<<<<
 | |
|  *     cdef np.ndarray w
 | |
|  *     cdef DOUBLE *w_data_ptr
 | |
|  */
 | |
| 
 | |
| struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector {
 | |
|   void (*add)(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *, __pyx_t_7sklearn_5utils_13weight_vector_DOUBLE *, __pyx_t_7sklearn_5utils_13weight_vector_INTEGER *, int, double);
 | |
|   double (*dot)(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *, __pyx_t_7sklearn_5utils_13weight_vector_DOUBLE *, __pyx_t_7sklearn_5utils_13weight_vector_INTEGER *, int);
 | |
|   void (*scale)(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *, double);
 | |
|   void (*reset_wscale)(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *);
 | |
|   double (*norm)(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *);
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *__pyx_vtabptr_7sklearn_5utils_13weight_vector_WeightVector;
 | |
| #ifndef CYTHON_REFNANNY
 | |
|   #define CYTHON_REFNANNY 0
 | |
| #endif
 | |
| #if CYTHON_REFNANNY
 | |
|   typedef struct {
 | |
|     void (*INCREF)(void*, PyObject*, int);
 | |
|     void (*DECREF)(void*, PyObject*, int);
 | |
|     void (*GOTREF)(void*, PyObject*, int);
 | |
|     void (*GIVEREF)(void*, PyObject*, int);
 | |
|     void* (*SetupContext)(const char*, int, const char*);
 | |
|     void (*FinishContext)(void**);
 | |
|   } __Pyx_RefNannyAPIStruct;
 | |
|   static __Pyx_RefNannyAPIStruct *__Pyx_RefNanny = NULL;
 | |
|   static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname); /*proto*/
 | |
|   #define __Pyx_RefNannyDeclarations void *__pyx_refnanny = NULL;
 | |
| #ifdef WITH_THREAD
 | |
|   #define __Pyx_RefNannySetupContext(name, acquire_gil) \
 | |
|           if (acquire_gil) { \
 | |
|               PyGILState_STATE __pyx_gilstate_save = PyGILState_Ensure(); \
 | |
|               __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \
 | |
|               PyGILState_Release(__pyx_gilstate_save); \
 | |
|           } else { \
 | |
|               __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__); \
 | |
|           }
 | |
| #else
 | |
|   #define __Pyx_RefNannySetupContext(name, acquire_gil) \
 | |
|           __pyx_refnanny = __Pyx_RefNanny->SetupContext((name), __LINE__, __FILE__)
 | |
| #endif
 | |
|   #define __Pyx_RefNannyFinishContext() \
 | |
|           __Pyx_RefNanny->FinishContext(&__pyx_refnanny)
 | |
|   #define __Pyx_INCREF(r)  __Pyx_RefNanny->INCREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
 | |
|   #define __Pyx_DECREF(r)  __Pyx_RefNanny->DECREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
 | |
|   #define __Pyx_GOTREF(r)  __Pyx_RefNanny->GOTREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
 | |
|   #define __Pyx_GIVEREF(r) __Pyx_RefNanny->GIVEREF(__pyx_refnanny, (PyObject *)(r), __LINE__)
 | |
|   #define __Pyx_XINCREF(r)  do { if((r) != NULL) {__Pyx_INCREF(r); }} while(0)
 | |
|   #define __Pyx_XDECREF(r)  do { if((r) != NULL) {__Pyx_DECREF(r); }} while(0)
 | |
|   #define __Pyx_XGOTREF(r)  do { if((r) != NULL) {__Pyx_GOTREF(r); }} while(0)
 | |
|   #define __Pyx_XGIVEREF(r) do { if((r) != NULL) {__Pyx_GIVEREF(r);}} while(0)
 | |
| #else
 | |
|   #define __Pyx_RefNannyDeclarations
 | |
|   #define __Pyx_RefNannySetupContext(name, acquire_gil)
 | |
|   #define __Pyx_RefNannyFinishContext()
 | |
|   #define __Pyx_INCREF(r) Py_INCREF(r)
 | |
|   #define __Pyx_DECREF(r) Py_DECREF(r)
 | |
|   #define __Pyx_GOTREF(r)
 | |
|   #define __Pyx_GIVEREF(r)
 | |
|   #define __Pyx_XINCREF(r) Py_XINCREF(r)
 | |
|   #define __Pyx_XDECREF(r) Py_XDECREF(r)
 | |
|   #define __Pyx_XGOTREF(r)
 | |
|   #define __Pyx_XGIVEREF(r)
 | |
| #endif /* CYTHON_REFNANNY */
 | |
| #define __Pyx_CLEAR(r)    do { PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);} while(0)
 | |
| #define __Pyx_XCLEAR(r)   do { if((r) != NULL) {PyObject* tmp = ((PyObject*)(r)); r = NULL; __Pyx_DECREF(tmp);}} while(0)
 | |
| 
 | |
| static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name); /*proto*/
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb); /*proto*/
 | |
| static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb); /*proto*/
 | |
| 
 | |
| static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause); /*proto*/
 | |
| 
 | |
| static void __Pyx_RaiseArgtupleInvalid(const char* func_name, int exact,
 | |
|     Py_ssize_t num_min, Py_ssize_t num_max, Py_ssize_t num_found); /*proto*/
 | |
| 
 | |
| static void __Pyx_RaiseDoubleKeywordsError(const char* func_name, PyObject* kw_name); /*proto*/
 | |
| 
 | |
| static int __Pyx_ParseOptionalKeywords(PyObject *kwds, PyObject **argnames[], \
 | |
|     PyObject *kwds2, PyObject *values[], Py_ssize_t num_pos_args, \
 | |
|     const char* function_name); /*proto*/
 | |
| 
 | |
| static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed,
 | |
|     const char *name, int exact); /*proto*/
 | |
| 
 | |
| static CYTHON_INLINE int  __Pyx_GetBufferAndValidate(Py_buffer* buf, PyObject* obj,
 | |
|     __Pyx_TypeInfo* dtype, int flags, int nd, int cast, __Pyx_BufFmt_StackElem* stack);
 | |
| static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info);
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type); /*proto*/
 | |
| 
 | |
| static void __Pyx_RaiseBufferFallbackError(void); /*proto*/
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Generic(PyObject *o, PyObject* j) {
 | |
|     PyObject *r;
 | |
|     if (!j) return NULL;
 | |
|     r = PyObject_GetItem(o, j);
 | |
|     Py_DECREF(j);
 | |
|     return r;
 | |
| }
 | |
| #define __Pyx_GetItemInt_List(o, i, size, to_py_func) (((size) <= sizeof(Py_ssize_t)) ? \
 | |
|                                                     __Pyx_GetItemInt_List_Fast(o, i) : \
 | |
|                                                     __Pyx_GetItemInt_Generic(o, to_py_func(i)))
 | |
| static CYTHON_INLINE PyObject *__Pyx_GetItemInt_List_Fast(PyObject *o, Py_ssize_t i) {
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     if (likely((0 <= i) & (i < PyList_GET_SIZE(o)))) {
 | |
|         PyObject *r = PyList_GET_ITEM(o, i);
 | |
|         Py_INCREF(r);
 | |
|         return r;
 | |
|     }
 | |
|     else if ((-PyList_GET_SIZE(o) <= i) & (i < 0)) {
 | |
|         PyObject *r = PyList_GET_ITEM(o, PyList_GET_SIZE(o) + i);
 | |
|         Py_INCREF(r);
 | |
|         return r;
 | |
|     }
 | |
|     return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i));
 | |
| #else
 | |
|     return PySequence_GetItem(o, i);
 | |
| #endif
 | |
| }
 | |
| #define __Pyx_GetItemInt_Tuple(o, i, size, to_py_func) (((size) <= sizeof(Py_ssize_t)) ? \
 | |
|                                                     __Pyx_GetItemInt_Tuple_Fast(o, i) : \
 | |
|                                                     __Pyx_GetItemInt_Generic(o, to_py_func(i)))
 | |
| static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Tuple_Fast(PyObject *o, Py_ssize_t i) {
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     if (likely((0 <= i) & (i < PyTuple_GET_SIZE(o)))) {
 | |
|         PyObject *r = PyTuple_GET_ITEM(o, i);
 | |
|         Py_INCREF(r);
 | |
|         return r;
 | |
|     }
 | |
|     else if ((-PyTuple_GET_SIZE(o) <= i) & (i < 0)) {
 | |
|         PyObject *r = PyTuple_GET_ITEM(o, PyTuple_GET_SIZE(o) + i);
 | |
|         Py_INCREF(r);
 | |
|         return r;
 | |
|     }
 | |
|     return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i));
 | |
| #else
 | |
|     return PySequence_GetItem(o, i);
 | |
| #endif
 | |
| }
 | |
| #define __Pyx_GetItemInt(o, i, size, to_py_func) (((size) <= sizeof(Py_ssize_t)) ? \
 | |
|                                                     __Pyx_GetItemInt_Fast(o, i) : \
 | |
|                                                     __Pyx_GetItemInt_Generic(o, to_py_func(i)))
 | |
| static CYTHON_INLINE PyObject *__Pyx_GetItemInt_Fast(PyObject *o, Py_ssize_t i) {
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     if (PyList_CheckExact(o)) {
 | |
|         Py_ssize_t n = (likely(i >= 0)) ? i : i + PyList_GET_SIZE(o);
 | |
|         if (likely((n >= 0) & (n < PyList_GET_SIZE(o)))) {
 | |
|             PyObject *r = PyList_GET_ITEM(o, n);
 | |
|             Py_INCREF(r);
 | |
|             return r;
 | |
|         }
 | |
|     }
 | |
|     else if (PyTuple_CheckExact(o)) {
 | |
|         Py_ssize_t n = (likely(i >= 0)) ? i : i + PyTuple_GET_SIZE(o);
 | |
|         if (likely((n >= 0) & (n < PyTuple_GET_SIZE(o)))) {
 | |
|             PyObject *r = PyTuple_GET_ITEM(o, n);
 | |
|             Py_INCREF(r);
 | |
|             return r;
 | |
|         }
 | |
|     } else {  /* inlined PySequence_GetItem() */
 | |
|         PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence;
 | |
|         if (likely(m && m->sq_item)) {
 | |
|             if (unlikely(i < 0) && likely(m->sq_length)) {
 | |
|                 Py_ssize_t l = m->sq_length(o);
 | |
|                 if (unlikely(l < 0)) return NULL;
 | |
|                 i += l;
 | |
|             }
 | |
|             return m->sq_item(o, i);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     if (PySequence_Check(o)) {
 | |
|         return PySequence_GetItem(o, i);
 | |
|     }
 | |
| #endif
 | |
|     return __Pyx_GetItemInt_Generic(o, PyInt_FromSsize_t(i));
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected);
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index);
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void);
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_IterFinish(void); /*proto*/
 | |
| 
 | |
| static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected); /*proto*/
 | |
| 
 | |
| typedef struct {
 | |
|   Py_ssize_t shape, strides, suboffsets;
 | |
| } __Pyx_Buf_DimInfo;
 | |
| typedef struct {
 | |
|   size_t refcount;
 | |
|   Py_buffer pybuffer;
 | |
| } __Pyx_Buffer;
 | |
| typedef struct {
 | |
|   __Pyx_Buffer *rcbuffer;
 | |
|   char *data;
 | |
|   __Pyx_Buf_DimInfo diminfo[8];
 | |
| } __Pyx_LocalBuf_ND;
 | |
| 
 | |
| #if PY_MAJOR_VERSION < 3
 | |
|     static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags);
 | |
|     static void __Pyx_ReleaseBuffer(Py_buffer *view);
 | |
| #else
 | |
|     #define __Pyx_GetBuffer PyObject_GetBuffer
 | |
|     #define __Pyx_ReleaseBuffer PyBuffer_Release
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static Py_ssize_t __Pyx_zeros[] = {0, 0, 0, 0, 0, 0, 0, 0};
 | |
| static Py_ssize_t __Pyx_minusones[] = {-1, -1, -1, -1, -1, -1, -1, -1};
 | |
| 
 | |
| static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, long level); /*proto*/
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseImportError(PyObject *name);
 | |
| 
 | |
| static int __Pyx_Print(PyObject*, PyObject *, int); /*proto*/
 | |
| #if CYTHON_COMPILING_IN_PYPY || PY_MAJOR_VERSION >= 3
 | |
| static PyObject* __pyx_print = 0;
 | |
| static PyObject* __pyx_print_kwargs = 0;
 | |
| #endif
 | |
| 
 | |
| static int __Pyx_PrintOne(PyObject* stream, PyObject *o); /*proto*/
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
|   #ifdef __cplusplus
 | |
|     #define __Pyx_CREAL(z) ((z).real())
 | |
|     #define __Pyx_CIMAG(z) ((z).imag())
 | |
|   #else
 | |
|     #define __Pyx_CREAL(z) (__real__(z))
 | |
|     #define __Pyx_CIMAG(z) (__imag__(z))
 | |
|   #endif
 | |
| #else
 | |
|     #define __Pyx_CREAL(z) ((z).real)
 | |
|     #define __Pyx_CIMAG(z) ((z).imag)
 | |
| #endif
 | |
| #if defined(_WIN32) && defined(__cplusplus) && CYTHON_CCOMPLEX
 | |
|     #define __Pyx_SET_CREAL(z,x) ((z).real(x))
 | |
|     #define __Pyx_SET_CIMAG(z,y) ((z).imag(y))
 | |
| #else
 | |
|     #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x)
 | |
|     #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y)
 | |
| #endif
 | |
| 
 | |
| static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float, float);
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
|     #define __Pyx_c_eqf(a, b)   ((a)==(b))
 | |
|     #define __Pyx_c_sumf(a, b)  ((a)+(b))
 | |
|     #define __Pyx_c_difff(a, b) ((a)-(b))
 | |
|     #define __Pyx_c_prodf(a, b) ((a)*(b))
 | |
|     #define __Pyx_c_quotf(a, b) ((a)/(b))
 | |
|     #define __Pyx_c_negf(a)     (-(a))
 | |
|   #ifdef __cplusplus
 | |
|     #define __Pyx_c_is_zerof(z) ((z)==(float)0)
 | |
|     #define __Pyx_c_conjf(z)    (::std::conj(z))
 | |
|     #if 1
 | |
|         #define __Pyx_c_absf(z)     (::std::abs(z))
 | |
|         #define __Pyx_c_powf(a, b)  (::std::pow(a, b))
 | |
|     #endif
 | |
|   #else
 | |
|     #define __Pyx_c_is_zerof(z) ((z)==0)
 | |
|     #define __Pyx_c_conjf(z)    (conjf(z))
 | |
|     #if 1
 | |
|         #define __Pyx_c_absf(z)     (cabsf(z))
 | |
|         #define __Pyx_c_powf(a, b)  (cpowf(a, b))
 | |
|     #endif
 | |
|  #endif
 | |
| #else
 | |
|     static CYTHON_INLINE int __Pyx_c_eqf(__pyx_t_float_complex, __pyx_t_float_complex);
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sumf(__pyx_t_float_complex, __pyx_t_float_complex);
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_difff(__pyx_t_float_complex, __pyx_t_float_complex);
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prodf(__pyx_t_float_complex, __pyx_t_float_complex);
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quotf(__pyx_t_float_complex, __pyx_t_float_complex);
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_negf(__pyx_t_float_complex);
 | |
|     static CYTHON_INLINE int __Pyx_c_is_zerof(__pyx_t_float_complex);
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conjf(__pyx_t_float_complex);
 | |
|     #if 1
 | |
|         static CYTHON_INLINE float __Pyx_c_absf(__pyx_t_float_complex);
 | |
|         static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_powf(__pyx_t_float_complex, __pyx_t_float_complex);
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double, double);
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
|     #define __Pyx_c_eq(a, b)   ((a)==(b))
 | |
|     #define __Pyx_c_sum(a, b)  ((a)+(b))
 | |
|     #define __Pyx_c_diff(a, b) ((a)-(b))
 | |
|     #define __Pyx_c_prod(a, b) ((a)*(b))
 | |
|     #define __Pyx_c_quot(a, b) ((a)/(b))
 | |
|     #define __Pyx_c_neg(a)     (-(a))
 | |
|   #ifdef __cplusplus
 | |
|     #define __Pyx_c_is_zero(z) ((z)==(double)0)
 | |
|     #define __Pyx_c_conj(z)    (::std::conj(z))
 | |
|     #if 1
 | |
|         #define __Pyx_c_abs(z)     (::std::abs(z))
 | |
|         #define __Pyx_c_pow(a, b)  (::std::pow(a, b))
 | |
|     #endif
 | |
|   #else
 | |
|     #define __Pyx_c_is_zero(z) ((z)==0)
 | |
|     #define __Pyx_c_conj(z)    (conj(z))
 | |
|     #if 1
 | |
|         #define __Pyx_c_abs(z)     (cabs(z))
 | |
|         #define __Pyx_c_pow(a, b)  (cpow(a, b))
 | |
|     #endif
 | |
|  #endif
 | |
| #else
 | |
|     static CYTHON_INLINE int __Pyx_c_eq(__pyx_t_double_complex, __pyx_t_double_complex);
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum(__pyx_t_double_complex, __pyx_t_double_complex);
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff(__pyx_t_double_complex, __pyx_t_double_complex);
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod(__pyx_t_double_complex, __pyx_t_double_complex);
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot(__pyx_t_double_complex, __pyx_t_double_complex);
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg(__pyx_t_double_complex);
 | |
|     static CYTHON_INLINE int __Pyx_c_is_zero(__pyx_t_double_complex);
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj(__pyx_t_double_complex);
 | |
|     #if 1
 | |
|         static CYTHON_INLINE double __Pyx_c_abs(__pyx_t_double_complex);
 | |
|         static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow(__pyx_t_double_complex, __pyx_t_double_complex);
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| static CYTHON_INLINE unsigned char __Pyx_PyInt_AsUnsignedChar(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE unsigned short __Pyx_PyInt_AsUnsignedShort(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE unsigned int __Pyx_PyInt_AsUnsignedInt(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE char __Pyx_PyInt_AsChar(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE short __Pyx_PyInt_AsShort(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_PyInt_AsInt(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE signed char __Pyx_PyInt_AsSignedChar(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE signed short __Pyx_PyInt_AsSignedShort(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE signed int __Pyx_PyInt_AsSignedInt(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_PyInt_AsLongDouble(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE unsigned long __Pyx_PyInt_AsUnsignedLong(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE unsigned PY_LONG_LONG __Pyx_PyInt_AsUnsignedLongLong(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE long __Pyx_PyInt_AsLong(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE PY_LONG_LONG __Pyx_PyInt_AsLongLong(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE signed long __Pyx_PyInt_AsSignedLong(PyObject *);
 | |
| 
 | |
| static CYTHON_INLINE signed PY_LONG_LONG __Pyx_PyInt_AsSignedLongLong(PyObject *);
 | |
| 
 | |
| static void __Pyx_WriteUnraisable(const char *name, int clineno,
 | |
|                                   int lineno, const char *filename); /*proto*/
 | |
| 
 | |
| static int __Pyx_check_binary_version(void);
 | |
| 
 | |
| static int __Pyx_SetVtable(PyObject *dict, void *vtable); /*proto*/
 | |
| 
 | |
| #if !defined(__Pyx_PyIdentifier_FromString)
 | |
| #if PY_MAJOR_VERSION < 3
 | |
|   #define __Pyx_PyIdentifier_FromString(s) PyString_FromString(s)
 | |
| #else
 | |
|   #define __Pyx_PyIdentifier_FromString(s) PyUnicode_FromString(s)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| static PyObject *__Pyx_ImportModule(const char *name); /*proto*/
 | |
| 
 | |
| static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name, size_t size, int strict);  /*proto*/
 | |
| 
 | |
| static void* __Pyx_GetVtable(PyObject *dict); /*proto*/
 | |
| 
 | |
| typedef struct {
 | |
|     int code_line;
 | |
|     PyCodeObject* code_object;
 | |
| } __Pyx_CodeObjectCacheEntry;
 | |
| struct __Pyx_CodeObjectCache {
 | |
|     int count;
 | |
|     int max_count;
 | |
|     __Pyx_CodeObjectCacheEntry* entries;
 | |
| };
 | |
| static struct __Pyx_CodeObjectCache __pyx_code_cache = {0,0,NULL};
 | |
| static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line);
 | |
| static PyCodeObject *__pyx_find_code_object(int code_line);
 | |
| static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object);
 | |
| 
 | |
| static void __Pyx_AddTraceback(const char *funcname, int c_line,
 | |
|                                int py_line, const char *filename); /*proto*/
 | |
| 
 | |
| static int __Pyx_InitStrings(__Pyx_StringTabEntry *t); /*proto*/
 | |
| 
 | |
| 
 | |
| /* Module declarations from 'libc.math' */
 | |
| 
 | |
| /* Module declarations from 'cpython.buffer' */
 | |
| 
 | |
| /* Module declarations from 'cpython.ref' */
 | |
| 
 | |
| /* Module declarations from 'libc.stdio' */
 | |
| 
 | |
| /* Module declarations from 'cpython.object' */
 | |
| 
 | |
| /* Module declarations from '__builtin__' */
 | |
| 
 | |
| /* Module declarations from 'cpython.type' */
 | |
| static PyTypeObject *__pyx_ptype_7cpython_4type_type = 0;
 | |
| 
 | |
| /* Module declarations from 'libc.stdlib' */
 | |
| 
 | |
| /* Module declarations from 'numpy' */
 | |
| 
 | |
| /* Module declarations from 'numpy' */
 | |
| static PyTypeObject *__pyx_ptype_5numpy_dtype = 0;
 | |
| static PyTypeObject *__pyx_ptype_5numpy_flatiter = 0;
 | |
| static PyTypeObject *__pyx_ptype_5numpy_broadcast = 0;
 | |
| static PyTypeObject *__pyx_ptype_5numpy_ndarray = 0;
 | |
| static PyTypeObject *__pyx_ptype_5numpy_ufunc = 0;
 | |
| static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *, char *, char *, int *); /*proto*/
 | |
| 
 | |
| /* Module declarations from 'cython' */
 | |
| 
 | |
| /* Module declarations from 'sklearn.utils.weight_vector' */
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_5utils_13weight_vector_WeightVector = 0;
 | |
| 
 | |
| /* Module declarations from 'sklearn.utils.seq_dataset' */
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_5utils_11seq_dataset_SequentialDataset = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_5utils_11seq_dataset_ArrayDataset = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_5utils_11seq_dataset_CSRDataset = 0;
 | |
| 
 | |
| /* Module declarations from 'sklearn.linear_model.sgd_fast' */
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_LossFunction = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Regression = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Classification = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_ModifiedHuber = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Hinge = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredHinge = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Log = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredLoss = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Huber = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive = 0;
 | |
| static PyTypeObject *__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive = 0;
 | |
| static CYTHON_INLINE double __pyx_f_7sklearn_12linear_model_8sgd_fast_max(double, double); /*proto*/
 | |
| static CYTHON_INLINE double __pyx_f_7sklearn_12linear_model_8sgd_fast_min(double, double); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_sqnorm(__pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *, __pyx_t_7sklearn_12linear_model_8sgd_fast_INTEGER *, int); /*proto*/
 | |
| static void __pyx_f_7sklearn_12linear_model_8sgd_fast_l1penalty(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *, __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *, __pyx_t_7sklearn_12linear_model_8sgd_fast_INTEGER *, int, double); /*proto*/
 | |
| static __Pyx_TypeInfo __Pyx_TypeInfo_nn___pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE = { "DOUBLE", NULL, sizeof(__pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE), { 0 }, 0, 'R', 0, 0 };
 | |
| #define __Pyx_MODULE_NAME "sklearn.linear_model.sgd_fast"
 | |
| int __pyx_module_is_main_sklearn__linear_model__sgd_fast = 0;
 | |
| 
 | |
| /* Implementation of 'sklearn.linear_model.sgd_fast' */
 | |
| static PyObject *__pyx_builtin_NotImplementedError;
 | |
| static PyObject *__pyx_builtin_range;
 | |
| static PyObject *__pyx_builtin_ValueError;
 | |
| static PyObject *__pyx_builtin_RuntimeError;
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12LossFunction_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_10Regression_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_10Regression_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_14Classification_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_14Classification_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_4__reduce__(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self); /* proto */
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_threshold); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self); /* proto */
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_threshold); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_4__reduce__(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_4__reduce__(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self); /* proto */
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_c); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self); /* proto */
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_epsilon); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self); /* proto */
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_epsilon); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self); /* proto */
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_plain_sgd(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_weights, double __pyx_v_intercept, struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_loss, int __pyx_v_penalty_type, double __pyx_v_alpha, double __pyx_v_C, double __pyx_v_rho, struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset *__pyx_v_dataset, int __pyx_v_n_iter, int __pyx_v_fit_intercept, int __pyx_v_verbose, int __pyx_v_shuffle, PyObject *__pyx_v_seed, double __pyx_v_weight_pos, double __pyx_v_weight_neg, int __pyx_v_learning_rate, double __pyx_v_eta0, double __pyx_v_power_t, double __pyx_v_t, double __pyx_v_intercept_decay); /* proto */
 | |
| static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */
 | |
| static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */
 | |
| static char __pyx_k_1[] = "-- Epoch %d";
 | |
| static char __pyx_k_2[] = "Norm: %.2f, NNZs: %d, Bias: %.6f, T: %d, Avg. loss: %.6f";
 | |
| static char __pyx_k_3[] = "Total training time: %.2f seconds.";
 | |
| static char __pyx_k_4[] = "floating-point under-/overflow occured.";
 | |
| static char __pyx_k_6[] = "ndarray is not C contiguous";
 | |
| static char __pyx_k_8[] = "ndarray is not Fortran contiguous";
 | |
| static char __pyx_k_10[] = "Non-native byte order not supported";
 | |
| static char __pyx_k_12[] = "unknown dtype code in numpy.pxd (%d)";
 | |
| static char __pyx_k_13[] = "Format string allocated too short, see comment in numpy.pxd";
 | |
| static char __pyx_k_16[] = "Format string allocated too short.";
 | |
| static char __pyx_k_20[] = "/scratch/apps/src/scikit-learn/sklearn/linear_model/sgd_fast.pyx";
 | |
| static char __pyx_k_21[] = "sklearn.linear_model.sgd_fast";
 | |
| static char __pyx_k__B[] = "B";
 | |
| static char __pyx_k__C[] = "C";
 | |
| static char __pyx_k__H[] = "H";
 | |
| static char __pyx_k__I[] = "I";
 | |
| static char __pyx_k__L[] = "L";
 | |
| static char __pyx_k__O[] = "O";
 | |
| static char __pyx_k__Q[] = "Q";
 | |
| static char __pyx_k__b[] = "b";
 | |
| static char __pyx_k__c[] = "c";
 | |
| static char __pyx_k__d[] = "d";
 | |
| static char __pyx_k__f[] = "f";
 | |
| static char __pyx_k__g[] = "g";
 | |
| static char __pyx_k__h[] = "h";
 | |
| static char __pyx_k__i[] = "i";
 | |
| static char __pyx_k__l[] = "l";
 | |
| static char __pyx_k__p[] = "p";
 | |
| static char __pyx_k__q[] = "q";
 | |
| static char __pyx_k__t[] = "t";
 | |
| static char __pyx_k__u[] = "u";
 | |
| static char __pyx_k__w[] = "w";
 | |
| static char __pyx_k__y[] = "y";
 | |
| static char __pyx_k__Zd[] = "Zd";
 | |
| static char __pyx_k__Zf[] = "Zf";
 | |
| static char __pyx_k__Zg[] = "Zg";
 | |
| static char __pyx_k__np[] = "np";
 | |
| static char __pyx_k__any[] = "any";
 | |
| static char __pyx_k__eta[] = "eta";
 | |
| static char __pyx_k__rho[] = "rho";
 | |
| static char __pyx_k__sys[] = "sys";
 | |
| static char __pyx_k__eta0[] = "eta0";
 | |
| static char __pyx_k__loss[] = "loss";
 | |
| static char __pyx_k__seed[] = "seed";
 | |
| static char __pyx_k__time[] = "time";
 | |
| static char __pyx_k__xnnz[] = "xnnz";
 | |
| static char __pyx_k__alpha[] = "alpha";
 | |
| static char __pyx_k__count[] = "count";
 | |
| static char __pyx_k__dloss[] = "dloss";
 | |
| static char __pyx_k__dtype[] = "dtype";
 | |
| static char __pyx_k__epoch[] = "epoch";
 | |
| static char __pyx_k__isinf[] = "isinf";
 | |
| static char __pyx_k__isnan[] = "isnan";
 | |
| static char __pyx_k__numpy[] = "numpy";
 | |
| static char __pyx_k__order[] = "order";
 | |
| static char __pyx_k__range[] = "range";
 | |
| static char __pyx_k__shape[] = "shape";
 | |
| static char __pyx_k__zeros[] = "zeros";
 | |
| static char __pyx_k__n_iter[] = "n_iter";
 | |
| static char __pyx_k__update[] = "update";
 | |
| static char __pyx_k__dataset[] = "dataset";
 | |
| static char __pyx_k__epsilon[] = "epsilon";
 | |
| static char __pyx_k__float64[] = "float64";
 | |
| static char __pyx_k__nonzero[] = "nonzero";
 | |
| static char __pyx_k__power_t[] = "power_t";
 | |
| static char __pyx_k__shuffle[] = "shuffle";
 | |
| static char __pyx_k__sumloss[] = "sumloss";
 | |
| static char __pyx_k__t_start[] = "t_start";
 | |
| static char __pyx_k__verbose[] = "verbose";
 | |
| static char __pyx_k__weights[] = "weights";
 | |
| static char __pyx_k____main__[] = "__main__";
 | |
| static char __pyx_k____test__[] = "__test__";
 | |
| static char __pyx_k__is_hinge[] = "is_hinge";
 | |
| static char __pyx_k__intercept[] = "intercept";
 | |
| static char __pyx_k__n_samples[] = "n_samples";
 | |
| static char __pyx_k__plain_sgd[] = "plain_sgd";
 | |
| static char __pyx_k__threshold[] = "threshold";
 | |
| static char __pyx_k__x_ind_ptr[] = "x_ind_ptr";
 | |
| static char __pyx_k__ValueError[] = "ValueError";
 | |
| static char __pyx_k__n_features[] = "n_features";
 | |
| static char __pyx_k__q_data_ptr[] = "q_data_ptr";
 | |
| static char __pyx_k__weight_neg[] = "weight_neg";
 | |
| static char __pyx_k__weight_pos[] = "weight_pos";
 | |
| static char __pyx_k__x_data_ptr[] = "x_data_ptr";
 | |
| static char __pyx_k__RuntimeError[] = "RuntimeError";
 | |
| static char __pyx_k__class_weight[] = "class_weight";
 | |
| static char __pyx_k__penalty_type[] = "penalty_type";
 | |
| static char __pyx_k__fit_intercept[] = "fit_intercept";
 | |
| static char __pyx_k__learning_rate[] = "learning_rate";
 | |
| static char __pyx_k__sample_weight[] = "sample_weight";
 | |
| static char __pyx_k__intercept_decay[] = "intercept_decay";
 | |
| static char __pyx_k__NotImplementedError[] = "NotImplementedError";
 | |
| static PyObject *__pyx_kp_s_1;
 | |
| static PyObject *__pyx_kp_u_10;
 | |
| static PyObject *__pyx_kp_u_12;
 | |
| static PyObject *__pyx_kp_u_13;
 | |
| static PyObject *__pyx_kp_u_16;
 | |
| static PyObject *__pyx_kp_s_2;
 | |
| static PyObject *__pyx_kp_s_20;
 | |
| static PyObject *__pyx_n_s_21;
 | |
| static PyObject *__pyx_kp_s_3;
 | |
| static PyObject *__pyx_kp_s_4;
 | |
| static PyObject *__pyx_kp_u_6;
 | |
| static PyObject *__pyx_kp_u_8;
 | |
| static PyObject *__pyx_n_s__C;
 | |
| static PyObject *__pyx_n_s__NotImplementedError;
 | |
| static PyObject *__pyx_n_s__RuntimeError;
 | |
| static PyObject *__pyx_n_s__ValueError;
 | |
| static PyObject *__pyx_n_s____main__;
 | |
| static PyObject *__pyx_n_s____test__;
 | |
| static PyObject *__pyx_n_s__alpha;
 | |
| static PyObject *__pyx_n_s__any;
 | |
| static PyObject *__pyx_n_s__c;
 | |
| static PyObject *__pyx_n_s__class_weight;
 | |
| static PyObject *__pyx_n_s__count;
 | |
| static PyObject *__pyx_n_s__dataset;
 | |
| static PyObject *__pyx_n_s__dloss;
 | |
| static PyObject *__pyx_n_s__dtype;
 | |
| static PyObject *__pyx_n_s__epoch;
 | |
| static PyObject *__pyx_n_s__epsilon;
 | |
| static PyObject *__pyx_n_s__eta;
 | |
| static PyObject *__pyx_n_s__eta0;
 | |
| static PyObject *__pyx_n_s__fit_intercept;
 | |
| static PyObject *__pyx_n_s__float64;
 | |
| static PyObject *__pyx_n_s__i;
 | |
| static PyObject *__pyx_n_s__intercept;
 | |
| static PyObject *__pyx_n_s__intercept_decay;
 | |
| static PyObject *__pyx_n_s__is_hinge;
 | |
| static PyObject *__pyx_n_s__isinf;
 | |
| static PyObject *__pyx_n_s__isnan;
 | |
| static PyObject *__pyx_n_s__learning_rate;
 | |
| static PyObject *__pyx_n_s__loss;
 | |
| static PyObject *__pyx_n_s__n_features;
 | |
| static PyObject *__pyx_n_s__n_iter;
 | |
| static PyObject *__pyx_n_s__n_samples;
 | |
| static PyObject *__pyx_n_s__nonzero;
 | |
| static PyObject *__pyx_n_s__np;
 | |
| static PyObject *__pyx_n_s__numpy;
 | |
| static PyObject *__pyx_n_s__order;
 | |
| static PyObject *__pyx_n_s__p;
 | |
| static PyObject *__pyx_n_s__penalty_type;
 | |
| static PyObject *__pyx_n_s__plain_sgd;
 | |
| static PyObject *__pyx_n_s__power_t;
 | |
| static PyObject *__pyx_n_s__q;
 | |
| static PyObject *__pyx_n_s__q_data_ptr;
 | |
| static PyObject *__pyx_n_s__range;
 | |
| static PyObject *__pyx_n_s__rho;
 | |
| static PyObject *__pyx_n_s__sample_weight;
 | |
| static PyObject *__pyx_n_s__seed;
 | |
| static PyObject *__pyx_n_s__shape;
 | |
| static PyObject *__pyx_n_s__shuffle;
 | |
| static PyObject *__pyx_n_s__sumloss;
 | |
| static PyObject *__pyx_n_s__sys;
 | |
| static PyObject *__pyx_n_s__t;
 | |
| static PyObject *__pyx_n_s__t_start;
 | |
| static PyObject *__pyx_n_s__threshold;
 | |
| static PyObject *__pyx_n_s__time;
 | |
| static PyObject *__pyx_n_s__u;
 | |
| static PyObject *__pyx_n_s__update;
 | |
| static PyObject *__pyx_n_s__verbose;
 | |
| static PyObject *__pyx_n_s__w;
 | |
| static PyObject *__pyx_n_s__weight_neg;
 | |
| static PyObject *__pyx_n_s__weight_pos;
 | |
| static PyObject *__pyx_n_s__weights;
 | |
| static PyObject *__pyx_n_s__x_data_ptr;
 | |
| static PyObject *__pyx_n_s__x_ind_ptr;
 | |
| static PyObject *__pyx_n_s__xnnz;
 | |
| static PyObject *__pyx_n_s__y;
 | |
| static PyObject *__pyx_n_s__zeros;
 | |
| static PyObject *__pyx_int_15;
 | |
| static PyObject *__pyx_k_tuple_5;
 | |
| static PyObject *__pyx_k_tuple_7;
 | |
| static PyObject *__pyx_k_tuple_9;
 | |
| static PyObject *__pyx_k_tuple_11;
 | |
| static PyObject *__pyx_k_tuple_14;
 | |
| static PyObject *__pyx_k_tuple_15;
 | |
| static PyObject *__pyx_k_tuple_17;
 | |
| static PyObject *__pyx_k_tuple_18;
 | |
| static PyObject *__pyx_k_codeobj_19;
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":49
 | |
|  *     """Base class for convex loss functions"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         """Evaluate the loss function.
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_self, CYTHON_UNUSED double __pyx_v_p, CYTHON_UNUSED double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_1loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":64
 | |
|  *             The loss evaluated at `p` and `y`.
 | |
|  *         """
 | |
|  *         raise NotImplementedError()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_t_1 = PyObject_Call(__pyx_builtin_NotImplementedError, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_Raise(__pyx_t_1, 0, 0, 0);
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.LossFunction.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static char __pyx_doc_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss[] = "Evaluate the loss function.\n\n        Parameters\n        ----------\n        p : double\n            The prediction, p = w^T x\n        y : double\n            The true value (aka target)\n\n        Returns\n        -------\n        double\n            The loss evaluated at `p` and `y`.\n        ";
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.LossFunction.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":49
 | |
|  *     """Base class for convex loss functions"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         """Evaluate the loss function.
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self->__pyx_vtab)->loss(__pyx_v_self, __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.LossFunction.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":66
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         """Evaluate the derivative of the loss function with respect to
 | |
|  *         the prediction `p`.
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_12LossFunction_dloss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_self, CYTHON_UNUSED double __pyx_v_p, CYTHON_UNUSED double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_3dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":81
 | |
|  *             The derivative of the loss function w.r.t. `p`.
 | |
|  *         """
 | |
|  *         raise NotImplementedError()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __pyx_t_1 = PyObject_Call(__pyx_builtin_NotImplementedError, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_Raise(__pyx_t_1, 0, 0, 0);
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.LossFunction.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static char __pyx_doc_7sklearn_12linear_model_8sgd_fast_12LossFunction_2dloss[] = "Evaluate the derivative of the loss function with respect to\n        the prediction `p`.\n\n        Parameters\n        ----------\n        p : double\n            The prediction, p = w^T x\n        y : double\n            The true value (aka target)\n        Returns\n        -------\n        double\n            The derivative of the loss function w.r.t. `p`.\n        ";
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.LossFunction.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_12LossFunction_2dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":66
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         """Evaluate the derivative of the loss function with respect to
 | |
|  *         the prediction `p`.
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12LossFunction_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self->__pyx_vtab)->dloss(__pyx_v_self, __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 66; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.LossFunction.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":87
 | |
|  *     """Base class for loss functions for regression"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_10Regression_loss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_v_self, CYTHON_UNUSED double __pyx_v_p, CYTHON_UNUSED double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_1loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":88
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         raise NotImplementedError()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_t_1 = PyObject_Call(__pyx_builtin_NotImplementedError, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_Raise(__pyx_t_1, 0, 0, 0);
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Regression.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Regression.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_10Regression_loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":87
 | |
|  *     """Base class for loss functions for regression"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_10Regression_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression *)__pyx_v_self->__pyx_base.__pyx_vtab)->__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 87; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Regression.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":90
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_10Regression_dloss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_v_self, CYTHON_UNUSED double __pyx_v_p, CYTHON_UNUSED double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_3dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":91
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         raise NotImplementedError()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __pyx_t_1 = PyObject_Call(__pyx_builtin_NotImplementedError, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_Raise(__pyx_t_1, 0, 0, 0);
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   {__pyx_filename = __pyx_f[0]; __pyx_lineno = 91; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Regression.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Regression.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_10Regression_2dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":90
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_10Regression_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression *)__pyx_v_self->__pyx_base.__pyx_vtab)->__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Regression.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":97
 | |
|  *     """Base class for loss functions for classification"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_14Classification_loss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_v_self, CYTHON_UNUSED double __pyx_v_p, CYTHON_UNUSED double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_1loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":98
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         raise NotImplementedError()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_t_1 = PyObject_Call(__pyx_builtin_NotImplementedError, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_Raise(__pyx_t_1, 0, 0, 0);
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Classification.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Classification.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_14Classification_loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":97
 | |
|  *     """Base class for loss functions for classification"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_14Classification_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification *)__pyx_v_self->__pyx_base.__pyx_vtab)->__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Classification.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":100
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_14Classification_dloss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_v_self, CYTHON_UNUSED double __pyx_v_p, CYTHON_UNUSED double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_3dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":101
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         raise NotImplementedError()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __pyx_t_1 = PyObject_Call(__pyx_builtin_NotImplementedError, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 101; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_Raise(__pyx_t_1, 0, 0, 0);
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   {__pyx_filename = __pyx_f[0]; __pyx_lineno = 101; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Classification.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Classification.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_14Classification_2dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":100
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         raise NotImplementedError()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_14Classification_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification *)__pyx_v_self->__pyx_base.__pyx_vtab)->__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Classification.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":112
 | |
|  *     Stochastic Gradient Descent', ICML'04.
 | |
|  *     """
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_loss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_1loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":113
 | |
|  *     """
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = p * y             # <<<<<<<<<<<<<<
 | |
|  *         if z >= 1.0:
 | |
|  *             return 0.0
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_p * __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":114
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:             # <<<<<<<<<<<<<<
 | |
|  *             return 0.0
 | |
|  *         elif z >= -1.0:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z >= 1.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":115
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:
 | |
|  *             return 0.0             # <<<<<<<<<<<<<<
 | |
|  *         elif z >= -1.0:
 | |
|  *             return (1.0 - z) * (1.0 - z)
 | |
|  */
 | |
|     __pyx_r = 0.0;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":116
 | |
|  *         if z >= 1.0:
 | |
|  *             return 0.0
 | |
|  *         elif z >= -1.0:             # <<<<<<<<<<<<<<
 | |
|  *             return (1.0 - z) * (1.0 - z)
 | |
|  *         else:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z >= -1.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":117
 | |
|  *             return 0.0
 | |
|  *         elif z >= -1.0:
 | |
|  *             return (1.0 - z) * (1.0 - z)             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             return -4.0 * z
 | |
|  */
 | |
|     __pyx_r = ((1.0 - __pyx_v_z) * (1.0 - __pyx_v_z));
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":119
 | |
|  *             return (1.0 - z) * (1.0 - z)
 | |
|  *         else:
 | |
|  *             return -4.0 * z             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|     __pyx_r = (-4.0 * __pyx_v_z);
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.ModifiedHuber.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.ModifiedHuber.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":112
 | |
|  *     Stochastic Gradient Descent', ICML'04.
 | |
|  *     """
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 112; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.ModifiedHuber.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":121
 | |
|  *             return -4.0 * z
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_dloss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_3dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":122
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = p * y             # <<<<<<<<<<<<<<
 | |
|  *         if z >= 1.0:
 | |
|  *             return 0.0
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_p * __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":123
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:             # <<<<<<<<<<<<<<
 | |
|  *             return 0.0
 | |
|  *         elif z >= -1.0:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z >= 1.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":124
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:
 | |
|  *             return 0.0             # <<<<<<<<<<<<<<
 | |
|  *         elif z >= -1.0:
 | |
|  *             return 2.0 * (1.0 - z) * -y
 | |
|  */
 | |
|     __pyx_r = 0.0;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":125
 | |
|  *         if z >= 1.0:
 | |
|  *             return 0.0
 | |
|  *         elif z >= -1.0:             # <<<<<<<<<<<<<<
 | |
|  *             return 2.0 * (1.0 - z) * -y
 | |
|  *         else:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z >= -1.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":126
 | |
|  *             return 0.0
 | |
|  *         elif z >= -1.0:
 | |
|  *             return 2.0 * (1.0 - z) * -y             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             return -4.0 * y
 | |
|  */
 | |
|     __pyx_r = ((2.0 * (1.0 - __pyx_v_z)) * (-__pyx_v_y));
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":128
 | |
|  *             return 2.0 * (1.0 - z) * -y
 | |
|  *         else:
 | |
|  *             return -4.0 * y             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|     __pyx_r = (-4.0 * __pyx_v_y);
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.ModifiedHuber.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.ModifiedHuber.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_2dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":121
 | |
|  *             return -4.0 * z
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z >= 1.0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 121; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.ModifiedHuber.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_5__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_5__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_4__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":130
 | |
|  *             return -4.0 * y
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return ModifiedHuber, ()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_4__reduce__(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":131
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return ModifiedHuber, ()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 131; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_ModifiedHuber)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_ModifiedHuber)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_ModifiedHuber)));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_empty_tuple));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_empty_tuple));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_empty_tuple));
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.ModifiedHuber.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_threshold;
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__threshold,0};
 | |
|     PyObject* values[1] = {0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (kw_args > 0) {
 | |
|           PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s__threshold);
 | |
|           if (value) { values[0] = value; kw_args--; }
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else {
 | |
|       switch (PyTuple_GET_SIZE(__pyx_args)) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|     }
 | |
|     if (values[0]) {
 | |
|       __pyx_v_threshold = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_threshold == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     } else {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":147
 | |
|  *     cdef double threshold
 | |
|  * 
 | |
|  *     def __init__(self, double threshold=1.0):             # <<<<<<<<<<<<<<
 | |
|  *         self.threshold = threshold
 | |
|  * 
 | |
|  */
 | |
|       __pyx_v_threshold = ((double)1.0);
 | |
|     }
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("__init__", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 147; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Hinge.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return -1;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge___init__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *)__pyx_v_self), __pyx_v_threshold);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_threshold) {
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":148
 | |
|  * 
 | |
|  *     def __init__(self, double threshold=1.0):
 | |
|  *         self.threshold = threshold             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_v_self->threshold = __pyx_v_threshold;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":150
 | |
|  *         self.threshold = threshold
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_5Hinge_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_3loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":151
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = p * y             # <<<<<<<<<<<<<<
 | |
|  *         if z <= self.threshold:
 | |
|  *             return (self.threshold - z)
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_p * __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":152
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:             # <<<<<<<<<<<<<<
 | |
|  *             return (self.threshold - z)
 | |
|  *         return 0.0
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z <= __pyx_v_self->threshold);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":153
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:
 | |
|  *             return (self.threshold - z)             # <<<<<<<<<<<<<<
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  */
 | |
|     __pyx_r = (__pyx_v_self->threshold - __pyx_v_z);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":154
 | |
|  *         if z <= self.threshold:
 | |
|  *             return (self.threshold - z)
 | |
|  *         return 0.0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_r = 0.0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Hinge.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Hinge.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_2loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":150
 | |
|  *         self.threshold = threshold
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Hinge *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 150; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Hinge.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":156
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_5Hinge_dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_5dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":157
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = p * y             # <<<<<<<<<<<<<<
 | |
|  *         if z <= self.threshold:
 | |
|  *             return -y
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_p * __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":158
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:             # <<<<<<<<<<<<<<
 | |
|  *             return -y
 | |
|  *         return 0.0
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z <= __pyx_v_self->threshold);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":159
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:
 | |
|  *             return -y             # <<<<<<<<<<<<<<
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  */
 | |
|     __pyx_r = (-__pyx_v_y);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":160
 | |
|  *         if z <= self.threshold:
 | |
|  *             return -y
 | |
|  *         return 0.0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|   __pyx_r = 0.0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Hinge.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Hinge.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_4dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":156
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         if z <= self.threshold:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Hinge *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 156; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Hinge.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_6__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":162
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return Hinge, (self.threshold,)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Hinge_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":163
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return Hinge, (self.threshold,)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(__pyx_v_self->threshold); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 163; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 163; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1);
 | |
|   __Pyx_GIVEREF(__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 163; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Hinge)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Hinge)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Hinge)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_t_2));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_t_2));
 | |
|   __pyx_t_2 = 0;
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Hinge.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_threshold;
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__threshold,0};
 | |
|     PyObject* values[1] = {0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (kw_args > 0) {
 | |
|           PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s__threshold);
 | |
|           if (value) { values[0] = value; kw_args--; }
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 179; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else {
 | |
|       switch (PyTuple_GET_SIZE(__pyx_args)) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|     }
 | |
|     if (values[0]) {
 | |
|       __pyx_v_threshold = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_threshold == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 179; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     } else {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":179
 | |
|  *     cdef double threshold
 | |
|  * 
 | |
|  *     def __init__(self, double threshold=1.0):             # <<<<<<<<<<<<<<
 | |
|  *         self.threshold = threshold
 | |
|  * 
 | |
|  */
 | |
|       __pyx_v_threshold = ((double)1.0);
 | |
|     }
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("__init__", 0, 0, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 179; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredHinge.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return -1;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge___init__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)__pyx_v_self), __pyx_v_threshold);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_threshold) {
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":180
 | |
|  * 
 | |
|  *     def __init__(self, double threshold=1.0):
 | |
|  *         self.threshold = threshold             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_v_self->threshold = __pyx_v_threshold;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":182
 | |
|  *         self.threshold = threshold
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_3loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":183
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = self.threshold - p * y             # <<<<<<<<<<<<<<
 | |
|  *         if z > 0:
 | |
|  *             return z * z
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_self->threshold - (__pyx_v_p * __pyx_v_y));
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":184
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:             # <<<<<<<<<<<<<<
 | |
|  *             return z * z
 | |
|  *         return 0.0
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z > 0.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":185
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:
 | |
|  *             return z * z             # <<<<<<<<<<<<<<
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  */
 | |
|     __pyx_r = (__pyx_v_z * __pyx_v_z);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":186
 | |
|  *         if z > 0:
 | |
|  *             return z * z
 | |
|  *         return 0.0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_r = 0.0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.SquaredHinge.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredHinge.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_2loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":182
 | |
|  *         self.threshold = threshold
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)__pyx_v_self->__pyx_base.__pyx_vtab)->__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 182; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredHinge.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":188
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_5dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":189
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = self.threshold - p * y             # <<<<<<<<<<<<<<
 | |
|  *         if z > 0:
 | |
|  *             return -2 * y * z
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_self->threshold - (__pyx_v_p * __pyx_v_y));
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":190
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:             # <<<<<<<<<<<<<<
 | |
|  *             return -2 * y * z
 | |
|  *         return 0.0
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z > 0.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":191
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:
 | |
|  *             return -2 * y * z             # <<<<<<<<<<<<<<
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  */
 | |
|     __pyx_r = ((-2.0 * __pyx_v_y) * __pyx_v_z);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":192
 | |
|  *         if z > 0:
 | |
|  *             return -2 * y * z
 | |
|  *         return 0.0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|   __pyx_r = 0.0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.SquaredHinge.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredHinge.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_4dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":188
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = self.threshold - p * y
 | |
|  *         if z > 0:
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)__pyx_v_self->__pyx_base.__pyx_vtab)->__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 188; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredHinge.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_6__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":194
 | |
|  *         return 0.0
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return SquaredHinge, (self.threshold,)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":195
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return SquaredHinge, (self.threshold,)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(__pyx_v_self->threshold); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1);
 | |
|   __Pyx_GIVEREF(__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 195; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredHinge)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredHinge)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredHinge)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_t_2));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_t_2));
 | |
|   __pyx_t_2 = 0;
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredHinge.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":201
 | |
|  *     """Logistic regression loss for binary classification with y in {-1, 1}"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_3Log_loss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_1loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":202
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double z = p * y             # <<<<<<<<<<<<<<
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  *         if z > 18:
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_p * __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":204
 | |
|  *         cdef double z = p * y
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  *         if z > 18:             # <<<<<<<<<<<<<<
 | |
|  *             return exp(-z)
 | |
|  *         if z < -18:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z > 18.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":205
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  *         if z > 18:
 | |
|  *             return exp(-z)             # <<<<<<<<<<<<<<
 | |
|  *         if z < -18:
 | |
|  *             return -z
 | |
|  */
 | |
|     __pyx_r = exp((-__pyx_v_z));
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":206
 | |
|  *         if z > 18:
 | |
|  *             return exp(-z)
 | |
|  *         if z < -18:             # <<<<<<<<<<<<<<
 | |
|  *             return -z
 | |
|  *         return log(1.0 + exp(-z))
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z < -18.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":207
 | |
|  *             return exp(-z)
 | |
|  *         if z < -18:
 | |
|  *             return -z             # <<<<<<<<<<<<<<
 | |
|  *         return log(1.0 + exp(-z))
 | |
|  * 
 | |
|  */
 | |
|     __pyx_r = (-__pyx_v_z);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L4;
 | |
|   }
 | |
|   __pyx_L4:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":208
 | |
|  *         if z < -18:
 | |
|  *             return -z
 | |
|  *         return log(1.0 + exp(-z))             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_r = log((1.0 + exp((-__pyx_v_z))));
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Log.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Log.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":201
 | |
|  *     """Logistic regression loss for binary classification with y in {-1, 1}"""
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Log *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 201; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Log.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":210
 | |
|  *         return log(1.0 + exp(-z))
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_3Log_dloss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_3dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":211
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z = p * y             # <<<<<<<<<<<<<<
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  *         if z > 18.0:
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_p * __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":213
 | |
|  *         cdef double z = p * y
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  *         if z > 18.0:             # <<<<<<<<<<<<<<
 | |
|  *             return exp(-z) * -y
 | |
|  *         if z < -18.0:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z > 18.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":214
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  *         if z > 18.0:
 | |
|  *             return exp(-z) * -y             # <<<<<<<<<<<<<<
 | |
|  *         if z < -18.0:
 | |
|  *             return -y
 | |
|  */
 | |
|     __pyx_r = (exp((-__pyx_v_z)) * (-__pyx_v_y));
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":215
 | |
|  *         if z > 18.0:
 | |
|  *             return exp(-z) * -y
 | |
|  *         if z < -18.0:             # <<<<<<<<<<<<<<
 | |
|  *             return -y
 | |
|  *         return -y / (exp(z) + 1.0)
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z < -18.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":216
 | |
|  *             return exp(-z) * -y
 | |
|  *         if z < -18.0:
 | |
|  *             return -y             # <<<<<<<<<<<<<<
 | |
|  *         return -y / (exp(z) + 1.0)
 | |
|  * 
 | |
|  */
 | |
|     __pyx_r = (-__pyx_v_y);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L4;
 | |
|   }
 | |
|   __pyx_L4:;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":217
 | |
|  *         if z < -18.0:
 | |
|  *             return -y
 | |
|  *         return -y / (exp(z) + 1.0)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|   __pyx_r = ((-__pyx_v_y) / (exp(__pyx_v_z) + 1.0));
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Log.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Log.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_2dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":210
 | |
|  *         return log(1.0 + exp(-z))
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z = p * y
 | |
|  *         # approximately equal and saves the computation of the log
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Log *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 210; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Log.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_5__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_5__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_4__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":219
 | |
|  *         return -y / (exp(z) + 1.0)
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return Log, ()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_3Log_4__reduce__(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":220
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return Log, ()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 220; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Log)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Log)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Log)));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_empty_tuple));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_empty_tuple));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_empty_tuple));
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Log.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":225
 | |
|  * cdef class SquaredLoss(Regression):
 | |
|  *     """Squared loss traditional used in linear regression."""
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         return 0.5 * (p - y) * (p - y)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_loss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_1loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":226
 | |
|  *     """Squared loss traditional used in linear regression."""
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         return 0.5 * (p - y) * (p - y)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_r = ((0.5 * (__pyx_v_p - __pyx_v_y)) * (__pyx_v_p - __pyx_v_y));
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.SquaredLoss.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_1loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredLoss.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":225
 | |
|  * cdef class SquaredLoss(Regression):
 | |
|  *     """Squared loss traditional used in linear regression."""
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         return 0.5 * (p - y) * (p - y)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredLoss *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 225; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredLoss.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":228
 | |
|  *         return 0.5 * (p - y) * (p - y)
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         return p - y
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_dloss(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_3dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":229
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         return p - y             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|   __pyx_r = (__pyx_v_p - __pyx_v_y);
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.SquaredLoss.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_3dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredLoss.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_2dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":228
 | |
|  *         return 0.5 * (p - y) * (p - y)
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         return p - y
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_2dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredLoss *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 228; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredLoss.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_5__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_5__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_4__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":231
 | |
|  *         return p - y
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return SquaredLoss, ()
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_4__reduce__(CYTHON_UNUSED struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":232
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return SquaredLoss, ()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 232; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredLoss)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredLoss)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredLoss)));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_empty_tuple));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_empty_tuple));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_empty_tuple));
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredLoss.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_c;
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__c,0};
 | |
|     PyObject* values[1] = {0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__c)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 246; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 1) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|     }
 | |
|     __pyx_v_c = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_c == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 246; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 246; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Huber.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return -1;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber___init__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *)__pyx_v_self), __pyx_v_c);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":246
 | |
|  *     cdef double c
 | |
|  * 
 | |
|  *     def __init__(self, double c):             # <<<<<<<<<<<<<<
 | |
|  *         self.c = c
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_c) {
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":247
 | |
|  * 
 | |
|  *     def __init__(self, double c):
 | |
|  *         self.c = c             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_v_self->c = __pyx_v_c;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":249
 | |
|  *         self.c = c
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_5Huber_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_r;
 | |
|   double __pyx_v_abs_r;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_3loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":250
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double r = p - y             # <<<<<<<<<<<<<<
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  *         if abs_r <= self.c:
 | |
|  */
 | |
|   __pyx_v_r = (__pyx_v_p - __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":251
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)             # <<<<<<<<<<<<<<
 | |
|  *         if abs_r <= self.c:
 | |
|  *             return 0.5 * r * r
 | |
|  */
 | |
|   __pyx_v_abs_r = fabs(__pyx_v_r);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":252
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  *         if abs_r <= self.c:             # <<<<<<<<<<<<<<
 | |
|  *             return 0.5 * r * r
 | |
|  *         else:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_abs_r <= __pyx_v_self->c);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":253
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  *         if abs_r <= self.c:
 | |
|  *             return 0.5 * r * r             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             return self.c * abs_r - (0.5 * self.c * self.c)
 | |
|  */
 | |
|     __pyx_r = ((0.5 * __pyx_v_r) * __pyx_v_r);
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":255
 | |
|  *             return 0.5 * r * r
 | |
|  *         else:
 | |
|  *             return self.c * abs_r - (0.5 * self.c * self.c)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|     __pyx_r = ((__pyx_v_self->c * __pyx_v_abs_r) - ((0.5 * __pyx_v_self->c) * __pyx_v_self->c));
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Huber.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Huber.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_2loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":249
 | |
|  *         self.c = c
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Huber *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 249; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Huber.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":257
 | |
|  *             return self.c * abs_r - (0.5 * self.c * self.c)
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_5Huber_dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_r;
 | |
|   double __pyx_v_abs_r;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_5dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":258
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double r = p - y             # <<<<<<<<<<<<<<
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  *         if abs_r <= self.c:
 | |
|  */
 | |
|   __pyx_v_r = (__pyx_v_p - __pyx_v_y);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":259
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)             # <<<<<<<<<<<<<<
 | |
|  *         if abs_r <= self.c:
 | |
|  *             return r
 | |
|  */
 | |
|   __pyx_v_abs_r = fabs(__pyx_v_r);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":260
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  *         if abs_r <= self.c:             # <<<<<<<<<<<<<<
 | |
|  *             return r
 | |
|  *         elif r > 0.0:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_abs_r <= __pyx_v_self->c);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":261
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  *         if abs_r <= self.c:
 | |
|  *             return r             # <<<<<<<<<<<<<<
 | |
|  *         elif r > 0.0:
 | |
|  *             return self.c
 | |
|  */
 | |
|     __pyx_r = __pyx_v_r;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":262
 | |
|  *         if abs_r <= self.c:
 | |
|  *             return r
 | |
|  *         elif r > 0.0:             # <<<<<<<<<<<<<<
 | |
|  *             return self.c
 | |
|  *         else:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_r > 0.0);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":263
 | |
|  *             return r
 | |
|  *         elif r > 0.0:
 | |
|  *             return self.c             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             return -self.c
 | |
|  */
 | |
|     __pyx_r = __pyx_v_self->c;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":265
 | |
|  *             return self.c
 | |
|  *         else:
 | |
|  *             return -self.c             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|     __pyx_r = (-__pyx_v_self->c);
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.Huber.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Huber.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_4dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":257
 | |
|  *             return self.c * abs_r - (0.5 * self.c * self.c)
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double r = p - y
 | |
|  *         cdef double abs_r = abs(r)
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Huber *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Huber.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_6__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":267
 | |
|  *             return -self.c
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return Huber, (self.c,)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_5Huber_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":268
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return Huber, (self.c,)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(__pyx_v_self->c); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1);
 | |
|   __Pyx_GIVEREF(__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 268; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Huber)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Huber)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Huber)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_t_2));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_t_2));
 | |
|   __pyx_t_2 = 0;
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.Huber.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_epsilon;
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__epsilon,0};
 | |
|     PyObject* values[1] = {0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__epsilon)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 279; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 1) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|     }
 | |
|     __pyx_v_epsilon = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_epsilon == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 279; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 279; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.EpsilonInsensitive.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return -1;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive___init__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)__pyx_v_self), __pyx_v_epsilon);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":279
 | |
|  *     cdef double epsilon
 | |
|  * 
 | |
|  *     def __init__(self, double epsilon):             # <<<<<<<<<<<<<<
 | |
|  *         self.epsilon = epsilon
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_epsilon) {
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":280
 | |
|  * 
 | |
|  *     def __init__(self, double epsilon):
 | |
|  *         self.epsilon = epsilon             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_v_self->epsilon = __pyx_v_epsilon;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":282
 | |
|  *         self.epsilon = epsilon
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon
 | |
|  *         return ret if ret > 0 else 0
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_ret;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_3loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":283
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon             # <<<<<<<<<<<<<<
 | |
|  *         return ret if ret > 0 else 0
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_ret = (fabs((__pyx_v_y - __pyx_v_p)) - __pyx_v_self->epsilon);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":284
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon
 | |
|  *         return ret if ret > 0 else 0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   if ((__pyx_v_ret > 0.0)) {
 | |
|     __pyx_t_5 = __pyx_v_ret;
 | |
|   } else {
 | |
|     __pyx_t_5 = 0;
 | |
|   }
 | |
|   __pyx_r = __pyx_t_5;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.EpsilonInsensitive.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.EpsilonInsensitive.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_2loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":282
 | |
|  *         self.epsilon = epsilon
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon
 | |
|  *         return ret if ret > 0 else 0
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 282; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.EpsilonInsensitive.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":286
 | |
|  *         return ret if ret > 0 else 0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         if y - p > self.epsilon:
 | |
|  *             return -1
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_5dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":287
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         if y - p > self.epsilon:             # <<<<<<<<<<<<<<
 | |
|  *             return -1
 | |
|  *         elif p - y > self.epsilon:
 | |
|  */
 | |
|   __pyx_t_6 = ((__pyx_v_y - __pyx_v_p) > __pyx_v_self->epsilon);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":288
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         if y - p > self.epsilon:
 | |
|  *             return -1             # <<<<<<<<<<<<<<
 | |
|  *         elif p - y > self.epsilon:
 | |
|  *             return 1
 | |
|  */
 | |
|     __pyx_r = -1.0;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":289
 | |
|  *         if y - p > self.epsilon:
 | |
|  *             return -1
 | |
|  *         elif p - y > self.epsilon:             # <<<<<<<<<<<<<<
 | |
|  *             return 1
 | |
|  *         else:
 | |
|  */
 | |
|   __pyx_t_6 = ((__pyx_v_p - __pyx_v_y) > __pyx_v_self->epsilon);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":290
 | |
|  *             return -1
 | |
|  *         elif p - y > self.epsilon:
 | |
|  *             return 1             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             return 0
 | |
|  */
 | |
|     __pyx_r = 1.0;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":292
 | |
|  *             return 1
 | |
|  *         else:
 | |
|  *             return 0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|     __pyx_r = 0.0;
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.EpsilonInsensitive.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.EpsilonInsensitive.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_4dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":286
 | |
|  *         return ret if ret > 0 else 0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         if y - p > self.epsilon:
 | |
|  *             return -1
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 286; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.EpsilonInsensitive.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_6__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":294
 | |
|  *             return 0
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return EpsilonInsensitive, (self.epsilon,)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":295
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return EpsilonInsensitive, (self.epsilon,)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(__pyx_v_self->epsilon); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 295; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 295; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1);
 | |
|   __Pyx_GIVEREF(__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 295; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_t_2));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_t_2));
 | |
|   __pyx_t_2 = 0;
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.EpsilonInsensitive.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static int __pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_1__init__(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_epsilon;
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__ (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__epsilon,0};
 | |
|     PyObject* values[1] = {0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__epsilon)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "__init__") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 1) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|     }
 | |
|     __pyx_v_epsilon = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_epsilon == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("__init__", 1, 1, 1, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 306; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.__init__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return -1;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive___init__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)__pyx_v_self), __pyx_v_epsilon);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":306
 | |
|  *     cdef double epsilon
 | |
|  * 
 | |
|  *     def __init__(self, double epsilon):             # <<<<<<<<<<<<<<
 | |
|  *         self.epsilon = epsilon
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static int __pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive___init__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_epsilon) {
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__init__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":307
 | |
|  * 
 | |
|  *     def __init__(self, double epsilon):
 | |
|  *         self.epsilon = epsilon             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  */
 | |
|   __pyx_v_self->epsilon = __pyx_v_epsilon;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":309
 | |
|  *         self.epsilon = epsilon
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon
 | |
|  *         return ret * ret if ret > 0 else 0
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_ret;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__loss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_3loss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":310
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon             # <<<<<<<<<<<<<<
 | |
|  *         return ret * ret if ret > 0 else 0
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_ret = (fabs((__pyx_v_y - __pyx_v_p)) - __pyx_v_self->epsilon);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":311
 | |
|  *     cpdef double loss(self, double p, double y):
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon
 | |
|  *         return ret * ret if ret > 0 else 0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  */
 | |
|   if ((__pyx_v_ret > 0.0)) {
 | |
|     __pyx_t_5 = (__pyx_v_ret * __pyx_v_ret);
 | |
|   } else {
 | |
|     __pyx_t_5 = 0;
 | |
|   }
 | |
|   __pyx_r = __pyx_t_5;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_3loss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("loss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "loss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("loss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_2loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":309
 | |
|  *         self.epsilon = epsilon
 | |
|  * 
 | |
|  *     cpdef double loss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double ret = abs(y - p) - self.epsilon
 | |
|  *         return ret * ret if ret > 0 else 0
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_2loss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("loss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.loss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 309; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.loss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":313
 | |
|  *         return ret * ret if ret > 0 else 0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z
 | |
|  *         z = y - p
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y, int __pyx_skip_dispatch) {
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   double __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   /* Check if called by wrapper */
 | |
|   if (unlikely(__pyx_skip_dispatch)) ;
 | |
|   /* Check if overriden in Python */
 | |
|   else if (unlikely(Py_TYPE(((PyObject *)__pyx_v_self))->tp_dictoffset != 0)) {
 | |
|     __pyx_t_1 = PyObject_GetAttr(((PyObject *)__pyx_v_self), __pyx_n_s__dloss); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_1);
 | |
|     if (!PyCFunction_Check(__pyx_t_1) || (PyCFunction_GET_FUNCTION(__pyx_t_1) != (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_5dloss)) {
 | |
|       __pyx_t_2 = PyFloat_FromDouble(__pyx_v_p); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_y); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_1, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __pyx_t_5 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_5 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_r = __pyx_t_5;
 | |
|       __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|       goto __pyx_L0;
 | |
|     }
 | |
|     __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":315
 | |
|  *     cpdef double dloss(self, double p, double y):
 | |
|  *         cdef double z
 | |
|  *         z = y - p             # <<<<<<<<<<<<<<
 | |
|  *         if z > self.epsilon:
 | |
|  *             return -2 * (z - self.epsilon)
 | |
|  */
 | |
|   __pyx_v_z = (__pyx_v_y - __pyx_v_p);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":316
 | |
|  *         cdef double z
 | |
|  *         z = y - p
 | |
|  *         if z > self.epsilon:             # <<<<<<<<<<<<<<
 | |
|  *             return -2 * (z - self.epsilon)
 | |
|  *         elif z < self.epsilon:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z > __pyx_v_self->epsilon);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":317
 | |
|  *         z = y - p
 | |
|  *         if z > self.epsilon:
 | |
|  *             return -2 * (z - self.epsilon)             # <<<<<<<<<<<<<<
 | |
|  *         elif z < self.epsilon:
 | |
|  *             return 2 * (-z - self.epsilon)
 | |
|  */
 | |
|     __pyx_r = (-2.0 * (__pyx_v_z - __pyx_v_self->epsilon));
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":318
 | |
|  *         if z > self.epsilon:
 | |
|  *             return -2 * (z - self.epsilon)
 | |
|  *         elif z < self.epsilon:             # <<<<<<<<<<<<<<
 | |
|  *             return 2 * (-z - self.epsilon)
 | |
|  *         else:
 | |
|  */
 | |
|   __pyx_t_6 = (__pyx_v_z < __pyx_v_self->epsilon);
 | |
|   if (__pyx_t_6) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":319
 | |
|  *             return -2 * (z - self.epsilon)
 | |
|  *         elif z < self.epsilon:
 | |
|  *             return 2 * (-z - self.epsilon)             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             return 0
 | |
|  */
 | |
|     __pyx_r = (2.0 * ((-__pyx_v_z) - __pyx_v_self->epsilon));
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":321
 | |
|  *             return 2 * (-z - self.epsilon)
 | |
|  *         else:
 | |
|  *             return 0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  */
 | |
|     __pyx_r = 0.0;
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_WriteUnraisable("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_5dloss(PyObject *__pyx_v_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_y;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("dloss (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__p,&__pyx_n_s__y,0};
 | |
|     PyObject* values[2] = {0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__p)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__y)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "dloss") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else if (PyTuple_GET_SIZE(__pyx_args) != 2) {
 | |
|       goto __pyx_L5_argtuple_error;
 | |
|     } else {
 | |
|       values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|       values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|     }
 | |
|     __pyx_v_p = __pyx_PyFloat_AsDouble(values[0]); if (unlikely((__pyx_v_p == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_y = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_y == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("dloss", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_4dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)__pyx_v_self), __pyx_v_p, __pyx_v_y);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":313
 | |
|  *         return ret * ret if ret > 0 else 0
 | |
|  * 
 | |
|  *     cpdef double dloss(self, double p, double y):             # <<<<<<<<<<<<<<
 | |
|  *         cdef double z
 | |
|  *         z = y - p
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_4dloss(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self, double __pyx_v_p, double __pyx_v_y) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("dloss", 0);
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)__pyx_v_self->__pyx_base.__pyx_base.__pyx_vtab)->__pyx_base.__pyx_base.dloss(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_self), __pyx_v_p, __pyx_v_y, 1)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 313; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.dloss", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused); /*proto*/
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_7__reduce__(PyObject *__pyx_v_self, CYTHON_UNUSED PyObject *unused) {
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__reduce__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_6__reduce__(((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)__pyx_v_self));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":323
 | |
|  *             return 0
 | |
|  * 
 | |
|  *     def __reduce__(self):             # <<<<<<<<<<<<<<
 | |
|  *         return SquaredEpsilonInsensitive, (self.epsilon,)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_6__reduce__(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *__pyx_v_self) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__reduce__", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":324
 | |
|  * 
 | |
|  *     def __reduce__(self):
 | |
|  *         return SquaredEpsilonInsensitive, (self.epsilon,)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyFloat_FromDouble(__pyx_v_self->epsilon); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   PyTuple_SET_ITEM(__pyx_t_2, 0, __pyx_t_1);
 | |
|   __Pyx_GIVEREF(__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   __pyx_t_1 = PyTuple_New(2); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 324; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 0, ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive)));
 | |
|   __Pyx_GIVEREF(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive)));
 | |
|   PyTuple_SET_ITEM(__pyx_t_1, 1, ((PyObject *)__pyx_t_2));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_t_2));
 | |
|   __pyx_t_2 = 0;
 | |
|   __pyx_r = ((PyObject *)__pyx_t_1);
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive.__reduce__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_1plain_sgd(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds); /*proto*/
 | |
| static char __pyx_doc_7sklearn_12linear_model_8sgd_fast_plain_sgd[] = "Plain SGD for generic loss functions and penalties.\n\n    Parameters\n    ----------\n    weights : ndarray[double, ndim=1]\n        The allocated coef_ vector.\n    intercept : double\n        The initial intercept.\n    loss : LossFunction\n        A concrete ``LossFunction`` object.\n    penalty_type : int\n        The penalty 2 for L2, 1 for L1, and 3 for Elastic-Net.\n    alpha : float\n        The regularization parameter.\n    rho : float\n        The elastic net hyperparameter.\n    dataset : SequentialDataset\n        A concrete ``SequentialDataset`` object.\n    n_iter : int\n        The number of iterations (epochs).\n    fit_intercept : int\n        Whether or not to fit the intercept (1 or 0).\n    verbose : int\n        Print verbose output; 0 for quite.\n    shuffle : int\n        Whether to shuffle the training data before each epoch.\n    weight_pos : float\n        The weight of the positive class.\n    weight_neg : float\n        The weight of the negative class.\n    seed : int or RandomState object\n        The seed of the pseudo random number generator to use when\n        shuffling the data\n    learning_rate : int\n        The learning rate:\n        (1) constant, eta = eta0\n        (2) optimal, eta = 1.0/(t+t0)\n        (3) inverse scaling, eta = eta0 / pow(t, power_t)\n        (4) Passive Agressive-I, eta = min(alpha, loss/norm(x))\n        (5) Passive Agressive-II, eta = 1.0 / (norm(x) + 0.5*alpha)\n    eta0 : double\n        The initial learning rate.\n    power_t : double\n        The exponent for inverse scaling learning rate.\n    t : double\n        Initial state of the learning rate. This value is equal to the\n        iteration count except when the learning rate is set to `optimal`.\n        Default: 1.0.\n\n    Returns\n    -------\n    weights : array, shape=[n_features]\n        The fitted weight vector.\n    intercept : float\n        The fitted intercept term.\n\n    ";
 | |
| static PyMethodDef __pyx_mdef_7sklearn_12linear_model_8sgd_fast_1plain_sgd = {__Pyx_NAMESTR("plain_sgd"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_1plain_sgd, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_7sklearn_12linear_model_8sgd_fast_plain_sgd)};
 | |
| static PyObject *__pyx_pw_7sklearn_12linear_model_8sgd_fast_1plain_sgd(PyObject *__pyx_self, PyObject *__pyx_args, PyObject *__pyx_kwds) {
 | |
|   PyArrayObject *__pyx_v_weights = 0;
 | |
|   double __pyx_v_intercept;
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_loss = 0;
 | |
|   int __pyx_v_penalty_type;
 | |
|   double __pyx_v_alpha;
 | |
|   double __pyx_v_C;
 | |
|   double __pyx_v_rho;
 | |
|   struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset *__pyx_v_dataset = 0;
 | |
|   int __pyx_v_n_iter;
 | |
|   int __pyx_v_fit_intercept;
 | |
|   int __pyx_v_verbose;
 | |
|   int __pyx_v_shuffle;
 | |
|   PyObject *__pyx_v_seed = 0;
 | |
|   double __pyx_v_weight_pos;
 | |
|   double __pyx_v_weight_neg;
 | |
|   int __pyx_v_learning_rate;
 | |
|   double __pyx_v_eta0;
 | |
|   double __pyx_v_power_t;
 | |
|   double __pyx_v_t;
 | |
|   double __pyx_v_intercept_decay;
 | |
|   PyObject *__pyx_r = 0;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("plain_sgd (wrapper)", 0);
 | |
|   {
 | |
|     static PyObject **__pyx_pyargnames[] = {&__pyx_n_s__weights,&__pyx_n_s__intercept,&__pyx_n_s__loss,&__pyx_n_s__penalty_type,&__pyx_n_s__alpha,&__pyx_n_s__C,&__pyx_n_s__rho,&__pyx_n_s__dataset,&__pyx_n_s__n_iter,&__pyx_n_s__fit_intercept,&__pyx_n_s__verbose,&__pyx_n_s__shuffle,&__pyx_n_s__seed,&__pyx_n_s__weight_pos,&__pyx_n_s__weight_neg,&__pyx_n_s__learning_rate,&__pyx_n_s__eta0,&__pyx_n_s__power_t,&__pyx_n_s__t,&__pyx_n_s__intercept_decay,0};
 | |
|     PyObject* values[20] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 | |
|     if (unlikely(__pyx_kwds)) {
 | |
|       Py_ssize_t kw_args;
 | |
|       const Py_ssize_t pos_args = PyTuple_GET_SIZE(__pyx_args);
 | |
|       switch (pos_args) {
 | |
|         case 20: values[19] = PyTuple_GET_ITEM(__pyx_args, 19);
 | |
|         case 19: values[18] = PyTuple_GET_ITEM(__pyx_args, 18);
 | |
|         case 18: values[17] = PyTuple_GET_ITEM(__pyx_args, 17);
 | |
|         case 17: values[16] = PyTuple_GET_ITEM(__pyx_args, 16);
 | |
|         case 16: values[15] = PyTuple_GET_ITEM(__pyx_args, 15);
 | |
|         case 15: values[14] = PyTuple_GET_ITEM(__pyx_args, 14);
 | |
|         case 14: values[13] = PyTuple_GET_ITEM(__pyx_args, 13);
 | |
|         case 13: values[12] = PyTuple_GET_ITEM(__pyx_args, 12);
 | |
|         case 12: values[11] = PyTuple_GET_ITEM(__pyx_args, 11);
 | |
|         case 11: values[10] = PyTuple_GET_ITEM(__pyx_args, 10);
 | |
|         case 10: values[9] = PyTuple_GET_ITEM(__pyx_args, 9);
 | |
|         case  9: values[8] = PyTuple_GET_ITEM(__pyx_args, 8);
 | |
|         case  8: values[7] = PyTuple_GET_ITEM(__pyx_args, 7);
 | |
|         case  7: values[6] = PyTuple_GET_ITEM(__pyx_args, 6);
 | |
|         case  6: values[5] = PyTuple_GET_ITEM(__pyx_args, 5);
 | |
|         case  5: values[4] = PyTuple_GET_ITEM(__pyx_args, 4);
 | |
|         case  4: values[3] = PyTuple_GET_ITEM(__pyx_args, 3);
 | |
|         case  3: values[2] = PyTuple_GET_ITEM(__pyx_args, 2);
 | |
|         case  2: values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         case  1: values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         case  0: break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|       kw_args = PyDict_Size(__pyx_kwds);
 | |
|       switch (pos_args) {
 | |
|         case  0:
 | |
|         if (likely((values[0] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__weights)) != 0)) kw_args--;
 | |
|         else goto __pyx_L5_argtuple_error;
 | |
|         case  1:
 | |
|         if (likely((values[1] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__intercept)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 1); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  2:
 | |
|         if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__loss)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 2); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  3:
 | |
|         if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__penalty_type)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 3); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  4:
 | |
|         if (likely((values[4] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__alpha)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 4); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  5:
 | |
|         if (likely((values[5] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__C)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 5); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  6:
 | |
|         if (likely((values[6] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__rho)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 6); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  7:
 | |
|         if (likely((values[7] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__dataset)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 7); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  8:
 | |
|         if (likely((values[8] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__n_iter)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 8); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case  9:
 | |
|         if (likely((values[9] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__fit_intercept)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 9); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 10:
 | |
|         if (likely((values[10] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__verbose)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 10); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 11:
 | |
|         if (likely((values[11] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__shuffle)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 11); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 12:
 | |
|         if (likely((values[12] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__seed)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 12); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 13:
 | |
|         if (likely((values[13] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__weight_pos)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 13); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 14:
 | |
|         if (likely((values[14] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__weight_neg)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 14); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 15:
 | |
|         if (likely((values[15] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__learning_rate)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 15); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 16:
 | |
|         if (likely((values[16] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__eta0)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 16); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 17:
 | |
|         if (likely((values[17] = PyDict_GetItem(__pyx_kwds, __pyx_n_s__power_t)) != 0)) kw_args--;
 | |
|         else {
 | |
|           __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, 17); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|         }
 | |
|         case 18:
 | |
|         if (kw_args > 0) {
 | |
|           PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s__t);
 | |
|           if (value) { values[18] = value; kw_args--; }
 | |
|         }
 | |
|         case 19:
 | |
|         if (kw_args > 0) {
 | |
|           PyObject* value = PyDict_GetItem(__pyx_kwds, __pyx_n_s__intercept_decay);
 | |
|           if (value) { values[19] = value; kw_args--; }
 | |
|         }
 | |
|       }
 | |
|       if (unlikely(kw_args > 0)) {
 | |
|         if (unlikely(__Pyx_ParseOptionalKeywords(__pyx_kwds, __pyx_pyargnames, 0, values, pos_args, "plain_sgd") < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|       }
 | |
|     } else {
 | |
|       switch (PyTuple_GET_SIZE(__pyx_args)) {
 | |
|         case 20: values[19] = PyTuple_GET_ITEM(__pyx_args, 19);
 | |
|         case 19: values[18] = PyTuple_GET_ITEM(__pyx_args, 18);
 | |
|         case 18: values[17] = PyTuple_GET_ITEM(__pyx_args, 17);
 | |
|         values[16] = PyTuple_GET_ITEM(__pyx_args, 16);
 | |
|         values[15] = PyTuple_GET_ITEM(__pyx_args, 15);
 | |
|         values[14] = PyTuple_GET_ITEM(__pyx_args, 14);
 | |
|         values[13] = PyTuple_GET_ITEM(__pyx_args, 13);
 | |
|         values[12] = PyTuple_GET_ITEM(__pyx_args, 12);
 | |
|         values[11] = PyTuple_GET_ITEM(__pyx_args, 11);
 | |
|         values[10] = PyTuple_GET_ITEM(__pyx_args, 10);
 | |
|         values[9] = PyTuple_GET_ITEM(__pyx_args, 9);
 | |
|         values[8] = PyTuple_GET_ITEM(__pyx_args, 8);
 | |
|         values[7] = PyTuple_GET_ITEM(__pyx_args, 7);
 | |
|         values[6] = PyTuple_GET_ITEM(__pyx_args, 6);
 | |
|         values[5] = PyTuple_GET_ITEM(__pyx_args, 5);
 | |
|         values[4] = PyTuple_GET_ITEM(__pyx_args, 4);
 | |
|         values[3] = PyTuple_GET_ITEM(__pyx_args, 3);
 | |
|         values[2] = PyTuple_GET_ITEM(__pyx_args, 2);
 | |
|         values[1] = PyTuple_GET_ITEM(__pyx_args, 1);
 | |
|         values[0] = PyTuple_GET_ITEM(__pyx_args, 0);
 | |
|         break;
 | |
|         default: goto __pyx_L5_argtuple_error;
 | |
|       }
 | |
|     }
 | |
|     __pyx_v_weights = ((PyArrayObject *)values[0]);
 | |
|     __pyx_v_intercept = __pyx_PyFloat_AsDouble(values[1]); if (unlikely((__pyx_v_intercept == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 328; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_loss = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)values[2]);
 | |
|     __pyx_v_penalty_type = __Pyx_PyInt_AsInt(values[3]); if (unlikely((__pyx_v_penalty_type == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 330; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_alpha = __pyx_PyFloat_AsDouble(values[4]); if (unlikely((__pyx_v_alpha == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 331; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_C = __pyx_PyFloat_AsDouble(values[5]); if (unlikely((__pyx_v_C == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 331; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_rho = __pyx_PyFloat_AsDouble(values[6]); if (unlikely((__pyx_v_rho == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 332; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_dataset = ((struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset *)values[7]);
 | |
|     __pyx_v_n_iter = __Pyx_PyInt_AsInt(values[8]); if (unlikely((__pyx_v_n_iter == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 334; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_fit_intercept = __Pyx_PyInt_AsInt(values[9]); if (unlikely((__pyx_v_fit_intercept == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 334; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_verbose = __Pyx_PyInt_AsInt(values[10]); if (unlikely((__pyx_v_verbose == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 335; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_shuffle = __Pyx_PyInt_AsInt(values[11]); if (unlikely((__pyx_v_shuffle == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 335; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_seed = values[12];
 | |
|     __pyx_v_weight_pos = __pyx_PyFloat_AsDouble(values[13]); if (unlikely((__pyx_v_weight_pos == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 336; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_weight_neg = __pyx_PyFloat_AsDouble(values[14]); if (unlikely((__pyx_v_weight_neg == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 336; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_learning_rate = __Pyx_PyInt_AsInt(values[15]); if (unlikely((__pyx_v_learning_rate == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 337; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_eta0 = __pyx_PyFloat_AsDouble(values[16]); if (unlikely((__pyx_v_eta0 == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 337; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     __pyx_v_power_t = __pyx_PyFloat_AsDouble(values[17]); if (unlikely((__pyx_v_power_t == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 338; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     if (values[18]) {
 | |
|       __pyx_v_t = __pyx_PyFloat_AsDouble(values[18]); if (unlikely((__pyx_v_t == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 339; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     } else {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":339
 | |
|  *               int learning_rate, double eta0,
 | |
|  *               double power_t,
 | |
|  *               double t=1.0,             # <<<<<<<<<<<<<<
 | |
|  *               double intercept_decay=1.0):
 | |
|  *     """Plain SGD for generic loss functions and penalties.
 | |
|  */
 | |
|       __pyx_v_t = ((double)1.0);
 | |
|     }
 | |
|     if (values[19]) {
 | |
|       __pyx_v_intercept_decay = __pyx_PyFloat_AsDouble(values[19]); if (unlikely((__pyx_v_intercept_decay == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 340; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|     } else {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":340
 | |
|  *               double power_t,
 | |
|  *               double t=1.0,
 | |
|  *               double intercept_decay=1.0):             # <<<<<<<<<<<<<<
 | |
|  *     """Plain SGD for generic loss functions and penalties.
 | |
|  * 
 | |
|  */
 | |
|       __pyx_v_intercept_decay = ((double)1.0);
 | |
|     }
 | |
|   }
 | |
|   goto __pyx_L4_argument_unpacking_done;
 | |
|   __pyx_L5_argtuple_error:;
 | |
|   __Pyx_RaiseArgtupleInvalid("plain_sgd", 0, 18, 20, PyTuple_GET_SIZE(__pyx_args)); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L3_error;}
 | |
|   __pyx_L3_error:;
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.plain_sgd", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return NULL;
 | |
|   __pyx_L4_argument_unpacking_done:;
 | |
|   if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_weights), __pyx_ptype_5numpy_ndarray, 1, "weights", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_loss), __pyx_ptype_7sklearn_12linear_model_8sgd_fast_LossFunction, 1, "loss", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 329; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_dataset), __pyx_ptype_7sklearn_5utils_11seq_dataset_SequentialDataset, 1, "dataset", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 333; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_r = __pyx_pf_7sklearn_12linear_model_8sgd_fast_plain_sgd(__pyx_self, __pyx_v_weights, __pyx_v_intercept, __pyx_v_loss, __pyx_v_penalty_type, __pyx_v_alpha, __pyx_v_C, __pyx_v_rho, __pyx_v_dataset, __pyx_v_n_iter, __pyx_v_fit_intercept, __pyx_v_verbose, __pyx_v_shuffle, __pyx_v_seed, __pyx_v_weight_pos, __pyx_v_weight_neg, __pyx_v_learning_rate, __pyx_v_eta0, __pyx_v_power_t, __pyx_v_t, __pyx_v_intercept_decay);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":327
 | |
|  * 
 | |
|  * 
 | |
|  * def plain_sgd(np.ndarray[DOUBLE, ndim=1, mode='c'] weights,             # <<<<<<<<<<<<<<
 | |
|  *               double intercept,
 | |
|  *               LossFunction loss,
 | |
|  */
 | |
| 
 | |
| static PyObject *__pyx_pf_7sklearn_12linear_model_8sgd_fast_plain_sgd(CYTHON_UNUSED PyObject *__pyx_self, PyArrayObject *__pyx_v_weights, double __pyx_v_intercept, struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *__pyx_v_loss, int __pyx_v_penalty_type, double __pyx_v_alpha, double __pyx_v_C, double __pyx_v_rho, struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset *__pyx_v_dataset, int __pyx_v_n_iter, int __pyx_v_fit_intercept, int __pyx_v_verbose, int __pyx_v_shuffle, PyObject *__pyx_v_seed, double __pyx_v_weight_pos, double __pyx_v_weight_neg, int __pyx_v_learning_rate, double __pyx_v_eta0, double __pyx_v_power_t, double __pyx_v_t, double __pyx_v_intercept_decay) {
 | |
|   Py_ssize_t __pyx_v_n_samples;
 | |
|   Py_ssize_t __pyx_v_n_features;
 | |
|   struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *__pyx_v_w = 0;
 | |
|   __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *__pyx_v_x_data_ptr;
 | |
|   __pyx_t_7sklearn_12linear_model_8sgd_fast_INTEGER *__pyx_v_x_ind_ptr;
 | |
|   int __pyx_v_xnnz;
 | |
|   double __pyx_v_eta;
 | |
|   double __pyx_v_p;
 | |
|   double __pyx_v_update;
 | |
|   double __pyx_v_sumloss;
 | |
|   __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE __pyx_v_y;
 | |
|   __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE __pyx_v_sample_weight;
 | |
|   double __pyx_v_class_weight;
 | |
|   unsigned int __pyx_v_count;
 | |
|   unsigned int __pyx_v_epoch;
 | |
|   CYTHON_UNUSED unsigned int __pyx_v_i;
 | |
|   int __pyx_v_is_hinge;
 | |
|   PyArrayObject *__pyx_v_q = 0;
 | |
|   __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *__pyx_v_q_data_ptr;
 | |
|   double __pyx_v_u;
 | |
|   PyObject *__pyx_v_t_start = NULL;
 | |
|   __Pyx_LocalBuf_ND __pyx_pybuffernd_q;
 | |
|   __Pyx_Buffer __pyx_pybuffer_q;
 | |
|   __Pyx_LocalBuf_ND __pyx_pybuffernd_weights;
 | |
|   __Pyx_Buffer __pyx_pybuffer_weights;
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   Py_ssize_t __pyx_t_1;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   int __pyx_t_4;
 | |
|   PyArrayObject *__pyx_t_5 = NULL;
 | |
|   PyObject *__pyx_t_6 = NULL;
 | |
|   PyObject *__pyx_t_7 = NULL;
 | |
|   PyObject *__pyx_t_8 = NULL;
 | |
|   int __pyx_t_9;
 | |
|   PyObject *__pyx_t_10 = NULL;
 | |
|   PyObject *__pyx_t_11 = NULL;
 | |
|   PyObject *__pyx_t_12 = NULL;
 | |
|   unsigned int __pyx_t_13;
 | |
|   unsigned int __pyx_t_14;
 | |
|   PyObject *__pyx_t_15 = NULL;
 | |
|   int __pyx_t_16;
 | |
|   int __pyx_t_17;
 | |
|   int __pyx_t_18;
 | |
|   int __pyx_t_19;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("plain_sgd", 0);
 | |
|   __pyx_pybuffer_q.pybuffer.buf = NULL;
 | |
|   __pyx_pybuffer_q.refcount = 0;
 | |
|   __pyx_pybuffernd_q.data = NULL;
 | |
|   __pyx_pybuffernd_q.rcbuffer = &__pyx_pybuffer_q;
 | |
|   __pyx_pybuffer_weights.pybuffer.buf = NULL;
 | |
|   __pyx_pybuffer_weights.refcount = 0;
 | |
|   __pyx_pybuffernd_weights.data = NULL;
 | |
|   __pyx_pybuffernd_weights.rcbuffer = &__pyx_pybuffer_weights;
 | |
|   {
 | |
|     __Pyx_BufFmt_StackElem __pyx_stack[1];
 | |
|     if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_weights.rcbuffer->pybuffer, (PyObject*)__pyx_v_weights, &__Pyx_TypeInfo_nn___pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 1, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   }
 | |
|   __pyx_pybuffernd_weights.diminfo[0].strides = __pyx_pybuffernd_weights.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_weights.diminfo[0].shape = __pyx_pybuffernd_weights.rcbuffer->pybuffer.shape[0];
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":400
 | |
|  * 
 | |
|  *     # get the data information into easy vars
 | |
|  *     cdef Py_ssize_t n_samples = dataset.n_samples             # <<<<<<<<<<<<<<
 | |
|  *     cdef Py_ssize_t n_features = weights.shape[0]
 | |
|  * 
 | |
|  */
 | |
|   __pyx_t_1 = __pyx_v_dataset->n_samples;
 | |
|   __pyx_v_n_samples = __pyx_t_1;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":401
 | |
|  *     # get the data information into easy vars
 | |
|  *     cdef Py_ssize_t n_samples = dataset.n_samples
 | |
|  *     cdef Py_ssize_t n_features = weights.shape[0]             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cdef WeightVector w = WeightVector(weights)
 | |
|  */
 | |
|   __pyx_v_n_features = (__pyx_v_weights->dimensions[0]);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":403
 | |
|  *     cdef Py_ssize_t n_features = weights.shape[0]
 | |
|  * 
 | |
|  *     cdef WeightVector w = WeightVector(weights)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     cdef DOUBLE * x_data_ptr = NULL
 | |
|  */
 | |
|   __pyx_t_2 = PyTuple_New(1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 403; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_v_weights));
 | |
|   PyTuple_SET_ITEM(__pyx_t_2, 0, ((PyObject *)__pyx_v_weights));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_v_weights));
 | |
|   __pyx_t_3 = PyObject_Call(((PyObject *)((PyObject*)__pyx_ptype_7sklearn_5utils_13weight_vector_WeightVector)), ((PyObject *)__pyx_t_2), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 403; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_3);
 | |
|   __Pyx_DECREF(((PyObject *)__pyx_t_2)); __pyx_t_2 = 0;
 | |
|   __pyx_v_w = ((struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *)__pyx_t_3);
 | |
|   __pyx_t_3 = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":405
 | |
|  *     cdef WeightVector w = WeightVector(weights)
 | |
|  * 
 | |
|  *     cdef DOUBLE * x_data_ptr = NULL             # <<<<<<<<<<<<<<
 | |
|  *     cdef INTEGER * x_ind_ptr = NULL
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_x_data_ptr = NULL;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":406
 | |
|  * 
 | |
|  *     cdef DOUBLE * x_data_ptr = NULL
 | |
|  *     cdef INTEGER * x_ind_ptr = NULL             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     # helper variable
 | |
|  */
 | |
|   __pyx_v_x_ind_ptr = NULL;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":410
 | |
|  *     # helper variable
 | |
|  *     cdef int xnnz
 | |
|  *     cdef double eta = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef double p = 0.0
 | |
|  *     cdef double update = 0.0
 | |
|  */
 | |
|   __pyx_v_eta = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":411
 | |
|  *     cdef int xnnz
 | |
|  *     cdef double eta = 0.0
 | |
|  *     cdef double p = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef double update = 0.0
 | |
|  *     cdef double sumloss = 0.0
 | |
|  */
 | |
|   __pyx_v_p = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":412
 | |
|  *     cdef double eta = 0.0
 | |
|  *     cdef double p = 0.0
 | |
|  *     cdef double update = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef double sumloss = 0.0
 | |
|  *     cdef DOUBLE y = 0.0
 | |
|  */
 | |
|   __pyx_v_update = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":413
 | |
|  *     cdef double p = 0.0
 | |
|  *     cdef double update = 0.0
 | |
|  *     cdef double sumloss = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef DOUBLE y = 0.0
 | |
|  *     cdef DOUBLE sample_weight
 | |
|  */
 | |
|   __pyx_v_sumloss = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":414
 | |
|  *     cdef double update = 0.0
 | |
|  *     cdef double sumloss = 0.0
 | |
|  *     cdef DOUBLE y = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef DOUBLE sample_weight
 | |
|  *     cdef double class_weight = 1.0
 | |
|  */
 | |
|   __pyx_v_y = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":416
 | |
|  *     cdef DOUBLE y = 0.0
 | |
|  *     cdef DOUBLE sample_weight
 | |
|  *     cdef double class_weight = 1.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef unsigned int count = 0
 | |
|  *     cdef unsigned int epoch = 0
 | |
|  */
 | |
|   __pyx_v_class_weight = 1.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":417
 | |
|  *     cdef DOUBLE sample_weight
 | |
|  *     cdef double class_weight = 1.0
 | |
|  *     cdef unsigned int count = 0             # <<<<<<<<<<<<<<
 | |
|  *     cdef unsigned int epoch = 0
 | |
|  *     cdef unsigned int i = 0
 | |
|  */
 | |
|   __pyx_v_count = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":418
 | |
|  *     cdef double class_weight = 1.0
 | |
|  *     cdef unsigned int count = 0
 | |
|  *     cdef unsigned int epoch = 0             # <<<<<<<<<<<<<<
 | |
|  *     cdef unsigned int i = 0
 | |
|  *     cdef int is_hinge = isinstance(loss, Hinge)
 | |
|  */
 | |
|   __pyx_v_epoch = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":419
 | |
|  *     cdef unsigned int count = 0
 | |
|  *     cdef unsigned int epoch = 0
 | |
|  *     cdef unsigned int i = 0             # <<<<<<<<<<<<<<
 | |
|  *     cdef int is_hinge = isinstance(loss, Hinge)
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_i = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":420
 | |
|  *     cdef unsigned int epoch = 0
 | |
|  *     cdef unsigned int i = 0
 | |
|  *     cdef int is_hinge = isinstance(loss, Hinge)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     # q vector is only used for L1 regularization
 | |
|  */
 | |
|   __pyx_t_3 = ((PyObject *)((PyObject*)__pyx_ptype_7sklearn_12linear_model_8sgd_fast_Hinge));
 | |
|   __Pyx_INCREF(__pyx_t_3);
 | |
|   __pyx_t_4 = __Pyx_TypeCheck(((PyObject *)__pyx_v_loss), __pyx_t_3); 
 | |
|   __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|   __pyx_v_is_hinge = __pyx_t_4;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":423
 | |
|  * 
 | |
|  *     # q vector is only used for L1 regularization
 | |
|  *     cdef np.ndarray[DOUBLE, ndim = 1, mode = "c"] q = None             # <<<<<<<<<<<<<<
 | |
|  *     cdef DOUBLE * q_data_ptr = NULL
 | |
|  *     if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  */
 | |
|   __pyx_t_5 = ((PyArrayObject *)Py_None);
 | |
|   {
 | |
|     __Pyx_BufFmt_StackElem __pyx_stack[1];
 | |
|     if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_q.rcbuffer->pybuffer, (PyObject*)__pyx_t_5, &__Pyx_TypeInfo_nn___pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 1, 0, __pyx_stack) == -1)) {
 | |
|       __pyx_v_q = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_q.rcbuffer->pybuffer.buf = NULL;
 | |
|       {__pyx_filename = __pyx_f[0]; __pyx_lineno = 423; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     } else {__pyx_pybuffernd_q.diminfo[0].strides = __pyx_pybuffernd_q.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_q.diminfo[0].shape = __pyx_pybuffernd_q.rcbuffer->pybuffer.shape[0];
 | |
|     }
 | |
|   }
 | |
|   __pyx_t_5 = 0;
 | |
|   __Pyx_INCREF(Py_None);
 | |
|   __pyx_v_q = ((PyArrayObject *)Py_None);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":424
 | |
|  *     # q vector is only used for L1 regularization
 | |
|  *     cdef np.ndarray[DOUBLE, ndim = 1, mode = "c"] q = None
 | |
|  *     cdef DOUBLE * q_data_ptr = NULL             # <<<<<<<<<<<<<<
 | |
|  *     if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  *         q = np.zeros((n_features,), dtype=np.float64, order="c")
 | |
|  */
 | |
|   __pyx_v_q_data_ptr = NULL;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":425
 | |
|  *     cdef np.ndarray[DOUBLE, ndim = 1, mode = "c"] q = None
 | |
|  *     cdef DOUBLE * q_data_ptr = NULL
 | |
|  *     if penalty_type == L1 or penalty_type == ELASTICNET:             # <<<<<<<<<<<<<<
 | |
|  *         q = np.zeros((n_features,), dtype=np.float64, order="c")
 | |
|  *         q_data_ptr = <DOUBLE * > q.data
 | |
|  */
 | |
|   switch (__pyx_v_penalty_type) {
 | |
|     case 1:
 | |
|     case 3:
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":426
 | |
|  *     cdef DOUBLE * q_data_ptr = NULL
 | |
|  *     if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  *         q = np.zeros((n_features,), dtype=np.float64, order="c")             # <<<<<<<<<<<<<<
 | |
|  *         q_data_ptr = <DOUBLE * > q.data
 | |
|  *     cdef double u = 0.0
 | |
|  */
 | |
|     __pyx_t_3 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     __pyx_t_2 = PyObject_GetAttr(__pyx_t_3, __pyx_n_s__zeros); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_2);
 | |
|     __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|     __pyx_t_3 = PyInt_FromSsize_t(__pyx_v_n_features); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     __pyx_t_6 = PyTuple_New(1); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_6);
 | |
|     PyTuple_SET_ITEM(__pyx_t_6, 0, __pyx_t_3);
 | |
|     __Pyx_GIVEREF(__pyx_t_3);
 | |
|     __pyx_t_3 = 0;
 | |
|     __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_t_6));
 | |
|     __Pyx_GIVEREF(((PyObject *)__pyx_t_6));
 | |
|     __pyx_t_6 = 0;
 | |
|     __pyx_t_6 = PyDict_New(); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(((PyObject *)__pyx_t_6));
 | |
|     __pyx_t_7 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_7);
 | |
|     __pyx_t_8 = PyObject_GetAttr(__pyx_t_7, __pyx_n_s__float64); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_8);
 | |
|     __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 | |
|     if (PyDict_SetItem(__pyx_t_6, ((PyObject *)__pyx_n_s__dtype), __pyx_t_8) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
 | |
|     if (PyDict_SetItem(__pyx_t_6, ((PyObject *)__pyx_n_s__order), ((PyObject *)__pyx_n_s__c)) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __pyx_t_8 = PyObject_Call(__pyx_t_2, ((PyObject *)__pyx_t_3), ((PyObject *)__pyx_t_6)); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_8);
 | |
|     __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|     __Pyx_DECREF(((PyObject *)__pyx_t_3)); __pyx_t_3 = 0;
 | |
|     __Pyx_DECREF(((PyObject *)__pyx_t_6)); __pyx_t_6 = 0;
 | |
|     if (!(likely(((__pyx_t_8) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_8, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __pyx_t_5 = ((PyArrayObject *)__pyx_t_8);
 | |
|     {
 | |
|       __Pyx_BufFmt_StackElem __pyx_stack[1];
 | |
|       __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_q.rcbuffer->pybuffer);
 | |
|       __pyx_t_9 = __Pyx_GetBufferAndValidate(&__pyx_pybuffernd_q.rcbuffer->pybuffer, (PyObject*)__pyx_t_5, &__Pyx_TypeInfo_nn___pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 1, 0, __pyx_stack);
 | |
|       if (unlikely(__pyx_t_9 < 0)) {
 | |
|         PyErr_Fetch(&__pyx_t_10, &__pyx_t_11, &__pyx_t_12);
 | |
|         if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_q.rcbuffer->pybuffer, (PyObject*)__pyx_v_q, &__Pyx_TypeInfo_nn___pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE, PyBUF_FORMAT| PyBUF_C_CONTIGUOUS, 1, 0, __pyx_stack) == -1)) {
 | |
|           Py_XDECREF(__pyx_t_10); Py_XDECREF(__pyx_t_11); Py_XDECREF(__pyx_t_12);
 | |
|           __Pyx_RaiseBufferFallbackError();
 | |
|         } else {
 | |
|           PyErr_Restore(__pyx_t_10, __pyx_t_11, __pyx_t_12);
 | |
|         }
 | |
|       }
 | |
|       __pyx_pybuffernd_q.diminfo[0].strides = __pyx_pybuffernd_q.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_q.diminfo[0].shape = __pyx_pybuffernd_q.rcbuffer->pybuffer.shape[0];
 | |
|       if (unlikely(__pyx_t_9 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 426; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     }
 | |
|     __pyx_t_5 = 0;
 | |
|     __Pyx_DECREF(((PyObject *)__pyx_v_q));
 | |
|     __pyx_v_q = ((PyArrayObject *)__pyx_t_8);
 | |
|     __pyx_t_8 = 0;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":427
 | |
|  *     if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  *         q = np.zeros((n_features,), dtype=np.float64, order="c")
 | |
|  *         q_data_ptr = <DOUBLE * > q.data             # <<<<<<<<<<<<<<
 | |
|  *     cdef double u = 0.0
 | |
|  * 
 | |
|  */
 | |
|     __pyx_v_q_data_ptr = ((__pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *)__pyx_v_q->data);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":428
 | |
|  *         q = np.zeros((n_features,), dtype=np.float64, order="c")
 | |
|  *         q_data_ptr = <DOUBLE * > q.data
 | |
|  *     cdef double u = 0.0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     if penalty_type == L2:
 | |
|  */
 | |
|   __pyx_v_u = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":432
 | |
|  *     if penalty_type == L2:
 | |
|  *         rho = 1.0
 | |
|  *     elif penalty_type == L1:             # <<<<<<<<<<<<<<
 | |
|  *         rho = 0.0
 | |
|  * 
 | |
|  */
 | |
|   switch (__pyx_v_penalty_type) {
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":430
 | |
|  *     cdef double u = 0.0
 | |
|  * 
 | |
|  *     if penalty_type == L2:             # <<<<<<<<<<<<<<
 | |
|  *         rho = 1.0
 | |
|  *     elif penalty_type == L1:
 | |
|  */
 | |
|     case 2:
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":431
 | |
|  * 
 | |
|  *     if penalty_type == L2:
 | |
|  *         rho = 1.0             # <<<<<<<<<<<<<<
 | |
|  *     elif penalty_type == L1:
 | |
|  *         rho = 0.0
 | |
|  */
 | |
|     __pyx_v_rho = 1.0;
 | |
|     break;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":432
 | |
|  *     if penalty_type == L2:
 | |
|  *         rho = 1.0
 | |
|  *     elif penalty_type == L1:             # <<<<<<<<<<<<<<
 | |
|  *         rho = 0.0
 | |
|  * 
 | |
|  */
 | |
|     case 1:
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":433
 | |
|  *         rho = 1.0
 | |
|  *     elif penalty_type == L1:
 | |
|  *         rho = 0.0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     eta = eta0
 | |
|  */
 | |
|     __pyx_v_rho = 0.0;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":435
 | |
|  *         rho = 0.0
 | |
|  * 
 | |
|  *     eta = eta0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     t_start = time()
 | |
|  */
 | |
|   __pyx_v_eta = __pyx_v_eta0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":437
 | |
|  *     eta = eta0
 | |
|  * 
 | |
|  *     t_start = time()             # <<<<<<<<<<<<<<
 | |
|  *     for epoch in range(n_iter):
 | |
|  *         if verbose > 0:
 | |
|  */
 | |
|   __pyx_t_8 = __Pyx_GetName(__pyx_m, __pyx_n_s__time); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 437; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_8);
 | |
|   __pyx_t_6 = PyObject_Call(__pyx_t_8, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 437; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_6);
 | |
|   __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
 | |
|   __pyx_v_t_start = __pyx_t_6;
 | |
|   __pyx_t_6 = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":438
 | |
|  * 
 | |
|  *     t_start = time()
 | |
|  *     for epoch in range(n_iter):             # <<<<<<<<<<<<<<
 | |
|  *         if verbose > 0:
 | |
|  *             print("-- Epoch %d" % (epoch + 1))
 | |
|  */
 | |
|   __pyx_t_9 = __pyx_v_n_iter;
 | |
|   for (__pyx_t_13 = 0; __pyx_t_13 < __pyx_t_9; __pyx_t_13+=1) {
 | |
|     __pyx_v_epoch = __pyx_t_13;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":439
 | |
|  *     t_start = time()
 | |
|  *     for epoch in range(n_iter):
 | |
|  *         if verbose > 0:             # <<<<<<<<<<<<<<
 | |
|  *             print("-- Epoch %d" % (epoch + 1))
 | |
|  *         if shuffle:
 | |
|  */
 | |
|     __pyx_t_4 = (__pyx_v_verbose > 0);
 | |
|     if (__pyx_t_4) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":440
 | |
|  *     for epoch in range(n_iter):
 | |
|  *         if verbose > 0:
 | |
|  *             print("-- Epoch %d" % (epoch + 1))             # <<<<<<<<<<<<<<
 | |
|  *         if shuffle:
 | |
|  *             dataset.shuffle(seed)
 | |
|  */
 | |
|       __pyx_t_6 = PyInt_FromLong((__pyx_v_epoch + 1)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 440; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_6);
 | |
|       __pyx_t_8 = PyNumber_Remainder(((PyObject *)__pyx_kp_s_1), __pyx_t_6); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 440; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(((PyObject *)__pyx_t_8));
 | |
|       __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
 | |
|       if (__Pyx_PrintOne(0, ((PyObject *)__pyx_t_8)) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 440; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_8)); __pyx_t_8 = 0;
 | |
|       goto __pyx_L5;
 | |
|     }
 | |
|     __pyx_L5:;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":441
 | |
|  *         if verbose > 0:
 | |
|  *             print("-- Epoch %d" % (epoch + 1))
 | |
|  *         if shuffle:             # <<<<<<<<<<<<<<
 | |
|  *             dataset.shuffle(seed)
 | |
|  *         for i in range(n_samples):
 | |
|  */
 | |
|     if (__pyx_v_shuffle) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":442
 | |
|  *             print("-- Epoch %d" % (epoch + 1))
 | |
|  *         if shuffle:
 | |
|  *             dataset.shuffle(seed)             # <<<<<<<<<<<<<<
 | |
|  *         for i in range(n_samples):
 | |
|  *             dataset.next( & x_data_ptr, & x_ind_ptr, & xnnz, & y,
 | |
|  */
 | |
|       ((struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset *)__pyx_v_dataset->__pyx_vtab)->shuffle(__pyx_v_dataset, __pyx_v_seed);
 | |
|       goto __pyx_L6;
 | |
|     }
 | |
|     __pyx_L6:;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":443
 | |
|  *         if shuffle:
 | |
|  *             dataset.shuffle(seed)
 | |
|  *         for i in range(n_samples):             # <<<<<<<<<<<<<<
 | |
|  *             dataset.next( & x_data_ptr, & x_ind_ptr, & xnnz, & y,
 | |
|  *                          & sample_weight)
 | |
|  */
 | |
|     __pyx_t_1 = __pyx_v_n_samples;
 | |
|     for (__pyx_t_14 = 0; __pyx_t_14 < __pyx_t_1; __pyx_t_14+=1) {
 | |
|       __pyx_v_i = __pyx_t_14;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":445
 | |
|  *         for i in range(n_samples):
 | |
|  *             dataset.next( & x_data_ptr, & x_ind_ptr, & xnnz, & y,
 | |
|  *                          & sample_weight)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             p = w.dot(x_data_ptr, x_ind_ptr, xnnz) + intercept
 | |
|  */
 | |
|       ((struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset *)__pyx_v_dataset->__pyx_vtab)->next(__pyx_v_dataset, (&__pyx_v_x_data_ptr), (&__pyx_v_x_ind_ptr), (&__pyx_v_xnnz), (&__pyx_v_y), (&__pyx_v_sample_weight));
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":447
 | |
|  *                          & sample_weight)
 | |
|  * 
 | |
|  *             p = w.dot(x_data_ptr, x_ind_ptr, xnnz) + intercept             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if learning_rate == OPTIMAL:
 | |
|  */
 | |
|       __pyx_v_p = (((struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *)__pyx_v_w->__pyx_vtab)->dot(__pyx_v_w, __pyx_v_x_data_ptr, __pyx_v_x_ind_ptr, __pyx_v_xnnz) + __pyx_v_intercept);
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":451
 | |
|  *             if learning_rate == OPTIMAL:
 | |
|  *                 eta = 1.0 / (alpha * t)
 | |
|  *             elif learning_rate == INVSCALING:             # <<<<<<<<<<<<<<
 | |
|  *                 eta = eta0 / pow(t, power_t)
 | |
|  * 
 | |
|  */
 | |
|       switch (__pyx_v_learning_rate) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":449
 | |
|  *             p = w.dot(x_data_ptr, x_ind_ptr, xnnz) + intercept
 | |
|  * 
 | |
|  *             if learning_rate == OPTIMAL:             # <<<<<<<<<<<<<<
 | |
|  *                 eta = 1.0 / (alpha * t)
 | |
|  *             elif learning_rate == INVSCALING:
 | |
|  */
 | |
|         case 2:
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":450
 | |
|  * 
 | |
|  *             if learning_rate == OPTIMAL:
 | |
|  *                 eta = 1.0 / (alpha * t)             # <<<<<<<<<<<<<<
 | |
|  *             elif learning_rate == INVSCALING:
 | |
|  *                 eta = eta0 / pow(t, power_t)
 | |
|  */
 | |
|         __pyx_v_eta = (1.0 / (__pyx_v_alpha * __pyx_v_t));
 | |
|         break;
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":451
 | |
|  *             if learning_rate == OPTIMAL:
 | |
|  *                 eta = 1.0 / (alpha * t)
 | |
|  *             elif learning_rate == INVSCALING:             # <<<<<<<<<<<<<<
 | |
|  *                 eta = eta0 / pow(t, power_t)
 | |
|  * 
 | |
|  */
 | |
|         case 3:
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":452
 | |
|  *                 eta = 1.0 / (alpha * t)
 | |
|  *             elif learning_rate == INVSCALING:
 | |
|  *                 eta = eta0 / pow(t, power_t)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if verbose > 0:
 | |
|  */
 | |
|         __pyx_v_eta = (__pyx_v_eta0 / pow(__pyx_v_t, __pyx_v_power_t));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":454
 | |
|  *                 eta = eta0 / pow(t, power_t)
 | |
|  * 
 | |
|  *             if verbose > 0:             # <<<<<<<<<<<<<<
 | |
|  *                 sumloss += loss.loss(p, y)
 | |
|  * 
 | |
|  */
 | |
|       __pyx_t_4 = (__pyx_v_verbose > 0);
 | |
|       if (__pyx_t_4) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":455
 | |
|  * 
 | |
|  *             if verbose > 0:
 | |
|  *                 sumloss += loss.loss(p, y)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if y > 0.0:
 | |
|  */
 | |
|         __pyx_v_sumloss = (__pyx_v_sumloss + ((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_loss->__pyx_vtab)->loss(__pyx_v_loss, __pyx_v_p, __pyx_v_y, 0));
 | |
|         goto __pyx_L9;
 | |
|       }
 | |
|       __pyx_L9:;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":457
 | |
|  *                 sumloss += loss.loss(p, y)
 | |
|  * 
 | |
|  *             if y > 0.0:             # <<<<<<<<<<<<<<
 | |
|  *                 class_weight = weight_pos
 | |
|  *             else:
 | |
|  */
 | |
|       __pyx_t_4 = (__pyx_v_y > 0.0);
 | |
|       if (__pyx_t_4) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":458
 | |
|  * 
 | |
|  *             if y > 0.0:
 | |
|  *                 class_weight = weight_pos             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 class_weight = weight_neg
 | |
|  */
 | |
|         __pyx_v_class_weight = __pyx_v_weight_pos;
 | |
|         goto __pyx_L10;
 | |
|       }
 | |
|       /*else*/ {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":460
 | |
|  *                 class_weight = weight_pos
 | |
|  *             else:
 | |
|  *                 class_weight = weight_neg             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if learning_rate == PA1:
 | |
|  */
 | |
|         __pyx_v_class_weight = __pyx_v_weight_neg;
 | |
|       }
 | |
|       __pyx_L10:;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":467
 | |
|  *                     continue
 | |
|  *                 update = min(C, loss.loss(p, y) / update)
 | |
|  *             elif learning_rate == PA2:             # <<<<<<<<<<<<<<
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  *                 update = loss.loss(p, y) / (update + 0.5 / C)
 | |
|  */
 | |
|       switch (__pyx_v_learning_rate) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":462
 | |
|  *                 class_weight = weight_neg
 | |
|  * 
 | |
|  *             if learning_rate == PA1:             # <<<<<<<<<<<<<<
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  *                 if update == 0:
 | |
|  */
 | |
|         case 4:
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":463
 | |
|  * 
 | |
|  *             if learning_rate == PA1:
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)             # <<<<<<<<<<<<<<
 | |
|  *                 if update == 0:
 | |
|  *                     continue
 | |
|  */
 | |
|         __pyx_v_update = __pyx_f_7sklearn_12linear_model_8sgd_fast_sqnorm(__pyx_v_x_data_ptr, __pyx_v_x_ind_ptr, __pyx_v_xnnz);
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":464
 | |
|  *             if learning_rate == PA1:
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  *                 if update == 0:             # <<<<<<<<<<<<<<
 | |
|  *                     continue
 | |
|  *                 update = min(C, loss.loss(p, y) / update)
 | |
|  */
 | |
|         __pyx_t_4 = (__pyx_v_update == 0.0);
 | |
|         if (__pyx_t_4) {
 | |
| 
 | |
|           /* "sklearn/linear_model/sgd_fast.pyx":465
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  *                 if update == 0:
 | |
|  *                     continue             # <<<<<<<<<<<<<<
 | |
|  *                 update = min(C, loss.loss(p, y) / update)
 | |
|  *             elif learning_rate == PA2:
 | |
|  */
 | |
|           goto __pyx_L7_continue;
 | |
|           goto __pyx_L11;
 | |
|         }
 | |
|         __pyx_L11:;
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":466
 | |
|  *                 if update == 0:
 | |
|  *                     continue
 | |
|  *                 update = min(C, loss.loss(p, y) / update)             # <<<<<<<<<<<<<<
 | |
|  *             elif learning_rate == PA2:
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  */
 | |
|         __pyx_v_update = __pyx_f_7sklearn_12linear_model_8sgd_fast_min(__pyx_v_C, (((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_loss->__pyx_vtab)->loss(__pyx_v_loss, __pyx_v_p, __pyx_v_y, 0) / __pyx_v_update));
 | |
|         break;
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":467
 | |
|  *                     continue
 | |
|  *                 update = min(C, loss.loss(p, y) / update)
 | |
|  *             elif learning_rate == PA2:             # <<<<<<<<<<<<<<
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  *                 update = loss.loss(p, y) / (update + 0.5 / C)
 | |
|  */
 | |
|         case 5:
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":468
 | |
|  *                 update = min(C, loss.loss(p, y) / update)
 | |
|  *             elif learning_rate == PA2:
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)             # <<<<<<<<<<<<<<
 | |
|  *                 update = loss.loss(p, y) / (update + 0.5 / C)
 | |
|  *             else:
 | |
|  */
 | |
|         __pyx_v_update = __pyx_f_7sklearn_12linear_model_8sgd_fast_sqnorm(__pyx_v_x_data_ptr, __pyx_v_x_ind_ptr, __pyx_v_xnnz);
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":469
 | |
|  *             elif learning_rate == PA2:
 | |
|  *                 update = sqnorm(x_data_ptr, x_ind_ptr, xnnz)
 | |
|  *                 update = loss.loss(p, y) / (update + 0.5 / C)             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 update = -eta * loss.dloss(p, y)
 | |
|  */
 | |
|         __pyx_v_update = (((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_loss->__pyx_vtab)->loss(__pyx_v_loss, __pyx_v_p, __pyx_v_y, 0) / (__pyx_v_update + (0.5 / __pyx_v_C)));
 | |
|         break;
 | |
|         default:
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":471
 | |
|  *                 update = loss.loss(p, y) / (update + 0.5 / C)
 | |
|  *             else:
 | |
|  *                 update = -eta * loss.dloss(p, y)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if learning_rate >= PA1:
 | |
|  */
 | |
|         __pyx_v_update = ((-__pyx_v_eta) * ((struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction *)__pyx_v_loss->__pyx_vtab)->dloss(__pyx_v_loss, __pyx_v_p, __pyx_v_y, 0));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":473
 | |
|  *                 update = -eta * loss.dloss(p, y)
 | |
|  * 
 | |
|  *             if learning_rate >= PA1:             # <<<<<<<<<<<<<<
 | |
|  *                 if is_hinge:
 | |
|  *                     # classification
 | |
|  */
 | |
|       __pyx_t_4 = (__pyx_v_learning_rate >= 4);
 | |
|       if (__pyx_t_4) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":474
 | |
|  * 
 | |
|  *             if learning_rate >= PA1:
 | |
|  *                 if is_hinge:             # <<<<<<<<<<<<<<
 | |
|  *                     # classification
 | |
|  *                     update *= y
 | |
|  */
 | |
|         if (__pyx_v_is_hinge) {
 | |
| 
 | |
|           /* "sklearn/linear_model/sgd_fast.pyx":476
 | |
|  *                 if is_hinge:
 | |
|  *                     # classification
 | |
|  *                     update *= y             # <<<<<<<<<<<<<<
 | |
|  *                 elif y - p < 0:
 | |
|  *                     # regression
 | |
|  */
 | |
|           __pyx_v_update = (__pyx_v_update * __pyx_v_y);
 | |
|           goto __pyx_L13;
 | |
|         }
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":477
 | |
|  *                     # classification
 | |
|  *                     update *= y
 | |
|  *                 elif y - p < 0:             # <<<<<<<<<<<<<<
 | |
|  *                     # regression
 | |
|  *                     update *= -1
 | |
|  */
 | |
|         __pyx_t_4 = ((__pyx_v_y - __pyx_v_p) < 0.0);
 | |
|         if (__pyx_t_4) {
 | |
| 
 | |
|           /* "sklearn/linear_model/sgd_fast.pyx":479
 | |
|  *                 elif y - p < 0:
 | |
|  *                     # regression
 | |
|  *                     update *= -1             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             update *= class_weight * sample_weight
 | |
|  */
 | |
|           __pyx_v_update = (__pyx_v_update * -1.0);
 | |
|           goto __pyx_L13;
 | |
|         }
 | |
|         __pyx_L13:;
 | |
|         goto __pyx_L12;
 | |
|       }
 | |
|       __pyx_L12:;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":481
 | |
|  *                     update *= -1
 | |
|  * 
 | |
|  *             update *= class_weight * sample_weight             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if update != 0.0:
 | |
|  */
 | |
|       __pyx_v_update = (__pyx_v_update * (__pyx_v_class_weight * __pyx_v_sample_weight));
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":483
 | |
|  *             update *= class_weight * sample_weight
 | |
|  * 
 | |
|  *             if update != 0.0:             # <<<<<<<<<<<<<<
 | |
|  *                 w.add(x_data_ptr, x_ind_ptr, xnnz, update)
 | |
|  *                 if fit_intercept == 1:
 | |
|  */
 | |
|       __pyx_t_4 = (__pyx_v_update != 0.0);
 | |
|       if (__pyx_t_4) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":484
 | |
|  * 
 | |
|  *             if update != 0.0:
 | |
|  *                 w.add(x_data_ptr, x_ind_ptr, xnnz, update)             # <<<<<<<<<<<<<<
 | |
|  *                 if fit_intercept == 1:
 | |
|  *                     intercept += update * intercept_decay
 | |
|  */
 | |
|         ((struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *)__pyx_v_w->__pyx_vtab)->add(__pyx_v_w, __pyx_v_x_data_ptr, __pyx_v_x_ind_ptr, __pyx_v_xnnz, __pyx_v_update);
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":485
 | |
|  *             if update != 0.0:
 | |
|  *                 w.add(x_data_ptr, x_ind_ptr, xnnz, update)
 | |
|  *                 if fit_intercept == 1:             # <<<<<<<<<<<<<<
 | |
|  *                     intercept += update * intercept_decay
 | |
|  *             if penalty_type >= L2:
 | |
|  */
 | |
|         __pyx_t_4 = (__pyx_v_fit_intercept == 1);
 | |
|         if (__pyx_t_4) {
 | |
| 
 | |
|           /* "sklearn/linear_model/sgd_fast.pyx":486
 | |
|  *                 w.add(x_data_ptr, x_ind_ptr, xnnz, update)
 | |
|  *                 if fit_intercept == 1:
 | |
|  *                     intercept += update * intercept_decay             # <<<<<<<<<<<<<<
 | |
|  *             if penalty_type >= L2:
 | |
|  *                 w.scale(1.0 - (rho * eta * alpha))
 | |
|  */
 | |
|           __pyx_v_intercept = (__pyx_v_intercept + (__pyx_v_update * __pyx_v_intercept_decay));
 | |
|           goto __pyx_L15;
 | |
|         }
 | |
|         __pyx_L15:;
 | |
|         goto __pyx_L14;
 | |
|       }
 | |
|       __pyx_L14:;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":487
 | |
|  *                 if fit_intercept == 1:
 | |
|  *                     intercept += update * intercept_decay
 | |
|  *             if penalty_type >= L2:             # <<<<<<<<<<<<<<
 | |
|  *                 w.scale(1.0 - (rho * eta * alpha))
 | |
|  * 
 | |
|  */
 | |
|       __pyx_t_4 = (__pyx_v_penalty_type >= 2);
 | |
|       if (__pyx_t_4) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":488
 | |
|  *                     intercept += update * intercept_decay
 | |
|  *             if penalty_type >= L2:
 | |
|  *                 w.scale(1.0 - (rho * eta * alpha))             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  */
 | |
|         ((struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *)__pyx_v_w->__pyx_vtab)->scale(__pyx_v_w, (1.0 - ((__pyx_v_rho * __pyx_v_eta) * __pyx_v_alpha)));
 | |
|         goto __pyx_L16;
 | |
|       }
 | |
|       __pyx_L16:;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":490
 | |
|  *                 w.scale(1.0 - (rho * eta * alpha))
 | |
|  * 
 | |
|  *             if penalty_type == L1 or penalty_type == ELASTICNET:             # <<<<<<<<<<<<<<
 | |
|  *                 u += ((1.0 - rho) * eta * alpha)
 | |
|  *                 l1penalty(w, q_data_ptr, x_ind_ptr, xnnz, u)
 | |
|  */
 | |
|       switch (__pyx_v_penalty_type) {
 | |
|         case 1:
 | |
|         case 3:
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":491
 | |
|  * 
 | |
|  *             if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  *                 u += ((1.0 - rho) * eta * alpha)             # <<<<<<<<<<<<<<
 | |
|  *                 l1penalty(w, q_data_ptr, x_ind_ptr, xnnz, u)
 | |
|  *             t += 1
 | |
|  */
 | |
|         __pyx_v_u = (__pyx_v_u + (((1.0 - __pyx_v_rho) * __pyx_v_eta) * __pyx_v_alpha));
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":492
 | |
|  *             if penalty_type == L1 or penalty_type == ELASTICNET:
 | |
|  *                 u += ((1.0 - rho) * eta * alpha)
 | |
|  *                 l1penalty(w, q_data_ptr, x_ind_ptr, xnnz, u)             # <<<<<<<<<<<<<<
 | |
|  *             t += 1
 | |
|  *             count += 1
 | |
|  */
 | |
|         __pyx_f_7sklearn_12linear_model_8sgd_fast_l1penalty(__pyx_v_w, __pyx_v_q_data_ptr, __pyx_v_x_ind_ptr, __pyx_v_xnnz, __pyx_v_u);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":493
 | |
|  *                 u += ((1.0 - rho) * eta * alpha)
 | |
|  *                 l1penalty(w, q_data_ptr, x_ind_ptr, xnnz, u)
 | |
|  *             t += 1             # <<<<<<<<<<<<<<
 | |
|  *             count += 1
 | |
|  * 
 | |
|  */
 | |
|       __pyx_v_t = (__pyx_v_t + 1.0);
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":494
 | |
|  *                 l1penalty(w, q_data_ptr, x_ind_ptr, xnnz, u)
 | |
|  *             t += 1
 | |
|  *             count += 1             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         # report epoch information
 | |
|  */
 | |
|       __pyx_v_count = (__pyx_v_count + 1);
 | |
|       __pyx_L7_continue:;
 | |
|     }
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":497
 | |
|  * 
 | |
|  *         # report epoch information
 | |
|  *         if verbose > 0:             # <<<<<<<<<<<<<<
 | |
|  *             print("Norm: %.2f, NNZs: %d, "
 | |
|  *             "Bias: %.6f, T: %d, Avg. loss: %.6f" % (w.norm(),
 | |
|  */
 | |
|     __pyx_t_4 = (__pyx_v_verbose > 0);
 | |
|     if (__pyx_t_4) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":499
 | |
|  *         if verbose > 0:
 | |
|  *             print("Norm: %.2f, NNZs: %d, "
 | |
|  *             "Bias: %.6f, T: %d, Avg. loss: %.6f" % (w.norm(),             # <<<<<<<<<<<<<<
 | |
|  *                                                     weights.nonzero()[0].shape[0],
 | |
|  *                                                     intercept, count,
 | |
|  */
 | |
|       __pyx_t_8 = PyFloat_FromDouble(((struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *)__pyx_v_w->__pyx_vtab)->norm(__pyx_v_w)); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 499; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_8);
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":500
 | |
|  *             print("Norm: %.2f, NNZs: %d, "
 | |
|  *             "Bias: %.6f, T: %d, Avg. loss: %.6f" % (w.norm(),
 | |
|  *                                                     weights.nonzero()[0].shape[0],             # <<<<<<<<<<<<<<
 | |
|  *                                                     intercept, count,
 | |
|  *                                                     sumloss / count))
 | |
|  */
 | |
|       __pyx_t_6 = PyObject_GetAttr(((PyObject *)__pyx_v_weights), __pyx_n_s__nonzero); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 500; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_6);
 | |
|       __pyx_t_3 = PyObject_Call(__pyx_t_6, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 500; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
 | |
|       __pyx_t_6 = __Pyx_GetItemInt(__pyx_t_3, 0, sizeof(long), PyInt_FromLong); if (!__pyx_t_6) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 500; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_6);
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyObject_GetAttr(__pyx_t_6, __pyx_n_s__shape); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 500; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
 | |
|       __pyx_t_6 = __Pyx_GetItemInt(__pyx_t_3, 0, sizeof(long), PyInt_FromLong); if (!__pyx_t_6) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 500; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_6);
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":501
 | |
|  *             "Bias: %.6f, T: %d, Avg. loss: %.6f" % (w.norm(),
 | |
|  *                                                     weights.nonzero()[0].shape[0],
 | |
|  *                                                     intercept, count,             # <<<<<<<<<<<<<<
 | |
|  *                                                     sumloss / count))
 | |
|  *             print("Total training time: %.2f seconds." % (time() - t_start))
 | |
|  */
 | |
|       __pyx_t_3 = PyFloat_FromDouble(__pyx_v_intercept); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 501; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_2 = PyLong_FromUnsignedLong(__pyx_v_count); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 501; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":502
 | |
|  *                                                     weights.nonzero()[0].shape[0],
 | |
|  *                                                     intercept, count,
 | |
|  *                                                     sumloss / count))             # <<<<<<<<<<<<<<
 | |
|  *             print("Total training time: %.2f seconds." % (time() - t_start))
 | |
|  * 
 | |
|  */
 | |
|       __pyx_t_7 = PyFloat_FromDouble((__pyx_v_sumloss / __pyx_v_count)); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 502; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_7);
 | |
|       __pyx_t_15 = PyTuple_New(5); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 499; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_15);
 | |
|       PyTuple_SET_ITEM(__pyx_t_15, 0, __pyx_t_8);
 | |
|       __Pyx_GIVEREF(__pyx_t_8);
 | |
|       PyTuple_SET_ITEM(__pyx_t_15, 1, __pyx_t_6);
 | |
|       __Pyx_GIVEREF(__pyx_t_6);
 | |
|       PyTuple_SET_ITEM(__pyx_t_15, 2, __pyx_t_3);
 | |
|       __Pyx_GIVEREF(__pyx_t_3);
 | |
|       PyTuple_SET_ITEM(__pyx_t_15, 3, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       PyTuple_SET_ITEM(__pyx_t_15, 4, __pyx_t_7);
 | |
|       __Pyx_GIVEREF(__pyx_t_7);
 | |
|       __pyx_t_8 = 0;
 | |
|       __pyx_t_6 = 0;
 | |
|       __pyx_t_3 = 0;
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_7 = 0;
 | |
|       __pyx_t_7 = PyNumber_Remainder(((PyObject *)__pyx_kp_s_2), ((PyObject *)__pyx_t_15)); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 499; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(((PyObject *)__pyx_t_7));
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_15)); __pyx_t_15 = 0;
 | |
|       if (__Pyx_PrintOne(0, ((PyObject *)__pyx_t_7)) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 498; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_7)); __pyx_t_7 = 0;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":503
 | |
|  *                                                     intercept, count,
 | |
|  *                                                     sumloss / count))
 | |
|  *             print("Total training time: %.2f seconds." % (time() - t_start))             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         # floating-point under-/overflow check.
 | |
|  */
 | |
|       __pyx_t_7 = __Pyx_GetName(__pyx_m, __pyx_n_s__time); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 503; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_7);
 | |
|       __pyx_t_15 = PyObject_Call(__pyx_t_7, ((PyObject *)__pyx_empty_tuple), NULL); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 503; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_15);
 | |
|       __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 | |
|       __pyx_t_7 = PyNumber_Subtract(__pyx_t_15, __pyx_v_t_start); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 503; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_7);
 | |
|       __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
 | |
|       __pyx_t_15 = PyNumber_Remainder(((PyObject *)__pyx_kp_s_3), __pyx_t_7); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 503; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(((PyObject *)__pyx_t_15));
 | |
|       __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 | |
|       if (__Pyx_PrintOne(0, ((PyObject *)__pyx_t_15)) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 503; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_15)); __pyx_t_15 = 0;
 | |
|       goto __pyx_L17;
 | |
|     }
 | |
|     __pyx_L17:;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":506
 | |
|  * 
 | |
|  *         # floating-point under-/overflow check.
 | |
|  *         if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \             # <<<<<<<<<<<<<<
 | |
|  *            or np.isnan(intercept) or np.isinf(intercept):
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")
 | |
|  */
 | |
|     __pyx_t_15 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_15);
 | |
|     __pyx_t_7 = PyObject_GetAttr(__pyx_t_15, __pyx_n_s__any); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_7);
 | |
|     __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
 | |
|     __pyx_t_15 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_15);
 | |
|     __pyx_t_2 = PyObject_GetAttr(__pyx_t_15, __pyx_n_s__isinf); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_2);
 | |
|     __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
 | |
|     __pyx_t_15 = PyTuple_New(1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_15);
 | |
|     __Pyx_INCREF(((PyObject *)__pyx_v_weights));
 | |
|     PyTuple_SET_ITEM(__pyx_t_15, 0, ((PyObject *)__pyx_v_weights));
 | |
|     __Pyx_GIVEREF(((PyObject *)__pyx_v_weights));
 | |
|     __pyx_t_3 = PyObject_Call(__pyx_t_2, ((PyObject *)__pyx_t_15), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|     __Pyx_DECREF(((PyObject *)__pyx_t_15)); __pyx_t_15 = 0;
 | |
|     __pyx_t_15 = PyTuple_New(1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_15);
 | |
|     PyTuple_SET_ITEM(__pyx_t_15, 0, __pyx_t_3);
 | |
|     __Pyx_GIVEREF(__pyx_t_3);
 | |
|     __pyx_t_3 = 0;
 | |
|     __pyx_t_3 = PyObject_Call(__pyx_t_7, ((PyObject *)__pyx_t_15), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 | |
|     __Pyx_DECREF(((PyObject *)__pyx_t_15)); __pyx_t_15 = 0;
 | |
|     __pyx_t_4 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_4 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|     if (!__pyx_t_4) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":507
 | |
|  *         # floating-point under-/overflow check.
 | |
|  *         if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \
 | |
|  *            or np.isnan(intercept) or np.isinf(intercept):             # <<<<<<<<<<<<<<
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")
 | |
|  * 
 | |
|  */
 | |
|       __pyx_t_3 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_15 = PyObject_GetAttr(__pyx_t_3, __pyx_n_s__any); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_15);
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":506
 | |
|  * 
 | |
|  *         # floating-point under-/overflow check.
 | |
|  *         if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \             # <<<<<<<<<<<<<<
 | |
|  *            or np.isnan(intercept) or np.isinf(intercept):
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")
 | |
|  */
 | |
|       __pyx_t_3 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_7 = PyObject_GetAttr(__pyx_t_3, __pyx_n_s__isnan); if (unlikely(!__pyx_t_7)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_7);
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_INCREF(((PyObject *)__pyx_v_weights));
 | |
|       PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_weights));
 | |
|       __Pyx_GIVEREF(((PyObject *)__pyx_v_weights));
 | |
|       __pyx_t_2 = PyObject_Call(__pyx_t_7, ((PyObject *)__pyx_t_3), NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __Pyx_DECREF(__pyx_t_7); __pyx_t_7 = 0;
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_3)); __pyx_t_3 = 0;
 | |
|       __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2);
 | |
|       __Pyx_GIVEREF(__pyx_t_2);
 | |
|       __pyx_t_2 = 0;
 | |
|       __pyx_t_2 = PyObject_Call(__pyx_t_15, ((PyObject *)__pyx_t_3), NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_3)); __pyx_t_3 = 0;
 | |
|       __pyx_t_16 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_16 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 506; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|       if (!__pyx_t_16) {
 | |
| 
 | |
|         /* "sklearn/linear_model/sgd_fast.pyx":507
 | |
|  *         # floating-point under-/overflow check.
 | |
|  *         if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \
 | |
|  *            or np.isnan(intercept) or np.isinf(intercept):             # <<<<<<<<<<<<<<
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")
 | |
|  * 
 | |
|  */
 | |
|         __pyx_t_2 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_2);
 | |
|         __pyx_t_3 = PyObject_GetAttr(__pyx_t_2, __pyx_n_s__isnan); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_3);
 | |
|         __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|         __pyx_t_2 = PyFloat_FromDouble(__pyx_v_intercept); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_2);
 | |
|         __pyx_t_15 = PyTuple_New(1); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_15);
 | |
|         PyTuple_SET_ITEM(__pyx_t_15, 0, __pyx_t_2);
 | |
|         __Pyx_GIVEREF(__pyx_t_2);
 | |
|         __pyx_t_2 = 0;
 | |
|         __pyx_t_2 = PyObject_Call(__pyx_t_3, ((PyObject *)__pyx_t_15), NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_2);
 | |
|         __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|         __Pyx_DECREF(((PyObject *)__pyx_t_15)); __pyx_t_15 = 0;
 | |
|         __pyx_t_17 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_17 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|         if (!__pyx_t_17) {
 | |
|           __pyx_t_2 = __Pyx_GetName(__pyx_m, __pyx_n_s__np); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|           __Pyx_GOTREF(__pyx_t_2);
 | |
|           __pyx_t_15 = PyObject_GetAttr(__pyx_t_2, __pyx_n_s__isinf); if (unlikely(!__pyx_t_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|           __Pyx_GOTREF(__pyx_t_15);
 | |
|           __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|           __pyx_t_2 = PyFloat_FromDouble(__pyx_v_intercept); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|           __Pyx_GOTREF(__pyx_t_2);
 | |
|           __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|           __Pyx_GOTREF(__pyx_t_3);
 | |
|           PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_2);
 | |
|           __Pyx_GIVEREF(__pyx_t_2);
 | |
|           __pyx_t_2 = 0;
 | |
|           __pyx_t_2 = PyObject_Call(__pyx_t_15, ((PyObject *)__pyx_t_3), NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|           __Pyx_GOTREF(__pyx_t_2);
 | |
|           __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
 | |
|           __Pyx_DECREF(((PyObject *)__pyx_t_3)); __pyx_t_3 = 0;
 | |
|           __pyx_t_18 = __Pyx_PyObject_IsTrue(__pyx_t_2); if (unlikely(__pyx_t_18 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 507; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|           __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|           __pyx_t_19 = __pyx_t_18;
 | |
|         } else {
 | |
|           __pyx_t_19 = __pyx_t_17;
 | |
|         }
 | |
|         __pyx_t_17 = __pyx_t_19;
 | |
|       } else {
 | |
|         __pyx_t_17 = __pyx_t_16;
 | |
|       }
 | |
|       __pyx_t_16 = __pyx_t_17;
 | |
|     } else {
 | |
|       __pyx_t_16 = __pyx_t_4;
 | |
|     }
 | |
|     if (__pyx_t_16) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":508
 | |
|  *         if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \
 | |
|  *            or np.isnan(intercept) or np.isinf(intercept):
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     w.reset_wscale()
 | |
|  */
 | |
|       __pyx_t_2 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_k_tuple_5), NULL); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 508; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_2);
 | |
|       __Pyx_Raise(__pyx_t_2, 0, 0, 0);
 | |
|       __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
|       {__pyx_filename = __pyx_f[0]; __pyx_lineno = 508; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       goto __pyx_L18;
 | |
|     }
 | |
|     __pyx_L18:;
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":510
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")
 | |
|  * 
 | |
|  *     w.reset_wscale()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     return weights, intercept
 | |
|  */
 | |
|   ((struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector *)__pyx_v_w->__pyx_vtab)->reset_wscale(__pyx_v_w);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":512
 | |
|  *     w.reset_wscale()
 | |
|  * 
 | |
|  *     return weights, intercept             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_2 = PyFloat_FromDouble(__pyx_v_intercept); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 512; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   __pyx_t_3 = PyTuple_New(2); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 512; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_3);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_v_weights));
 | |
|   PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_v_weights));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_v_weights));
 | |
|   PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_2);
 | |
|   __Pyx_GIVEREF(__pyx_t_2);
 | |
|   __pyx_t_2 = 0;
 | |
|   __pyx_r = ((PyObject *)__pyx_t_3);
 | |
|   __pyx_t_3 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_6);
 | |
|   __Pyx_XDECREF(__pyx_t_7);
 | |
|   __Pyx_XDECREF(__pyx_t_8);
 | |
|   __Pyx_XDECREF(__pyx_t_15);
 | |
|   { PyObject *__pyx_type, *__pyx_value, *__pyx_tb;
 | |
|     __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);
 | |
|     __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_q.rcbuffer->pybuffer);
 | |
|     __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_weights.rcbuffer->pybuffer);
 | |
|   __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}
 | |
|   __Pyx_AddTraceback("sklearn.linear_model.sgd_fast.plain_sgd", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   goto __pyx_L2;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_q.rcbuffer->pybuffer);
 | |
|   __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_weights.rcbuffer->pybuffer);
 | |
|   __pyx_L2:;
 | |
|   __Pyx_XDECREF((PyObject *)__pyx_v_w);
 | |
|   __Pyx_XDECREF((PyObject *)__pyx_v_q);
 | |
|   __Pyx_XDECREF(__pyx_v_t_start);
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":515
 | |
|  * 
 | |
|  * 
 | |
|  * cdef inline double max(double a, double b):             # <<<<<<<<<<<<<<
 | |
|  *     return a if a >= b else b
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE double __pyx_f_7sklearn_12linear_model_8sgd_fast_max(double __pyx_v_a, double __pyx_v_b) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   double __pyx_t_1;
 | |
|   __Pyx_RefNannySetupContext("max", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":516
 | |
|  * 
 | |
|  * cdef inline double max(double a, double b):
 | |
|  *     return a if a >= b else b             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   if ((__pyx_v_a >= __pyx_v_b)) {
 | |
|     __pyx_t_1 = __pyx_v_a;
 | |
|   } else {
 | |
|     __pyx_t_1 = __pyx_v_b;
 | |
|   }
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":519
 | |
|  * 
 | |
|  * 
 | |
|  * cdef inline double min(double a, double b):             # <<<<<<<<<<<<<<
 | |
|  *     return a if a <= b else b
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE double __pyx_f_7sklearn_12linear_model_8sgd_fast_min(double __pyx_v_a, double __pyx_v_b) {
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   double __pyx_t_1;
 | |
|   __Pyx_RefNannySetupContext("min", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":520
 | |
|  * 
 | |
|  * cdef inline double min(double a, double b):
 | |
|  *     return a if a <= b else b             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef double sqnorm(DOUBLE * x_data_ptr, INTEGER * x_ind_ptr, int xnnz):
 | |
|  */
 | |
|   if ((__pyx_v_a <= __pyx_v_b)) {
 | |
|     __pyx_t_1 = __pyx_v_a;
 | |
|   } else {
 | |
|     __pyx_t_1 = __pyx_v_b;
 | |
|   }
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":522
 | |
|  *     return a if a <= b else b
 | |
|  * 
 | |
|  * cdef double sqnorm(DOUBLE * x_data_ptr, INTEGER * x_ind_ptr, int xnnz):             # <<<<<<<<<<<<<<
 | |
|  *     cdef double x_norm = 0.0
 | |
|  *     cdef int j
 | |
|  */
 | |
| 
 | |
| static double __pyx_f_7sklearn_12linear_model_8sgd_fast_sqnorm(__pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *__pyx_v_x_data_ptr, CYTHON_UNUSED __pyx_t_7sklearn_12linear_model_8sgd_fast_INTEGER *__pyx_v_x_ind_ptr, int __pyx_v_xnnz) {
 | |
|   double __pyx_v_x_norm;
 | |
|   int __pyx_v_j;
 | |
|   double __pyx_v_z;
 | |
|   double __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   int __pyx_t_1;
 | |
|   int __pyx_t_2;
 | |
|   __Pyx_RefNannySetupContext("sqnorm", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":523
 | |
|  * 
 | |
|  * cdef double sqnorm(DOUBLE * x_data_ptr, INTEGER * x_ind_ptr, int xnnz):
 | |
|  *     cdef double x_norm = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef int j
 | |
|  *     cdef double z
 | |
|  */
 | |
|   __pyx_v_x_norm = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":526
 | |
|  *     cdef int j
 | |
|  *     cdef double z
 | |
|  *     for j in range(xnnz):             # <<<<<<<<<<<<<<
 | |
|  *         z = x_data_ptr[j]
 | |
|  *         x_norm += z * z
 | |
|  */
 | |
|   __pyx_t_1 = __pyx_v_xnnz;
 | |
|   for (__pyx_t_2 = 0; __pyx_t_2 < __pyx_t_1; __pyx_t_2+=1) {
 | |
|     __pyx_v_j = __pyx_t_2;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":527
 | |
|  *     cdef double z
 | |
|  *     for j in range(xnnz):
 | |
|  *         z = x_data_ptr[j]             # <<<<<<<<<<<<<<
 | |
|  *         x_norm += z * z
 | |
|  *     return x_norm
 | |
|  */
 | |
|     __pyx_v_z = (__pyx_v_x_data_ptr[__pyx_v_j]);
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":528
 | |
|  *     for j in range(xnnz):
 | |
|  *         z = x_data_ptr[j]
 | |
|  *         x_norm += z * z             # <<<<<<<<<<<<<<
 | |
|  *     return x_norm
 | |
|  * 
 | |
|  */
 | |
|     __pyx_v_x_norm = (__pyx_v_x_norm + (__pyx_v_z * __pyx_v_z));
 | |
|   }
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":529
 | |
|  *         z = x_data_ptr[j]
 | |
|  *         x_norm += z * z
 | |
|  *     return x_norm             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef void l1penalty(WeightVector w, DOUBLE * q_data_ptr,
 | |
|  */
 | |
|   __pyx_r = __pyx_v_x_norm;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "sklearn/linear_model/sgd_fast.pyx":531
 | |
|  *     return x_norm
 | |
|  * 
 | |
|  * cdef void l1penalty(WeightVector w, DOUBLE * q_data_ptr,             # <<<<<<<<<<<<<<
 | |
|  *                     INTEGER * x_ind_ptr, int xnnz, double u):
 | |
|  *     """Apply the L1 penalty to each updated feature
 | |
|  */
 | |
| 
 | |
| static void __pyx_f_7sklearn_12linear_model_8sgd_fast_l1penalty(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector *__pyx_v_w, __pyx_t_7sklearn_12linear_model_8sgd_fast_DOUBLE *__pyx_v_q_data_ptr, __pyx_t_7sklearn_12linear_model_8sgd_fast_INTEGER *__pyx_v_x_ind_ptr, int __pyx_v_xnnz, double __pyx_v_u) {
 | |
|   double __pyx_v_z;
 | |
|   int __pyx_v_j;
 | |
|   int __pyx_v_idx;
 | |
|   double __pyx_v_wscale;
 | |
|   double *__pyx_v_w_data_ptr;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   double __pyx_t_1;
 | |
|   __pyx_t_7sklearn_5utils_13weight_vector_DOUBLE *__pyx_t_2;
 | |
|   int __pyx_t_3;
 | |
|   int __pyx_t_4;
 | |
|   int __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   __Pyx_RefNannySetupContext("l1penalty", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":538
 | |
|  *     [Tsuruoka, Y., Tsujii, J., and Ananiadou, S., 2009].
 | |
|  *     """
 | |
|  *     cdef double z = 0.0             # <<<<<<<<<<<<<<
 | |
|  *     cdef int j = 0
 | |
|  *     cdef int idx = 0
 | |
|  */
 | |
|   __pyx_v_z = 0.0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":539
 | |
|  *     """
 | |
|  *     cdef double z = 0.0
 | |
|  *     cdef int j = 0             # <<<<<<<<<<<<<<
 | |
|  *     cdef int idx = 0
 | |
|  *     cdef double wscale = w.wscale
 | |
|  */
 | |
|   __pyx_v_j = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":540
 | |
|  *     cdef double z = 0.0
 | |
|  *     cdef int j = 0
 | |
|  *     cdef int idx = 0             # <<<<<<<<<<<<<<
 | |
|  *     cdef double wscale = w.wscale
 | |
|  *     cdef double * w_data_ptr = w.w_data_ptr
 | |
|  */
 | |
|   __pyx_v_idx = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":541
 | |
|  *     cdef int j = 0
 | |
|  *     cdef int idx = 0
 | |
|  *     cdef double wscale = w.wscale             # <<<<<<<<<<<<<<
 | |
|  *     cdef double * w_data_ptr = w.w_data_ptr
 | |
|  *     for j in range(xnnz):
 | |
|  */
 | |
|   __pyx_t_1 = __pyx_v_w->wscale;
 | |
|   __pyx_v_wscale = __pyx_t_1;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":542
 | |
|  *     cdef int idx = 0
 | |
|  *     cdef double wscale = w.wscale
 | |
|  *     cdef double * w_data_ptr = w.w_data_ptr             # <<<<<<<<<<<<<<
 | |
|  *     for j in range(xnnz):
 | |
|  *         idx = x_ind_ptr[j]
 | |
|  */
 | |
|   __pyx_t_2 = __pyx_v_w->w_data_ptr;
 | |
|   __pyx_v_w_data_ptr = __pyx_t_2;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":543
 | |
|  *     cdef double wscale = w.wscale
 | |
|  *     cdef double * w_data_ptr = w.w_data_ptr
 | |
|  *     for j in range(xnnz):             # <<<<<<<<<<<<<<
 | |
|  *         idx = x_ind_ptr[j]
 | |
|  *         z = w_data_ptr[idx]
 | |
|  */
 | |
|   __pyx_t_3 = __pyx_v_xnnz;
 | |
|   for (__pyx_t_4 = 0; __pyx_t_4 < __pyx_t_3; __pyx_t_4+=1) {
 | |
|     __pyx_v_j = __pyx_t_4;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":544
 | |
|  *     cdef double * w_data_ptr = w.w_data_ptr
 | |
|  *     for j in range(xnnz):
 | |
|  *         idx = x_ind_ptr[j]             # <<<<<<<<<<<<<<
 | |
|  *         z = w_data_ptr[idx]
 | |
|  *         if (wscale * w_data_ptr[idx]) > 0.0:
 | |
|  */
 | |
|     __pyx_v_idx = (__pyx_v_x_ind_ptr[__pyx_v_j]);
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":545
 | |
|  *     for j in range(xnnz):
 | |
|  *         idx = x_ind_ptr[j]
 | |
|  *         z = w_data_ptr[idx]             # <<<<<<<<<<<<<<
 | |
|  *         if (wscale * w_data_ptr[idx]) > 0.0:
 | |
|  *             w_data_ptr[idx] = max(
 | |
|  */
 | |
|     __pyx_v_z = (__pyx_v_w_data_ptr[__pyx_v_idx]);
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":546
 | |
|  *         idx = x_ind_ptr[j]
 | |
|  *         z = w_data_ptr[idx]
 | |
|  *         if (wscale * w_data_ptr[idx]) > 0.0:             # <<<<<<<<<<<<<<
 | |
|  *             w_data_ptr[idx] = max(
 | |
|  *                 0.0, w_data_ptr[idx] - ((u + q_data_ptr[idx]) / wscale))
 | |
|  */
 | |
|     __pyx_t_5 = ((__pyx_v_wscale * (__pyx_v_w_data_ptr[__pyx_v_idx])) > 0.0);
 | |
|     if (__pyx_t_5) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":547
 | |
|  *         z = w_data_ptr[idx]
 | |
|  *         if (wscale * w_data_ptr[idx]) > 0.0:
 | |
|  *             w_data_ptr[idx] = max(             # <<<<<<<<<<<<<<
 | |
|  *                 0.0, w_data_ptr[idx] - ((u + q_data_ptr[idx]) / wscale))
 | |
|  * 
 | |
|  */
 | |
|       (__pyx_v_w_data_ptr[__pyx_v_idx]) = __pyx_f_7sklearn_12linear_model_8sgd_fast_max(0.0, ((__pyx_v_w_data_ptr[__pyx_v_idx]) - ((__pyx_v_u + (__pyx_v_q_data_ptr[__pyx_v_idx])) / __pyx_v_wscale)));
 | |
|       goto __pyx_L5;
 | |
|     }
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":550
 | |
|  *                 0.0, w_data_ptr[idx] - ((u + q_data_ptr[idx]) / wscale))
 | |
|  * 
 | |
|  *         elif (wscale * w_data_ptr[idx]) < 0.0:             # <<<<<<<<<<<<<<
 | |
|  *             w_data_ptr[idx] = min(
 | |
|  *                 0.0, w_data_ptr[idx] + ((u - q_data_ptr[idx]) / wscale))
 | |
|  */
 | |
|     __pyx_t_5 = ((__pyx_v_wscale * (__pyx_v_w_data_ptr[__pyx_v_idx])) < 0.0);
 | |
|     if (__pyx_t_5) {
 | |
| 
 | |
|       /* "sklearn/linear_model/sgd_fast.pyx":551
 | |
|  * 
 | |
|  *         elif (wscale * w_data_ptr[idx]) < 0.0:
 | |
|  *             w_data_ptr[idx] = min(             # <<<<<<<<<<<<<<
 | |
|  *                 0.0, w_data_ptr[idx] + ((u - q_data_ptr[idx]) / wscale))
 | |
|  * 
 | |
|  */
 | |
|       (__pyx_v_w_data_ptr[__pyx_v_idx]) = __pyx_f_7sklearn_12linear_model_8sgd_fast_min(0.0, ((__pyx_v_w_data_ptr[__pyx_v_idx]) + ((__pyx_v_u - (__pyx_v_q_data_ptr[__pyx_v_idx])) / __pyx_v_wscale)));
 | |
|       goto __pyx_L5;
 | |
|     }
 | |
|     __pyx_L5:;
 | |
| 
 | |
|     /* "sklearn/linear_model/sgd_fast.pyx":554
 | |
|  *                 0.0, w_data_ptr[idx] + ((u - q_data_ptr[idx]) / wscale))
 | |
|  * 
 | |
|  *         q_data_ptr[idx] += (wscale * (w_data_ptr[idx] - z))             # <<<<<<<<<<<<<<
 | |
|  */
 | |
|     __pyx_t_6 = __pyx_v_idx;
 | |
|     (__pyx_v_q_data_ptr[__pyx_t_6]) = ((__pyx_v_q_data_ptr[__pyx_t_6]) + (__pyx_v_wscale * ((__pyx_v_w_data_ptr[__pyx_v_idx]) - __pyx_v_z)));
 | |
|   }
 | |
| 
 | |
|   __Pyx_RefNannyFinishContext();
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /*proto*/
 | |
| static CYTHON_UNUSED int __pyx_pw_5numpy_7ndarray_1__getbuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) {
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__getbuffer__ (wrapper)", 0);
 | |
|   __pyx_r = __pyx_pf_5numpy_7ndarray___getbuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info), ((int)__pyx_v_flags));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":194
 | |
|  *         # experimental exception made for __getbuffer__ and __releasebuffer__
 | |
|  *         # -- the details of this may change.
 | |
|  *         def __getbuffer__(ndarray self, Py_buffer* info, int flags):             # <<<<<<<<<<<<<<
 | |
|  *             # This implementation of getbuffer is geared towards Cython
 | |
|  *             # requirements, and does not yet fullfill the PEP.
 | |
|  */
 | |
| 
 | |
| static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags) {
 | |
|   int __pyx_v_copy_shape;
 | |
|   int __pyx_v_i;
 | |
|   int __pyx_v_ndim;
 | |
|   int __pyx_v_endian_detector;
 | |
|   int __pyx_v_little_endian;
 | |
|   int __pyx_v_t;
 | |
|   char *__pyx_v_f;
 | |
|   PyArray_Descr *__pyx_v_descr = 0;
 | |
|   int __pyx_v_offset;
 | |
|   int __pyx_v_hasfields;
 | |
|   int __pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   int __pyx_t_1;
 | |
|   int __pyx_t_2;
 | |
|   int __pyx_t_3;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   int __pyx_t_5;
 | |
|   int __pyx_t_6;
 | |
|   int __pyx_t_7;
 | |
|   PyObject *__pyx_t_8 = NULL;
 | |
|   char *__pyx_t_9;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("__getbuffer__", 0);
 | |
|   if (__pyx_v_info != NULL) {
 | |
|     __pyx_v_info->obj = Py_None; __Pyx_INCREF(Py_None);
 | |
|     __Pyx_GIVEREF(__pyx_v_info->obj);
 | |
|   }
 | |
| 
 | |
|   /* "numpy.pxd":200
 | |
|  *             # of flags
 | |
|  * 
 | |
|  *             if info == NULL: return             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             cdef int copy_shape, i, ndim
 | |
|  */
 | |
|   __pyx_t_1 = (__pyx_v_info == NULL);
 | |
|   if (__pyx_t_1) {
 | |
|     __pyx_r = 0;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "numpy.pxd":203
 | |
|  * 
 | |
|  *             cdef int copy_shape, i, ndim
 | |
|  *             cdef int endian_detector = 1             # <<<<<<<<<<<<<<
 | |
|  *             cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_endian_detector = 1;
 | |
| 
 | |
|   /* "numpy.pxd":204
 | |
|  *             cdef int copy_shape, i, ndim
 | |
|  *             cdef int endian_detector = 1
 | |
|  *             cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             ndim = PyArray_NDIM(self)
 | |
|  */
 | |
|   __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0);
 | |
| 
 | |
|   /* "numpy.pxd":206
 | |
|  *             cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
 | |
|  * 
 | |
|  *             ndim = PyArray_NDIM(self)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):
 | |
|  */
 | |
|   __pyx_v_ndim = PyArray_NDIM(__pyx_v_self);
 | |
| 
 | |
|   /* "numpy.pxd":208
 | |
|  *             ndim = PyArray_NDIM(self)
 | |
|  * 
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):             # <<<<<<<<<<<<<<
 | |
|  *                 copy_shape = 1
 | |
|  *             else:
 | |
|  */
 | |
|   __pyx_t_1 = ((sizeof(npy_intp)) != (sizeof(Py_ssize_t)));
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":209
 | |
|  * 
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):
 | |
|  *                 copy_shape = 1             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 copy_shape = 0
 | |
|  */
 | |
|     __pyx_v_copy_shape = 1;
 | |
|     goto __pyx_L4;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "numpy.pxd":211
 | |
|  *                 copy_shape = 1
 | |
|  *             else:
 | |
|  *                 copy_shape = 0             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
 | |
|  */
 | |
|     __pyx_v_copy_shape = 0;
 | |
|   }
 | |
|   __pyx_L4:;
 | |
| 
 | |
|   /* "numpy.pxd":213
 | |
|  *                 copy_shape = 0
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)             # <<<<<<<<<<<<<<
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
 | |
|  *                 raise ValueError(u"ndarray is not C contiguous")
 | |
|  */
 | |
|   __pyx_t_1 = ((__pyx_v_flags & PyBUF_C_CONTIGUOUS) == PyBUF_C_CONTIGUOUS);
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":214
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):             # <<<<<<<<<<<<<<
 | |
|  *                 raise ValueError(u"ndarray is not C contiguous")
 | |
|  * 
 | |
|  */
 | |
|     __pyx_t_2 = (!PyArray_CHKFLAGS(__pyx_v_self, NPY_C_CONTIGUOUS));
 | |
|     __pyx_t_3 = __pyx_t_2;
 | |
|   } else {
 | |
|     __pyx_t_3 = __pyx_t_1;
 | |
|   }
 | |
|   if (__pyx_t_3) {
 | |
| 
 | |
|     /* "numpy.pxd":215
 | |
|  *             if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
 | |
|  *                 raise ValueError(u"ndarray is not C contiguous")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
 | |
|  */
 | |
|     __pyx_t_4 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_k_tuple_7), NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_4);
 | |
|     __Pyx_Raise(__pyx_t_4, 0, 0, 0);
 | |
|     __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 | |
|     {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     goto __pyx_L5;
 | |
|   }
 | |
|   __pyx_L5:;
 | |
| 
 | |
|   /* "numpy.pxd":217
 | |
|  *                 raise ValueError(u"ndarray is not C contiguous")
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)             # <<<<<<<<<<<<<<
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
 | |
|  *                 raise ValueError(u"ndarray is not Fortran contiguous")
 | |
|  */
 | |
|   __pyx_t_3 = ((__pyx_v_flags & PyBUF_F_CONTIGUOUS) == PyBUF_F_CONTIGUOUS);
 | |
|   if (__pyx_t_3) {
 | |
| 
 | |
|     /* "numpy.pxd":218
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):             # <<<<<<<<<<<<<<
 | |
|  *                 raise ValueError(u"ndarray is not Fortran contiguous")
 | |
|  * 
 | |
|  */
 | |
|     __pyx_t_1 = (!PyArray_CHKFLAGS(__pyx_v_self, NPY_F_CONTIGUOUS));
 | |
|     __pyx_t_2 = __pyx_t_1;
 | |
|   } else {
 | |
|     __pyx_t_2 = __pyx_t_3;
 | |
|   }
 | |
|   if (__pyx_t_2) {
 | |
| 
 | |
|     /* "numpy.pxd":219
 | |
|  *             if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
 | |
|  *                 raise ValueError(u"ndarray is not Fortran contiguous")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             info.buf = PyArray_DATA(self)
 | |
|  */
 | |
|     __pyx_t_4 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_k_tuple_9), NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_4);
 | |
|     __Pyx_Raise(__pyx_t_4, 0, 0, 0);
 | |
|     __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 | |
|     {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     goto __pyx_L6;
 | |
|   }
 | |
|   __pyx_L6:;
 | |
| 
 | |
|   /* "numpy.pxd":221
 | |
|  *                 raise ValueError(u"ndarray is not Fortran contiguous")
 | |
|  * 
 | |
|  *             info.buf = PyArray_DATA(self)             # <<<<<<<<<<<<<<
 | |
|  *             info.ndim = ndim
 | |
|  *             if copy_shape:
 | |
|  */
 | |
|   __pyx_v_info->buf = PyArray_DATA(__pyx_v_self);
 | |
| 
 | |
|   /* "numpy.pxd":222
 | |
|  * 
 | |
|  *             info.buf = PyArray_DATA(self)
 | |
|  *             info.ndim = ndim             # <<<<<<<<<<<<<<
 | |
|  *             if copy_shape:
 | |
|  *                 # Allocate new buffer for strides and shape info.
 | |
|  */
 | |
|   __pyx_v_info->ndim = __pyx_v_ndim;
 | |
| 
 | |
|   /* "numpy.pxd":223
 | |
|  *             info.buf = PyArray_DATA(self)
 | |
|  *             info.ndim = ndim
 | |
|  *             if copy_shape:             # <<<<<<<<<<<<<<
 | |
|  *                 # Allocate new buffer for strides and shape info.
 | |
|  *                 # This is allocated as one block, strides first.
 | |
|  */
 | |
|   if (__pyx_v_copy_shape) {
 | |
| 
 | |
|     /* "numpy.pxd":226
 | |
|  *                 # Allocate new buffer for strides and shape info.
 | |
|  *                 # This is allocated as one block, strides first.
 | |
|  *                 info.strides = <Py_ssize_t*>stdlib.malloc(sizeof(Py_ssize_t) * <size_t>ndim * 2)             # <<<<<<<<<<<<<<
 | |
|  *                 info.shape = info.strides + ndim
 | |
|  *                 for i in range(ndim):
 | |
|  */
 | |
|     __pyx_v_info->strides = ((Py_ssize_t *)malloc((((sizeof(Py_ssize_t)) * ((size_t)__pyx_v_ndim)) * 2)));
 | |
| 
 | |
|     /* "numpy.pxd":227
 | |
|  *                 # This is allocated as one block, strides first.
 | |
|  *                 info.strides = <Py_ssize_t*>stdlib.malloc(sizeof(Py_ssize_t) * <size_t>ndim * 2)
 | |
|  *                 info.shape = info.strides + ndim             # <<<<<<<<<<<<<<
 | |
|  *                 for i in range(ndim):
 | |
|  *                     info.strides[i] = PyArray_STRIDES(self)[i]
 | |
|  */
 | |
|     __pyx_v_info->shape = (__pyx_v_info->strides + __pyx_v_ndim);
 | |
| 
 | |
|     /* "numpy.pxd":228
 | |
|  *                 info.strides = <Py_ssize_t*>stdlib.malloc(sizeof(Py_ssize_t) * <size_t>ndim * 2)
 | |
|  *                 info.shape = info.strides + ndim
 | |
|  *                 for i in range(ndim):             # <<<<<<<<<<<<<<
 | |
|  *                     info.strides[i] = PyArray_STRIDES(self)[i]
 | |
|  *                     info.shape[i] = PyArray_DIMS(self)[i]
 | |
|  */
 | |
|     __pyx_t_5 = __pyx_v_ndim;
 | |
|     for (__pyx_t_6 = 0; __pyx_t_6 < __pyx_t_5; __pyx_t_6+=1) {
 | |
|       __pyx_v_i = __pyx_t_6;
 | |
| 
 | |
|       /* "numpy.pxd":229
 | |
|  *                 info.shape = info.strides + ndim
 | |
|  *                 for i in range(ndim):
 | |
|  *                     info.strides[i] = PyArray_STRIDES(self)[i]             # <<<<<<<<<<<<<<
 | |
|  *                     info.shape[i] = PyArray_DIMS(self)[i]
 | |
|  *             else:
 | |
|  */
 | |
|       (__pyx_v_info->strides[__pyx_v_i]) = (PyArray_STRIDES(__pyx_v_self)[__pyx_v_i]);
 | |
| 
 | |
|       /* "numpy.pxd":230
 | |
|  *                 for i in range(ndim):
 | |
|  *                     info.strides[i] = PyArray_STRIDES(self)[i]
 | |
|  *                     info.shape[i] = PyArray_DIMS(self)[i]             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 info.strides = <Py_ssize_t*>PyArray_STRIDES(self)
 | |
|  */
 | |
|       (__pyx_v_info->shape[__pyx_v_i]) = (PyArray_DIMS(__pyx_v_self)[__pyx_v_i]);
 | |
|     }
 | |
|     goto __pyx_L7;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "numpy.pxd":232
 | |
|  *                     info.shape[i] = PyArray_DIMS(self)[i]
 | |
|  *             else:
 | |
|  *                 info.strides = <Py_ssize_t*>PyArray_STRIDES(self)             # <<<<<<<<<<<<<<
 | |
|  *                 info.shape = <Py_ssize_t*>PyArray_DIMS(self)
 | |
|  *             info.suboffsets = NULL
 | |
|  */
 | |
|     __pyx_v_info->strides = ((Py_ssize_t *)PyArray_STRIDES(__pyx_v_self));
 | |
| 
 | |
|     /* "numpy.pxd":233
 | |
|  *             else:
 | |
|  *                 info.strides = <Py_ssize_t*>PyArray_STRIDES(self)
 | |
|  *                 info.shape = <Py_ssize_t*>PyArray_DIMS(self)             # <<<<<<<<<<<<<<
 | |
|  *             info.suboffsets = NULL
 | |
|  *             info.itemsize = PyArray_ITEMSIZE(self)
 | |
|  */
 | |
|     __pyx_v_info->shape = ((Py_ssize_t *)PyArray_DIMS(__pyx_v_self));
 | |
|   }
 | |
|   __pyx_L7:;
 | |
| 
 | |
|   /* "numpy.pxd":234
 | |
|  *                 info.strides = <Py_ssize_t*>PyArray_STRIDES(self)
 | |
|  *                 info.shape = <Py_ssize_t*>PyArray_DIMS(self)
 | |
|  *             info.suboffsets = NULL             # <<<<<<<<<<<<<<
 | |
|  *             info.itemsize = PyArray_ITEMSIZE(self)
 | |
|  *             info.readonly = not PyArray_ISWRITEABLE(self)
 | |
|  */
 | |
|   __pyx_v_info->suboffsets = NULL;
 | |
| 
 | |
|   /* "numpy.pxd":235
 | |
|  *                 info.shape = <Py_ssize_t*>PyArray_DIMS(self)
 | |
|  *             info.suboffsets = NULL
 | |
|  *             info.itemsize = PyArray_ITEMSIZE(self)             # <<<<<<<<<<<<<<
 | |
|  *             info.readonly = not PyArray_ISWRITEABLE(self)
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_info->itemsize = PyArray_ITEMSIZE(__pyx_v_self);
 | |
| 
 | |
|   /* "numpy.pxd":236
 | |
|  *             info.suboffsets = NULL
 | |
|  *             info.itemsize = PyArray_ITEMSIZE(self)
 | |
|  *             info.readonly = not PyArray_ISWRITEABLE(self)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             cdef int t
 | |
|  */
 | |
|   __pyx_v_info->readonly = (!PyArray_ISWRITEABLE(__pyx_v_self));
 | |
| 
 | |
|   /* "numpy.pxd":239
 | |
|  * 
 | |
|  *             cdef int t
 | |
|  *             cdef char* f = NULL             # <<<<<<<<<<<<<<
 | |
|  *             cdef dtype descr = self.descr
 | |
|  *             cdef list stack
 | |
|  */
 | |
|   __pyx_v_f = NULL;
 | |
| 
 | |
|   /* "numpy.pxd":240
 | |
|  *             cdef int t
 | |
|  *             cdef char* f = NULL
 | |
|  *             cdef dtype descr = self.descr             # <<<<<<<<<<<<<<
 | |
|  *             cdef list stack
 | |
|  *             cdef int offset
 | |
|  */
 | |
|   __pyx_t_4 = ((PyObject *)__pyx_v_self->descr);
 | |
|   __Pyx_INCREF(__pyx_t_4);
 | |
|   __pyx_v_descr = ((PyArray_Descr *)__pyx_t_4);
 | |
|   __pyx_t_4 = 0;
 | |
| 
 | |
|   /* "numpy.pxd":244
 | |
|  *             cdef int offset
 | |
|  * 
 | |
|  *             cdef bint hasfields = PyDataType_HASFIELDS(descr)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if not hasfields and not copy_shape:
 | |
|  */
 | |
|   __pyx_v_hasfields = PyDataType_HASFIELDS(__pyx_v_descr);
 | |
| 
 | |
|   /* "numpy.pxd":246
 | |
|  *             cdef bint hasfields = PyDataType_HASFIELDS(descr)
 | |
|  * 
 | |
|  *             if not hasfields and not copy_shape:             # <<<<<<<<<<<<<<
 | |
|  *                 # do not call releasebuffer
 | |
|  *                 info.obj = None
 | |
|  */
 | |
|   __pyx_t_2 = (!__pyx_v_hasfields);
 | |
|   if (__pyx_t_2) {
 | |
|     __pyx_t_3 = (!__pyx_v_copy_shape);
 | |
|     __pyx_t_1 = __pyx_t_3;
 | |
|   } else {
 | |
|     __pyx_t_1 = __pyx_t_2;
 | |
|   }
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":248
 | |
|  *             if not hasfields and not copy_shape:
 | |
|  *                 # do not call releasebuffer
 | |
|  *                 info.obj = None             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 # need to call releasebuffer
 | |
|  */
 | |
|     __Pyx_INCREF(Py_None);
 | |
|     __Pyx_GIVEREF(Py_None);
 | |
|     __Pyx_GOTREF(__pyx_v_info->obj);
 | |
|     __Pyx_DECREF(__pyx_v_info->obj);
 | |
|     __pyx_v_info->obj = Py_None;
 | |
|     goto __pyx_L10;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "numpy.pxd":251
 | |
|  *             else:
 | |
|  *                 # need to call releasebuffer
 | |
|  *                 info.obj = self             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if not hasfields:
 | |
|  */
 | |
|     __Pyx_INCREF(((PyObject *)__pyx_v_self));
 | |
|     __Pyx_GIVEREF(((PyObject *)__pyx_v_self));
 | |
|     __Pyx_GOTREF(__pyx_v_info->obj);
 | |
|     __Pyx_DECREF(__pyx_v_info->obj);
 | |
|     __pyx_v_info->obj = ((PyObject *)__pyx_v_self);
 | |
|   }
 | |
|   __pyx_L10:;
 | |
| 
 | |
|   /* "numpy.pxd":253
 | |
|  *                 info.obj = self
 | |
|  * 
 | |
|  *             if not hasfields:             # <<<<<<<<<<<<<<
 | |
|  *                 t = descr.type_num
 | |
|  *                 if ((descr.byteorder == c'>' and little_endian) or
 | |
|  */
 | |
|   __pyx_t_1 = (!__pyx_v_hasfields);
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":254
 | |
|  * 
 | |
|  *             if not hasfields:
 | |
|  *                 t = descr.type_num             # <<<<<<<<<<<<<<
 | |
|  *                 if ((descr.byteorder == c'>' and little_endian) or
 | |
|  *                     (descr.byteorder == c'<' and not little_endian)):
 | |
|  */
 | |
|     __pyx_t_5 = __pyx_v_descr->type_num;
 | |
|     __pyx_v_t = __pyx_t_5;
 | |
| 
 | |
|     /* "numpy.pxd":255
 | |
|  *             if not hasfields:
 | |
|  *                 t = descr.type_num
 | |
|  *                 if ((descr.byteorder == c'>' and little_endian) or             # <<<<<<<<<<<<<<
 | |
|  *                     (descr.byteorder == c'<' and not little_endian)):
 | |
|  *                     raise ValueError(u"Non-native byte order not supported")
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_descr->byteorder == '>');
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_t_2 = __pyx_v_little_endian;
 | |
|     } else {
 | |
|       __pyx_t_2 = __pyx_t_1;
 | |
|     }
 | |
|     if (!__pyx_t_2) {
 | |
| 
 | |
|       /* "numpy.pxd":256
 | |
|  *                 t = descr.type_num
 | |
|  *                 if ((descr.byteorder == c'>' and little_endian) or
 | |
|  *                     (descr.byteorder == c'<' and not little_endian)):             # <<<<<<<<<<<<<<
 | |
|  *                     raise ValueError(u"Non-native byte order not supported")
 | |
|  *                 if   t == NPY_BYTE:        f = "b"
 | |
|  */
 | |
|       __pyx_t_1 = (__pyx_v_descr->byteorder == '<');
 | |
|       if (__pyx_t_1) {
 | |
|         __pyx_t_3 = (!__pyx_v_little_endian);
 | |
|         __pyx_t_7 = __pyx_t_3;
 | |
|       } else {
 | |
|         __pyx_t_7 = __pyx_t_1;
 | |
|       }
 | |
|       __pyx_t_1 = __pyx_t_7;
 | |
|     } else {
 | |
|       __pyx_t_1 = __pyx_t_2;
 | |
|     }
 | |
|     if (__pyx_t_1) {
 | |
| 
 | |
|       /* "numpy.pxd":257
 | |
|  *                 if ((descr.byteorder == c'>' and little_endian) or
 | |
|  *                     (descr.byteorder == c'<' and not little_endian)):
 | |
|  *                     raise ValueError(u"Non-native byte order not supported")             # <<<<<<<<<<<<<<
 | |
|  *                 if   t == NPY_BYTE:        f = "b"
 | |
|  *                 elif t == NPY_UBYTE:       f = "B"
 | |
|  */
 | |
|       __pyx_t_4 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_k_tuple_11), NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       __Pyx_Raise(__pyx_t_4, 0, 0, 0);
 | |
|       __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 | |
|       {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       goto __pyx_L12;
 | |
|     }
 | |
|     __pyx_L12:;
 | |
| 
 | |
|     /* "numpy.pxd":258
 | |
|  *                     (descr.byteorder == c'<' and not little_endian)):
 | |
|  *                     raise ValueError(u"Non-native byte order not supported")
 | |
|  *                 if   t == NPY_BYTE:        f = "b"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_UBYTE:       f = "B"
 | |
|  *                 elif t == NPY_SHORT:       f = "h"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_BYTE);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__b;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":259
 | |
|  *                     raise ValueError(u"Non-native byte order not supported")
 | |
|  *                 if   t == NPY_BYTE:        f = "b"
 | |
|  *                 elif t == NPY_UBYTE:       f = "B"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_SHORT:       f = "h"
 | |
|  *                 elif t == NPY_USHORT:      f = "H"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_UBYTE);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__B;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":260
 | |
|  *                 if   t == NPY_BYTE:        f = "b"
 | |
|  *                 elif t == NPY_UBYTE:       f = "B"
 | |
|  *                 elif t == NPY_SHORT:       f = "h"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_USHORT:      f = "H"
 | |
|  *                 elif t == NPY_INT:         f = "i"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_SHORT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__h;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":261
 | |
|  *                 elif t == NPY_UBYTE:       f = "B"
 | |
|  *                 elif t == NPY_SHORT:       f = "h"
 | |
|  *                 elif t == NPY_USHORT:      f = "H"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_INT:         f = "i"
 | |
|  *                 elif t == NPY_UINT:        f = "I"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_USHORT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__H;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":262
 | |
|  *                 elif t == NPY_SHORT:       f = "h"
 | |
|  *                 elif t == NPY_USHORT:      f = "H"
 | |
|  *                 elif t == NPY_INT:         f = "i"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_UINT:        f = "I"
 | |
|  *                 elif t == NPY_LONG:        f = "l"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_INT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__i;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":263
 | |
|  *                 elif t == NPY_USHORT:      f = "H"
 | |
|  *                 elif t == NPY_INT:         f = "i"
 | |
|  *                 elif t == NPY_UINT:        f = "I"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_LONG:        f = "l"
 | |
|  *                 elif t == NPY_ULONG:       f = "L"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_UINT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__I;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":264
 | |
|  *                 elif t == NPY_INT:         f = "i"
 | |
|  *                 elif t == NPY_UINT:        f = "I"
 | |
|  *                 elif t == NPY_LONG:        f = "l"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_ULONG:       f = "L"
 | |
|  *                 elif t == NPY_LONGLONG:    f = "q"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_LONG);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__l;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":265
 | |
|  *                 elif t == NPY_UINT:        f = "I"
 | |
|  *                 elif t == NPY_LONG:        f = "l"
 | |
|  *                 elif t == NPY_ULONG:       f = "L"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_LONGLONG:    f = "q"
 | |
|  *                 elif t == NPY_ULONGLONG:   f = "Q"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_ULONG);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__L;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":266
 | |
|  *                 elif t == NPY_LONG:        f = "l"
 | |
|  *                 elif t == NPY_ULONG:       f = "L"
 | |
|  *                 elif t == NPY_LONGLONG:    f = "q"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_ULONGLONG:   f = "Q"
 | |
|  *                 elif t == NPY_FLOAT:       f = "f"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_LONGLONG);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__q;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":267
 | |
|  *                 elif t == NPY_ULONG:       f = "L"
 | |
|  *                 elif t == NPY_LONGLONG:    f = "q"
 | |
|  *                 elif t == NPY_ULONGLONG:   f = "Q"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_FLOAT:       f = "f"
 | |
|  *                 elif t == NPY_DOUBLE:      f = "d"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_ULONGLONG);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__Q;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":268
 | |
|  *                 elif t == NPY_LONGLONG:    f = "q"
 | |
|  *                 elif t == NPY_ULONGLONG:   f = "Q"
 | |
|  *                 elif t == NPY_FLOAT:       f = "f"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_DOUBLE:      f = "d"
 | |
|  *                 elif t == NPY_LONGDOUBLE:  f = "g"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_FLOAT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__f;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":269
 | |
|  *                 elif t == NPY_ULONGLONG:   f = "Q"
 | |
|  *                 elif t == NPY_FLOAT:       f = "f"
 | |
|  *                 elif t == NPY_DOUBLE:      f = "d"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_LONGDOUBLE:  f = "g"
 | |
|  *                 elif t == NPY_CFLOAT:      f = "Zf"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_DOUBLE);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__d;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":270
 | |
|  *                 elif t == NPY_FLOAT:       f = "f"
 | |
|  *                 elif t == NPY_DOUBLE:      f = "d"
 | |
|  *                 elif t == NPY_LONGDOUBLE:  f = "g"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_CFLOAT:      f = "Zf"
 | |
|  *                 elif t == NPY_CDOUBLE:     f = "Zd"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_LONGDOUBLE);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__g;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":271
 | |
|  *                 elif t == NPY_DOUBLE:      f = "d"
 | |
|  *                 elif t == NPY_LONGDOUBLE:  f = "g"
 | |
|  *                 elif t == NPY_CFLOAT:      f = "Zf"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_CDOUBLE:     f = "Zd"
 | |
|  *                 elif t == NPY_CLONGDOUBLE: f = "Zg"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_CFLOAT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__Zf;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":272
 | |
|  *                 elif t == NPY_LONGDOUBLE:  f = "g"
 | |
|  *                 elif t == NPY_CFLOAT:      f = "Zf"
 | |
|  *                 elif t == NPY_CDOUBLE:     f = "Zd"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_CLONGDOUBLE: f = "Zg"
 | |
|  *                 elif t == NPY_OBJECT:      f = "O"
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_CDOUBLE);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__Zd;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":273
 | |
|  *                 elif t == NPY_CFLOAT:      f = "Zf"
 | |
|  *                 elif t == NPY_CDOUBLE:     f = "Zd"
 | |
|  *                 elif t == NPY_CLONGDOUBLE: f = "Zg"             # <<<<<<<<<<<<<<
 | |
|  *                 elif t == NPY_OBJECT:      f = "O"
 | |
|  *                 else:
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_CLONGDOUBLE);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__Zg;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":274
 | |
|  *                 elif t == NPY_CDOUBLE:     f = "Zd"
 | |
|  *                 elif t == NPY_CLONGDOUBLE: f = "Zg"
 | |
|  *                 elif t == NPY_OBJECT:      f = "O"             # <<<<<<<<<<<<<<
 | |
|  *                 else:
 | |
|  *                     raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
 | |
|  */
 | |
|     __pyx_t_1 = (__pyx_v_t == NPY_OBJECT);
 | |
|     if (__pyx_t_1) {
 | |
|       __pyx_v_f = __pyx_k__O;
 | |
|       goto __pyx_L13;
 | |
|     }
 | |
|     /*else*/ {
 | |
| 
 | |
|       /* "numpy.pxd":276
 | |
|  *                 elif t == NPY_OBJECT:      f = "O"
 | |
|  *                 else:
 | |
|  *                     raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)             # <<<<<<<<<<<<<<
 | |
|  *                 info.format = f
 | |
|  *                 return
 | |
|  */
 | |
|       __pyx_t_4 = PyInt_FromLong(__pyx_v_t); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       __pyx_t_8 = PyNumber_Remainder(((PyObject *)__pyx_kp_u_12), __pyx_t_4); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(((PyObject *)__pyx_t_8));
 | |
|       __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 | |
|       __pyx_t_4 = PyTuple_New(1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       PyTuple_SET_ITEM(__pyx_t_4, 0, ((PyObject *)__pyx_t_8));
 | |
|       __Pyx_GIVEREF(((PyObject *)__pyx_t_8));
 | |
|       __pyx_t_8 = 0;
 | |
|       __pyx_t_8 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_t_4), NULL); if (unlikely(!__pyx_t_8)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_8);
 | |
|       __Pyx_DECREF(((PyObject *)__pyx_t_4)); __pyx_t_4 = 0;
 | |
|       __Pyx_Raise(__pyx_t_8, 0, 0, 0);
 | |
|       __Pyx_DECREF(__pyx_t_8); __pyx_t_8 = 0;
 | |
|       {__pyx_filename = __pyx_f[1]; __pyx_lineno = 276; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     }
 | |
|     __pyx_L13:;
 | |
| 
 | |
|     /* "numpy.pxd":277
 | |
|  *                 else:
 | |
|  *                     raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
 | |
|  *                 info.format = f             # <<<<<<<<<<<<<<
 | |
|  *                 return
 | |
|  *             else:
 | |
|  */
 | |
|     __pyx_v_info->format = __pyx_v_f;
 | |
| 
 | |
|     /* "numpy.pxd":278
 | |
|  *                     raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
 | |
|  *                 info.format = f
 | |
|  *                 return             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 info.format = <char*>stdlib.malloc(_buffer_format_string_len)
 | |
|  */
 | |
|     __pyx_r = 0;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L11;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "numpy.pxd":280
 | |
|  *                 return
 | |
|  *             else:
 | |
|  *                 info.format = <char*>stdlib.malloc(_buffer_format_string_len)             # <<<<<<<<<<<<<<
 | |
|  *                 info.format[0] = c'^' # Native data types, manual alignment
 | |
|  *                 offset = 0
 | |
|  */
 | |
|     __pyx_v_info->format = ((char *)malloc(255));
 | |
| 
 | |
|     /* "numpy.pxd":281
 | |
|  *             else:
 | |
|  *                 info.format = <char*>stdlib.malloc(_buffer_format_string_len)
 | |
|  *                 info.format[0] = c'^' # Native data types, manual alignment             # <<<<<<<<<<<<<<
 | |
|  *                 offset = 0
 | |
|  *                 f = _util_dtypestring(descr, info.format + 1,
 | |
|  */
 | |
|     (__pyx_v_info->format[0]) = '^';
 | |
| 
 | |
|     /* "numpy.pxd":282
 | |
|  *                 info.format = <char*>stdlib.malloc(_buffer_format_string_len)
 | |
|  *                 info.format[0] = c'^' # Native data types, manual alignment
 | |
|  *                 offset = 0             # <<<<<<<<<<<<<<
 | |
|  *                 f = _util_dtypestring(descr, info.format + 1,
 | |
|  *                                       info.format + _buffer_format_string_len,
 | |
|  */
 | |
|     __pyx_v_offset = 0;
 | |
| 
 | |
|     /* "numpy.pxd":285
 | |
|  *                 f = _util_dtypestring(descr, info.format + 1,
 | |
|  *                                       info.format + _buffer_format_string_len,
 | |
|  *                                       &offset)             # <<<<<<<<<<<<<<
 | |
|  *                 f[0] = c'\0' # Terminate format string
 | |
|  * 
 | |
|  */
 | |
|     __pyx_t_9 = __pyx_f_5numpy__util_dtypestring(__pyx_v_descr, (__pyx_v_info->format + 1), (__pyx_v_info->format + 255), (&__pyx_v_offset)); if (unlikely(__pyx_t_9 == NULL)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 283; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __pyx_v_f = __pyx_t_9;
 | |
| 
 | |
|     /* "numpy.pxd":286
 | |
|  *                                       info.format + _buffer_format_string_len,
 | |
|  *                                       &offset)
 | |
|  *                 f[0] = c'\0' # Terminate format string             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         def __releasebuffer__(ndarray self, Py_buffer* info):
 | |
|  */
 | |
|     (__pyx_v_f[0]) = '\x00';
 | |
|   }
 | |
|   __pyx_L11:;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_XDECREF(__pyx_t_8);
 | |
|   __Pyx_AddTraceback("numpy.ndarray.__getbuffer__", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = -1;
 | |
|   if (__pyx_v_info != NULL && __pyx_v_info->obj != NULL) {
 | |
|     __Pyx_GOTREF(__pyx_v_info->obj);
 | |
|     __Pyx_DECREF(__pyx_v_info->obj); __pyx_v_info->obj = NULL;
 | |
|   }
 | |
|   goto __pyx_L2;
 | |
|   __pyx_L0:;
 | |
|   if (__pyx_v_info != NULL && __pyx_v_info->obj == Py_None) {
 | |
|     __Pyx_GOTREF(Py_None);
 | |
|     __Pyx_DECREF(Py_None); __pyx_v_info->obj = NULL;
 | |
|   }
 | |
|   __pyx_L2:;
 | |
|   __Pyx_XDECREF((PyObject *)__pyx_v_descr);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* Python wrapper */
 | |
| static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info); /*proto*/
 | |
| static CYTHON_UNUSED void __pyx_pw_5numpy_7ndarray_3__releasebuffer__(PyObject *__pyx_v_self, Py_buffer *__pyx_v_info) {
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__releasebuffer__ (wrapper)", 0);
 | |
|   __pyx_pf_5numpy_7ndarray_2__releasebuffer__(((PyArrayObject *)__pyx_v_self), ((Py_buffer *)__pyx_v_info));
 | |
|   __Pyx_RefNannyFinishContext();
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":288
 | |
|  *                 f[0] = c'\0' # Terminate format string
 | |
|  * 
 | |
|  *         def __releasebuffer__(ndarray self, Py_buffer* info):             # <<<<<<<<<<<<<<
 | |
|  *             if PyArray_HASFIELDS(self):
 | |
|  *                 stdlib.free(info.format)
 | |
|  */
 | |
| 
 | |
| static void __pyx_pf_5numpy_7ndarray_2__releasebuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info) {
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   int __pyx_t_1;
 | |
|   __Pyx_RefNannySetupContext("__releasebuffer__", 0);
 | |
| 
 | |
|   /* "numpy.pxd":289
 | |
|  * 
 | |
|  *         def __releasebuffer__(ndarray self, Py_buffer* info):
 | |
|  *             if PyArray_HASFIELDS(self):             # <<<<<<<<<<<<<<
 | |
|  *                 stdlib.free(info.format)
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):
 | |
|  */
 | |
|   __pyx_t_1 = PyArray_HASFIELDS(__pyx_v_self);
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":290
 | |
|  *         def __releasebuffer__(ndarray self, Py_buffer* info):
 | |
|  *             if PyArray_HASFIELDS(self):
 | |
|  *                 stdlib.free(info.format)             # <<<<<<<<<<<<<<
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):
 | |
|  *                 stdlib.free(info.strides)
 | |
|  */
 | |
|     free(__pyx_v_info->format);
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "numpy.pxd":291
 | |
|  *             if PyArray_HASFIELDS(self):
 | |
|  *                 stdlib.free(info.format)
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):             # <<<<<<<<<<<<<<
 | |
|  *                 stdlib.free(info.strides)
 | |
|  *                 # info.shape was stored after info.strides in the same block
 | |
|  */
 | |
|   __pyx_t_1 = ((sizeof(npy_intp)) != (sizeof(Py_ssize_t)));
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":292
 | |
|  *                 stdlib.free(info.format)
 | |
|  *             if sizeof(npy_intp) != sizeof(Py_ssize_t):
 | |
|  *                 stdlib.free(info.strides)             # <<<<<<<<<<<<<<
 | |
|  *                 # info.shape was stored after info.strides in the same block
 | |
|  * 
 | |
|  */
 | |
|     free(__pyx_v_info->strides);
 | |
|     goto __pyx_L4;
 | |
|   }
 | |
|   __pyx_L4:;
 | |
| 
 | |
|   __Pyx_RefNannyFinishContext();
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":768
 | |
|  * ctypedef npy_cdouble     complex_t
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew1(a):             # <<<<<<<<<<<<<<
 | |
|  *     return PyArray_MultiIterNew(1, <void*>a)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew1(PyObject *__pyx_v_a) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("PyArray_MultiIterNew1", 0);
 | |
| 
 | |
|   /* "numpy.pxd":769
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew1(a):
 | |
|  *     return PyArray_MultiIterNew(1, <void*>a)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew2(a, b):
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyArray_MultiIterNew(1, ((void *)__pyx_v_a)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 769; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("numpy.PyArray_MultiIterNew1", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":771
 | |
|  *     return PyArray_MultiIterNew(1, <void*>a)
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew2(a, b):             # <<<<<<<<<<<<<<
 | |
|  *     return PyArray_MultiIterNew(2, <void*>a, <void*>b)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew2(PyObject *__pyx_v_a, PyObject *__pyx_v_b) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("PyArray_MultiIterNew2", 0);
 | |
| 
 | |
|   /* "numpy.pxd":772
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew2(a, b):
 | |
|  *     return PyArray_MultiIterNew(2, <void*>a, <void*>b)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew3(a, b, c):
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyArray_MultiIterNew(2, ((void *)__pyx_v_a), ((void *)__pyx_v_b)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 772; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("numpy.PyArray_MultiIterNew2", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":774
 | |
|  *     return PyArray_MultiIterNew(2, <void*>a, <void*>b)
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew3(a, b, c):             # <<<<<<<<<<<<<<
 | |
|  *     return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew3(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("PyArray_MultiIterNew3", 0);
 | |
| 
 | |
|   /* "numpy.pxd":775
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew3(a, b, c):
 | |
|  *     return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew4(a, b, c, d):
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyArray_MultiIterNew(3, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 775; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("numpy.PyArray_MultiIterNew3", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":777
 | |
|  *     return PyArray_MultiIterNew(3, <void*>a, <void*>b, <void*> c)
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew4(a, b, c, d):             # <<<<<<<<<<<<<<
 | |
|  *     return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew4(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("PyArray_MultiIterNew4", 0);
 | |
| 
 | |
|   /* "numpy.pxd":778
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew4(a, b, c, d):
 | |
|  *     return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyArray_MultiIterNew(4, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 778; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("numpy.PyArray_MultiIterNew4", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":780
 | |
|  *     return PyArray_MultiIterNew(4, <void*>a, <void*>b, <void*>c, <void*> d)
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):             # <<<<<<<<<<<<<<
 | |
|  *     return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
 | |
|  * 
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__pyx_f_5numpy_PyArray_MultiIterNew5(PyObject *__pyx_v_a, PyObject *__pyx_v_b, PyObject *__pyx_v_c, PyObject *__pyx_v_d, PyObject *__pyx_v_e) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("PyArray_MultiIterNew5", 0);
 | |
| 
 | |
|   /* "numpy.pxd":781
 | |
|  * 
 | |
|  * cdef inline object PyArray_MultiIterNew5(a, b, c, d, e):
 | |
|  *     return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL:
 | |
|  */
 | |
|   __Pyx_XDECREF(__pyx_r);
 | |
|   __pyx_t_1 = PyArray_MultiIterNew(5, ((void *)__pyx_v_a), ((void *)__pyx_v_b), ((void *)__pyx_v_c), ((void *)__pyx_v_d), ((void *)__pyx_v_e)); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 781; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __pyx_r = __pyx_t_1;
 | |
|   __pyx_t_1 = 0;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_AddTraceback("numpy.PyArray_MultiIterNew5", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = 0;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":783
 | |
|  *     return PyArray_MultiIterNew(5, <void*>a, <void*>b, <void*>c, <void*> d, <void*> e)
 | |
|  * 
 | |
|  * cdef inline char* _util_dtypestring(dtype descr, char* f, char* end, int* offset) except NULL:             # <<<<<<<<<<<<<<
 | |
|  *     # Recursive utility function used in __getbuffer__ to get format
 | |
|  *     # string. The new location in the format string is returned.
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE char *__pyx_f_5numpy__util_dtypestring(PyArray_Descr *__pyx_v_descr, char *__pyx_v_f, char *__pyx_v_end, int *__pyx_v_offset) {
 | |
|   PyArray_Descr *__pyx_v_child = 0;
 | |
|   int __pyx_v_endian_detector;
 | |
|   int __pyx_v_little_endian;
 | |
|   PyObject *__pyx_v_fields = 0;
 | |
|   PyObject *__pyx_v_childname = NULL;
 | |
|   PyObject *__pyx_v_new_offset = NULL;
 | |
|   PyObject *__pyx_v_t = NULL;
 | |
|   char *__pyx_r;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   Py_ssize_t __pyx_t_2;
 | |
|   PyObject *__pyx_t_3 = NULL;
 | |
|   PyObject *__pyx_t_4 = NULL;
 | |
|   PyObject *__pyx_t_5 = NULL;
 | |
|   PyObject *(*__pyx_t_6)(PyObject *);
 | |
|   int __pyx_t_7;
 | |
|   int __pyx_t_8;
 | |
|   int __pyx_t_9;
 | |
|   int __pyx_t_10;
 | |
|   long __pyx_t_11;
 | |
|   char *__pyx_t_12;
 | |
|   int __pyx_lineno = 0;
 | |
|   const char *__pyx_filename = NULL;
 | |
|   int __pyx_clineno = 0;
 | |
|   __Pyx_RefNannySetupContext("_util_dtypestring", 0);
 | |
| 
 | |
|   /* "numpy.pxd":790
 | |
|  *     cdef int delta_offset
 | |
|  *     cdef tuple i
 | |
|  *     cdef int endian_detector = 1             # <<<<<<<<<<<<<<
 | |
|  *     cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)
 | |
|  *     cdef tuple fields
 | |
|  */
 | |
|   __pyx_v_endian_detector = 1;
 | |
| 
 | |
|   /* "numpy.pxd":791
 | |
|  *     cdef tuple i
 | |
|  *     cdef int endian_detector = 1
 | |
|  *     cdef bint little_endian = ((<char*>&endian_detector)[0] != 0)             # <<<<<<<<<<<<<<
 | |
|  *     cdef tuple fields
 | |
|  * 
 | |
|  */
 | |
|   __pyx_v_little_endian = ((((char *)(&__pyx_v_endian_detector))[0]) != 0);
 | |
| 
 | |
|   /* "numpy.pxd":794
 | |
|  *     cdef tuple fields
 | |
|  * 
 | |
|  *     for childname in descr.names:             # <<<<<<<<<<<<<<
 | |
|  *         fields = descr.fields[childname]
 | |
|  *         child, new_offset = fields
 | |
|  */
 | |
|   if (unlikely(((PyObject *)__pyx_v_descr->names) == Py_None)) {
 | |
|     PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable");
 | |
|     {__pyx_filename = __pyx_f[1]; __pyx_lineno = 794; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   }
 | |
|   __pyx_t_1 = ((PyObject *)__pyx_v_descr->names); __Pyx_INCREF(__pyx_t_1); __pyx_t_2 = 0;
 | |
|   for (;;) {
 | |
|     if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_1)) break;
 | |
|     #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_1, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 794; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     #else
 | |
|     __pyx_t_3 = PySequence_ITEM(__pyx_t_1, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 794; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     #endif
 | |
|     __Pyx_XDECREF(__pyx_v_childname);
 | |
|     __pyx_v_childname = __pyx_t_3;
 | |
|     __pyx_t_3 = 0;
 | |
| 
 | |
|     /* "numpy.pxd":795
 | |
|  * 
 | |
|  *     for childname in descr.names:
 | |
|  *         fields = descr.fields[childname]             # <<<<<<<<<<<<<<
 | |
|  *         child, new_offset = fields
 | |
|  * 
 | |
|  */
 | |
|     __pyx_t_3 = PyObject_GetItem(__pyx_v_descr->fields, __pyx_v_childname); if (!__pyx_t_3) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 795; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     if (!(likely(PyTuple_CheckExact(__pyx_t_3))||((__pyx_t_3) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected tuple, got %.200s", Py_TYPE(__pyx_t_3)->tp_name), 0))) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 795; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_XDECREF(((PyObject *)__pyx_v_fields));
 | |
|     __pyx_v_fields = ((PyObject*)__pyx_t_3);
 | |
|     __pyx_t_3 = 0;
 | |
| 
 | |
|     /* "numpy.pxd":796
 | |
|  *     for childname in descr.names:
 | |
|  *         fields = descr.fields[childname]
 | |
|  *         child, new_offset = fields             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         if (end - f) - (new_offset - offset[0]) < 15:
 | |
|  */
 | |
|     if (likely(PyTuple_CheckExact(((PyObject *)__pyx_v_fields)))) {
 | |
|       PyObject* sequence = ((PyObject *)__pyx_v_fields);
 | |
|       #if CYTHON_COMPILING_IN_CPYTHON
 | |
|       Py_ssize_t size = Py_SIZE(sequence);
 | |
|       #else
 | |
|       Py_ssize_t size = PySequence_Size(sequence);
 | |
|       #endif
 | |
|       if (unlikely(size != 2)) {
 | |
|         if (size > 2) __Pyx_RaiseTooManyValuesError(2);
 | |
|         else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
 | |
|         {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       }
 | |
|       #if CYTHON_COMPILING_IN_CPYTHON
 | |
|       __pyx_t_3 = PyTuple_GET_ITEM(sequence, 0); 
 | |
|       __pyx_t_4 = PyTuple_GET_ITEM(sequence, 1); 
 | |
|       __Pyx_INCREF(__pyx_t_3);
 | |
|       __Pyx_INCREF(__pyx_t_4);
 | |
|       #else
 | |
|       __pyx_t_3 = PySequence_ITEM(sequence, 0); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __pyx_t_4 = PySequence_ITEM(sequence, 1); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       #endif
 | |
|     } else if (1) {
 | |
|       __Pyx_RaiseNoneNotIterableError(); {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     } else
 | |
|     {
 | |
|       Py_ssize_t index = -1;
 | |
|       __pyx_t_5 = PyObject_GetIter(((PyObject *)__pyx_v_fields)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_6 = Py_TYPE(__pyx_t_5)->tp_iternext;
 | |
|       index = 0; __pyx_t_3 = __pyx_t_6(__pyx_t_5); if (unlikely(!__pyx_t_3)) goto __pyx_L5_unpacking_failed;
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       index = 1; __pyx_t_4 = __pyx_t_6(__pyx_t_5); if (unlikely(!__pyx_t_4)) goto __pyx_L5_unpacking_failed;
 | |
|       __Pyx_GOTREF(__pyx_t_4);
 | |
|       if (__Pyx_IternextUnpackEndCheck(__pyx_t_6(__pyx_t_5), 2) < 0) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __pyx_t_6 = NULL;
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       goto __pyx_L6_unpacking_done;
 | |
|       __pyx_L5_unpacking_failed:;
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_6 = NULL;
 | |
|       if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
 | |
|       {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __pyx_L6_unpacking_done:;
 | |
|     }
 | |
|     if (!(likely(((__pyx_t_3) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_3, __pyx_ptype_5numpy_dtype))))) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 796; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_XDECREF(((PyObject *)__pyx_v_child));
 | |
|     __pyx_v_child = ((PyArray_Descr *)__pyx_t_3);
 | |
|     __pyx_t_3 = 0;
 | |
|     __Pyx_XDECREF(__pyx_v_new_offset);
 | |
|     __pyx_v_new_offset = __pyx_t_4;
 | |
|     __pyx_t_4 = 0;
 | |
| 
 | |
|     /* "numpy.pxd":798
 | |
|  *         child, new_offset = fields
 | |
|  * 
 | |
|  *         if (end - f) - (new_offset - offset[0]) < 15:             # <<<<<<<<<<<<<<
 | |
|  *             raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd")
 | |
|  * 
 | |
|  */
 | |
|     __pyx_t_4 = PyInt_FromLong((__pyx_v_end - __pyx_v_f)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_4);
 | |
|     __pyx_t_3 = PyInt_FromLong((__pyx_v_offset[0])); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     __pyx_t_5 = PyNumber_Subtract(__pyx_v_new_offset, __pyx_t_3); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_5);
 | |
|     __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|     __pyx_t_3 = PyNumber_Subtract(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_GOTREF(__pyx_t_3);
 | |
|     __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
 | |
|     __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|     __pyx_t_5 = PyObject_RichCompare(__pyx_t_3, __pyx_int_15, Py_LT); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|     __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 798; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|     if (__pyx_t_7) {
 | |
| 
 | |
|       /* "numpy.pxd":799
 | |
|  * 
 | |
|  *         if (end - f) - (new_offset - offset[0]) < 15:
 | |
|  *             raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         if ((child.byteorder == c'>' and little_endian) or
 | |
|  */
 | |
|       __pyx_t_5 = PyObject_Call(__pyx_builtin_RuntimeError, ((PyObject *)__pyx_k_tuple_14), NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __Pyx_Raise(__pyx_t_5, 0, 0, 0);
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       goto __pyx_L7;
 | |
|     }
 | |
|     __pyx_L7:;
 | |
| 
 | |
|     /* "numpy.pxd":801
 | |
|  *             raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd")
 | |
|  * 
 | |
|  *         if ((child.byteorder == c'>' and little_endian) or             # <<<<<<<<<<<<<<
 | |
|  *             (child.byteorder == c'<' and not little_endian)):
 | |
|  *             raise ValueError(u"Non-native byte order not supported")
 | |
|  */
 | |
|     __pyx_t_7 = (__pyx_v_child->byteorder == '>');
 | |
|     if (__pyx_t_7) {
 | |
|       __pyx_t_8 = __pyx_v_little_endian;
 | |
|     } else {
 | |
|       __pyx_t_8 = __pyx_t_7;
 | |
|     }
 | |
|     if (!__pyx_t_8) {
 | |
| 
 | |
|       /* "numpy.pxd":802
 | |
|  * 
 | |
|  *         if ((child.byteorder == c'>' and little_endian) or
 | |
|  *             (child.byteorder == c'<' and not little_endian)):             # <<<<<<<<<<<<<<
 | |
|  *             raise ValueError(u"Non-native byte order not supported")
 | |
|  *             # One could encode it in the format string and have Cython
 | |
|  */
 | |
|       __pyx_t_7 = (__pyx_v_child->byteorder == '<');
 | |
|       if (__pyx_t_7) {
 | |
|         __pyx_t_9 = (!__pyx_v_little_endian);
 | |
|         __pyx_t_10 = __pyx_t_9;
 | |
|       } else {
 | |
|         __pyx_t_10 = __pyx_t_7;
 | |
|       }
 | |
|       __pyx_t_7 = __pyx_t_10;
 | |
|     } else {
 | |
|       __pyx_t_7 = __pyx_t_8;
 | |
|     }
 | |
|     if (__pyx_t_7) {
 | |
| 
 | |
|       /* "numpy.pxd":803
 | |
|  *         if ((child.byteorder == c'>' and little_endian) or
 | |
|  *             (child.byteorder == c'<' and not little_endian)):
 | |
|  *             raise ValueError(u"Non-native byte order not supported")             # <<<<<<<<<<<<<<
 | |
|  *             # One could encode it in the format string and have Cython
 | |
|  *             # complain instead, BUT: < and > in format strings also imply
 | |
|  */
 | |
|       __pyx_t_5 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_k_tuple_15), NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 803; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __Pyx_Raise(__pyx_t_5, 0, 0, 0);
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       {__pyx_filename = __pyx_f[1]; __pyx_lineno = 803; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       goto __pyx_L8;
 | |
|     }
 | |
|     __pyx_L8:;
 | |
| 
 | |
|     /* "numpy.pxd":813
 | |
|  * 
 | |
|  *         # Output padding bytes
 | |
|  *         while offset[0] < new_offset:             # <<<<<<<<<<<<<<
 | |
|  *             f[0] = 120 # "x"; pad byte
 | |
|  *             f += 1
 | |
|  */
 | |
|     while (1) {
 | |
|       __pyx_t_5 = PyInt_FromLong((__pyx_v_offset[0])); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 813; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_t_5, __pyx_v_new_offset, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 813; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 813; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (!__pyx_t_7) break;
 | |
| 
 | |
|       /* "numpy.pxd":814
 | |
|  *         # Output padding bytes
 | |
|  *         while offset[0] < new_offset:
 | |
|  *             f[0] = 120 # "x"; pad byte             # <<<<<<<<<<<<<<
 | |
|  *             f += 1
 | |
|  *             offset[0] += 1
 | |
|  */
 | |
|       (__pyx_v_f[0]) = 120;
 | |
| 
 | |
|       /* "numpy.pxd":815
 | |
|  *         while offset[0] < new_offset:
 | |
|  *             f[0] = 120 # "x"; pad byte
 | |
|  *             f += 1             # <<<<<<<<<<<<<<
 | |
|  *             offset[0] += 1
 | |
|  * 
 | |
|  */
 | |
|       __pyx_v_f = (__pyx_v_f + 1);
 | |
| 
 | |
|       /* "numpy.pxd":816
 | |
|  *             f[0] = 120 # "x"; pad byte
 | |
|  *             f += 1
 | |
|  *             offset[0] += 1             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         offset[0] += child.itemsize
 | |
|  */
 | |
|       __pyx_t_11 = 0;
 | |
|       (__pyx_v_offset[__pyx_t_11]) = ((__pyx_v_offset[__pyx_t_11]) + 1);
 | |
|     }
 | |
| 
 | |
|     /* "numpy.pxd":818
 | |
|  *             offset[0] += 1
 | |
|  * 
 | |
|  *         offset[0] += child.itemsize             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         if not PyDataType_HASFIELDS(child):
 | |
|  */
 | |
|     __pyx_t_11 = 0;
 | |
|     (__pyx_v_offset[__pyx_t_11]) = ((__pyx_v_offset[__pyx_t_11]) + __pyx_v_child->elsize);
 | |
| 
 | |
|     /* "numpy.pxd":820
 | |
|  *         offset[0] += child.itemsize
 | |
|  * 
 | |
|  *         if not PyDataType_HASFIELDS(child):             # <<<<<<<<<<<<<<
 | |
|  *             t = child.type_num
 | |
|  *             if end - f < 5:
 | |
|  */
 | |
|     __pyx_t_7 = (!PyDataType_HASFIELDS(__pyx_v_child));
 | |
|     if (__pyx_t_7) {
 | |
| 
 | |
|       /* "numpy.pxd":821
 | |
|  * 
 | |
|  *         if not PyDataType_HASFIELDS(child):
 | |
|  *             t = child.type_num             # <<<<<<<<<<<<<<
 | |
|  *             if end - f < 5:
 | |
|  *                 raise RuntimeError(u"Format string allocated too short.")
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(__pyx_v_child->type_num); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 821; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __Pyx_XDECREF(__pyx_v_t);
 | |
|       __pyx_v_t = __pyx_t_3;
 | |
|       __pyx_t_3 = 0;
 | |
| 
 | |
|       /* "numpy.pxd":822
 | |
|  *         if not PyDataType_HASFIELDS(child):
 | |
|  *             t = child.type_num
 | |
|  *             if end - f < 5:             # <<<<<<<<<<<<<<
 | |
|  *                 raise RuntimeError(u"Format string allocated too short.")
 | |
|  * 
 | |
|  */
 | |
|       __pyx_t_7 = ((__pyx_v_end - __pyx_v_f) < 5);
 | |
|       if (__pyx_t_7) {
 | |
| 
 | |
|         /* "numpy.pxd":823
 | |
|  *             t = child.type_num
 | |
|  *             if end - f < 5:
 | |
|  *                 raise RuntimeError(u"Format string allocated too short.")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             # Until ticket #99 is fixed, use integers to avoid warnings
 | |
|  */
 | |
|         __pyx_t_3 = PyObject_Call(__pyx_builtin_RuntimeError, ((PyObject *)__pyx_k_tuple_17), NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 823; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_3);
 | |
|         __Pyx_Raise(__pyx_t_3, 0, 0, 0);
 | |
|         __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|         {__pyx_filename = __pyx_f[1]; __pyx_lineno = 823; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         goto __pyx_L12;
 | |
|       }
 | |
|       __pyx_L12:;
 | |
| 
 | |
|       /* "numpy.pxd":826
 | |
|  * 
 | |
|  *             # Until ticket #99 is fixed, use integers to avoid warnings
 | |
|  *             if   t == NPY_BYTE:        f[0] =  98 #"b"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_UBYTE:       f[0] =  66 #"B"
 | |
|  *             elif t == NPY_SHORT:       f[0] = 104 #"h"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_BYTE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 826; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 826; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 826; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 98;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":827
 | |
|  *             # Until ticket #99 is fixed, use integers to avoid warnings
 | |
|  *             if   t == NPY_BYTE:        f[0] =  98 #"b"
 | |
|  *             elif t == NPY_UBYTE:       f[0] =  66 #"B"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_SHORT:       f[0] = 104 #"h"
 | |
|  *             elif t == NPY_USHORT:      f[0] =  72 #"H"
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_UBYTE); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 827; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 827; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 827; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 66;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":828
 | |
|  *             if   t == NPY_BYTE:        f[0] =  98 #"b"
 | |
|  *             elif t == NPY_UBYTE:       f[0] =  66 #"B"
 | |
|  *             elif t == NPY_SHORT:       f[0] = 104 #"h"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_USHORT:      f[0] =  72 #"H"
 | |
|  *             elif t == NPY_INT:         f[0] = 105 #"i"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_SHORT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 828; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 828; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 828; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 104;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":829
 | |
|  *             elif t == NPY_UBYTE:       f[0] =  66 #"B"
 | |
|  *             elif t == NPY_SHORT:       f[0] = 104 #"h"
 | |
|  *             elif t == NPY_USHORT:      f[0] =  72 #"H"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_INT:         f[0] = 105 #"i"
 | |
|  *             elif t == NPY_UINT:        f[0] =  73 #"I"
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_USHORT); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 829; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 829; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 829; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 72;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":830
 | |
|  *             elif t == NPY_SHORT:       f[0] = 104 #"h"
 | |
|  *             elif t == NPY_USHORT:      f[0] =  72 #"H"
 | |
|  *             elif t == NPY_INT:         f[0] = 105 #"i"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_UINT:        f[0] =  73 #"I"
 | |
|  *             elif t == NPY_LONG:        f[0] = 108 #"l"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_INT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 830; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 830; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 830; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 105;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":831
 | |
|  *             elif t == NPY_USHORT:      f[0] =  72 #"H"
 | |
|  *             elif t == NPY_INT:         f[0] = 105 #"i"
 | |
|  *             elif t == NPY_UINT:        f[0] =  73 #"I"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_LONG:        f[0] = 108 #"l"
 | |
|  *             elif t == NPY_ULONG:       f[0] = 76  #"L"
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_UINT); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 831; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 831; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 831; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 73;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":832
 | |
|  *             elif t == NPY_INT:         f[0] = 105 #"i"
 | |
|  *             elif t == NPY_UINT:        f[0] =  73 #"I"
 | |
|  *             elif t == NPY_LONG:        f[0] = 108 #"l"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_ULONG:       f[0] = 76  #"L"
 | |
|  *             elif t == NPY_LONGLONG:    f[0] = 113 #"q"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_LONG); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 832; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 832; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 832; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 108;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":833
 | |
|  *             elif t == NPY_UINT:        f[0] =  73 #"I"
 | |
|  *             elif t == NPY_LONG:        f[0] = 108 #"l"
 | |
|  *             elif t == NPY_ULONG:       f[0] = 76  #"L"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_LONGLONG:    f[0] = 113 #"q"
 | |
|  *             elif t == NPY_ULONGLONG:   f[0] = 81  #"Q"
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_ULONG); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 833; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 833; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 833; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 76;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":834
 | |
|  *             elif t == NPY_LONG:        f[0] = 108 #"l"
 | |
|  *             elif t == NPY_ULONG:       f[0] = 76  #"L"
 | |
|  *             elif t == NPY_LONGLONG:    f[0] = 113 #"q"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_ULONGLONG:   f[0] = 81  #"Q"
 | |
|  *             elif t == NPY_FLOAT:       f[0] = 102 #"f"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_LONGLONG); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 834; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 834; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 834; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 113;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":835
 | |
|  *             elif t == NPY_ULONG:       f[0] = 76  #"L"
 | |
|  *             elif t == NPY_LONGLONG:    f[0] = 113 #"q"
 | |
|  *             elif t == NPY_ULONGLONG:   f[0] = 81  #"Q"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_FLOAT:       f[0] = 102 #"f"
 | |
|  *             elif t == NPY_DOUBLE:      f[0] = 100 #"d"
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_ULONGLONG); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 835; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 835; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 835; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 81;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":836
 | |
|  *             elif t == NPY_LONGLONG:    f[0] = 113 #"q"
 | |
|  *             elif t == NPY_ULONGLONG:   f[0] = 81  #"Q"
 | |
|  *             elif t == NPY_FLOAT:       f[0] = 102 #"f"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_DOUBLE:      f[0] = 100 #"d"
 | |
|  *             elif t == NPY_LONGDOUBLE:  f[0] = 103 #"g"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_FLOAT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 836; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 836; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 836; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 102;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":837
 | |
|  *             elif t == NPY_ULONGLONG:   f[0] = 81  #"Q"
 | |
|  *             elif t == NPY_FLOAT:       f[0] = 102 #"f"
 | |
|  *             elif t == NPY_DOUBLE:      f[0] = 100 #"d"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_LONGDOUBLE:  f[0] = 103 #"g"
 | |
|  *             elif t == NPY_CFLOAT:      f[0] = 90; f[1] = 102; f += 1 # Zf
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_DOUBLE); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 837; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 837; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 837; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 100;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":838
 | |
|  *             elif t == NPY_FLOAT:       f[0] = 102 #"f"
 | |
|  *             elif t == NPY_DOUBLE:      f[0] = 100 #"d"
 | |
|  *             elif t == NPY_LONGDOUBLE:  f[0] = 103 #"g"             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_CFLOAT:      f[0] = 90; f[1] = 102; f += 1 # Zf
 | |
|  *             elif t == NPY_CDOUBLE:     f[0] = 90; f[1] = 100; f += 1 # Zd
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_LONGDOUBLE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 838; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 838; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 838; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 103;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":839
 | |
|  *             elif t == NPY_DOUBLE:      f[0] = 100 #"d"
 | |
|  *             elif t == NPY_LONGDOUBLE:  f[0] = 103 #"g"
 | |
|  *             elif t == NPY_CFLOAT:      f[0] = 90; f[1] = 102; f += 1 # Zf             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_CDOUBLE:     f[0] = 90; f[1] = 100; f += 1 # Zd
 | |
|  *             elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_CFLOAT); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 839; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 839; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 839; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 90;
 | |
|         (__pyx_v_f[1]) = 102;
 | |
|         __pyx_v_f = (__pyx_v_f + 1);
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":840
 | |
|  *             elif t == NPY_LONGDOUBLE:  f[0] = 103 #"g"
 | |
|  *             elif t == NPY_CFLOAT:      f[0] = 90; f[1] = 102; f += 1 # Zf
 | |
|  *             elif t == NPY_CDOUBLE:     f[0] = 90; f[1] = 100; f += 1 # Zd             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg
 | |
|  *             elif t == NPY_OBJECT:      f[0] = 79 #"O"
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_CDOUBLE); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 840; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 840; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 840; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 90;
 | |
|         (__pyx_v_f[1]) = 100;
 | |
|         __pyx_v_f = (__pyx_v_f + 1);
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":841
 | |
|  *             elif t == NPY_CFLOAT:      f[0] = 90; f[1] = 102; f += 1 # Zf
 | |
|  *             elif t == NPY_CDOUBLE:     f[0] = 90; f[1] = 100; f += 1 # Zd
 | |
|  *             elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg             # <<<<<<<<<<<<<<
 | |
|  *             elif t == NPY_OBJECT:      f[0] = 79 #"O"
 | |
|  *             else:
 | |
|  */
 | |
|       __pyx_t_5 = PyInt_FromLong(NPY_CLONGDOUBLE); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 841; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_5);
 | |
|       __pyx_t_3 = PyObject_RichCompare(__pyx_v_t, __pyx_t_5, Py_EQ); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 841; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_3); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 841; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 90;
 | |
|         (__pyx_v_f[1]) = 103;
 | |
|         __pyx_v_f = (__pyx_v_f + 1);
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
| 
 | |
|       /* "numpy.pxd":842
 | |
|  *             elif t == NPY_CDOUBLE:     f[0] = 90; f[1] = 100; f += 1 # Zd
 | |
|  *             elif t == NPY_CLONGDOUBLE: f[0] = 90; f[1] = 103; f += 1 # Zg
 | |
|  *             elif t == NPY_OBJECT:      f[0] = 79 #"O"             # <<<<<<<<<<<<<<
 | |
|  *             else:
 | |
|  *                 raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
 | |
|  */
 | |
|       __pyx_t_3 = PyInt_FromLong(NPY_OBJECT); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 842; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_GOTREF(__pyx_t_3);
 | |
|       __pyx_t_5 = PyObject_RichCompare(__pyx_v_t, __pyx_t_3, Py_EQ); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 842; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
 | |
|       __pyx_t_7 = __Pyx_PyObject_IsTrue(__pyx_t_5); if (unlikely(__pyx_t_7 < 0)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 842; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|       if (__pyx_t_7) {
 | |
|         (__pyx_v_f[0]) = 79;
 | |
|         goto __pyx_L13;
 | |
|       }
 | |
|       /*else*/ {
 | |
| 
 | |
|         /* "numpy.pxd":844
 | |
|  *             elif t == NPY_OBJECT:      f[0] = 79 #"O"
 | |
|  *             else:
 | |
|  *                 raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)             # <<<<<<<<<<<<<<
 | |
|  *             f += 1
 | |
|  *         else:
 | |
|  */
 | |
|         __pyx_t_5 = PyNumber_Remainder(((PyObject *)__pyx_kp_u_12), __pyx_v_t); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(((PyObject *)__pyx_t_5));
 | |
|         __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_3);
 | |
|         PyTuple_SET_ITEM(__pyx_t_3, 0, ((PyObject *)__pyx_t_5));
 | |
|         __Pyx_GIVEREF(((PyObject *)__pyx_t_5));
 | |
|         __pyx_t_5 = 0;
 | |
|         __pyx_t_5 = PyObject_Call(__pyx_builtin_ValueError, ((PyObject *)__pyx_t_3), NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|         __Pyx_GOTREF(__pyx_t_5);
 | |
|         __Pyx_DECREF(((PyObject *)__pyx_t_3)); __pyx_t_3 = 0;
 | |
|         __Pyx_Raise(__pyx_t_5, 0, 0, 0);
 | |
|         __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
 | |
|         {__pyx_filename = __pyx_f[1]; __pyx_lineno = 844; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       }
 | |
|       __pyx_L13:;
 | |
| 
 | |
|       /* "numpy.pxd":845
 | |
|  *             else:
 | |
|  *                 raise ValueError(u"unknown dtype code in numpy.pxd (%d)" % t)
 | |
|  *             f += 1             # <<<<<<<<<<<<<<
 | |
|  *         else:
 | |
|  *             # Cython ignores struct boundary information ("T{...}"),
 | |
|  */
 | |
|       __pyx_v_f = (__pyx_v_f + 1);
 | |
|       goto __pyx_L11;
 | |
|     }
 | |
|     /*else*/ {
 | |
| 
 | |
|       /* "numpy.pxd":849
 | |
|  *             # Cython ignores struct boundary information ("T{...}"),
 | |
|  *             # so don't output it
 | |
|  *             f = _util_dtypestring(child, f, end, offset)             # <<<<<<<<<<<<<<
 | |
|  *     return f
 | |
|  * 
 | |
|  */
 | |
|       __pyx_t_12 = __pyx_f_5numpy__util_dtypestring(__pyx_v_child, __pyx_v_f, __pyx_v_end, __pyx_v_offset); if (unlikely(__pyx_t_12 == NULL)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 849; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|       __pyx_v_f = __pyx_t_12;
 | |
|     }
 | |
|     __pyx_L11:;
 | |
|   }
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
| 
 | |
|   /* "numpy.pxd":850
 | |
|  *             # so don't output it
 | |
|  *             f = _util_dtypestring(child, f, end, offset)
 | |
|  *     return f             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   __pyx_r = __pyx_v_f;
 | |
|   goto __pyx_L0;
 | |
| 
 | |
|   __pyx_r = 0;
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_3);
 | |
|   __Pyx_XDECREF(__pyx_t_4);
 | |
|   __Pyx_XDECREF(__pyx_t_5);
 | |
|   __Pyx_AddTraceback("numpy._util_dtypestring", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|   __pyx_r = NULL;
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XDECREF((PyObject *)__pyx_v_child);
 | |
|   __Pyx_XDECREF(__pyx_v_fields);
 | |
|   __Pyx_XDECREF(__pyx_v_childname);
 | |
|   __Pyx_XDECREF(__pyx_v_new_offset);
 | |
|   __Pyx_XDECREF(__pyx_v_t);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":965
 | |
|  * 
 | |
|  * 
 | |
|  * cdef inline void set_array_base(ndarray arr, object base):             # <<<<<<<<<<<<<<
 | |
|  *      cdef PyObject* baseptr
 | |
|  *      if base is None:
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE void __pyx_f_5numpy_set_array_base(PyArrayObject *__pyx_v_arr, PyObject *__pyx_v_base) {
 | |
|   PyObject *__pyx_v_baseptr;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   int __pyx_t_1;
 | |
|   __Pyx_RefNannySetupContext("set_array_base", 0);
 | |
| 
 | |
|   /* "numpy.pxd":967
 | |
|  * cdef inline void set_array_base(ndarray arr, object base):
 | |
|  *      cdef PyObject* baseptr
 | |
|  *      if base is None:             # <<<<<<<<<<<<<<
 | |
|  *          baseptr = NULL
 | |
|  *      else:
 | |
|  */
 | |
|   __pyx_t_1 = (__pyx_v_base == Py_None);
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":968
 | |
|  *      cdef PyObject* baseptr
 | |
|  *      if base is None:
 | |
|  *          baseptr = NULL             # <<<<<<<<<<<<<<
 | |
|  *      else:
 | |
|  *          Py_INCREF(base) # important to do this before decref below!
 | |
|  */
 | |
|     __pyx_v_baseptr = NULL;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "numpy.pxd":970
 | |
|  *          baseptr = NULL
 | |
|  *      else:
 | |
|  *          Py_INCREF(base) # important to do this before decref below!             # <<<<<<<<<<<<<<
 | |
|  *          baseptr = <PyObject*>base
 | |
|  *      Py_XDECREF(arr.base)
 | |
|  */
 | |
|     Py_INCREF(__pyx_v_base);
 | |
| 
 | |
|     /* "numpy.pxd":971
 | |
|  *      else:
 | |
|  *          Py_INCREF(base) # important to do this before decref below!
 | |
|  *          baseptr = <PyObject*>base             # <<<<<<<<<<<<<<
 | |
|  *      Py_XDECREF(arr.base)
 | |
|  *      arr.base = baseptr
 | |
|  */
 | |
|     __pyx_v_baseptr = ((PyObject *)__pyx_v_base);
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   /* "numpy.pxd":972
 | |
|  *          Py_INCREF(base) # important to do this before decref below!
 | |
|  *          baseptr = <PyObject*>base
 | |
|  *      Py_XDECREF(arr.base)             # <<<<<<<<<<<<<<
 | |
|  *      arr.base = baseptr
 | |
|  * 
 | |
|  */
 | |
|   Py_XDECREF(__pyx_v_arr->base);
 | |
| 
 | |
|   /* "numpy.pxd":973
 | |
|  *          baseptr = <PyObject*>base
 | |
|  *      Py_XDECREF(arr.base)
 | |
|  *      arr.base = baseptr             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * cdef inline object get_array_base(ndarray arr):
 | |
|  */
 | |
|   __pyx_v_arr->base = __pyx_v_baseptr;
 | |
| 
 | |
|   __Pyx_RefNannyFinishContext();
 | |
| }
 | |
| 
 | |
| /* "numpy.pxd":975
 | |
|  *      arr.base = baseptr
 | |
|  * 
 | |
|  * cdef inline object get_array_base(ndarray arr):             # <<<<<<<<<<<<<<
 | |
|  *     if arr.base is NULL:
 | |
|  *         return None
 | |
|  */
 | |
| 
 | |
| static CYTHON_INLINE PyObject *__pyx_f_5numpy_get_array_base(PyArrayObject *__pyx_v_arr) {
 | |
|   PyObject *__pyx_r = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   int __pyx_t_1;
 | |
|   __Pyx_RefNannySetupContext("get_array_base", 0);
 | |
| 
 | |
|   /* "numpy.pxd":976
 | |
|  * 
 | |
|  * cdef inline object get_array_base(ndarray arr):
 | |
|  *     if arr.base is NULL:             # <<<<<<<<<<<<<<
 | |
|  *         return None
 | |
|  *     else:
 | |
|  */
 | |
|   __pyx_t_1 = (__pyx_v_arr->base == NULL);
 | |
|   if (__pyx_t_1) {
 | |
| 
 | |
|     /* "numpy.pxd":977
 | |
|  * cdef inline object get_array_base(ndarray arr):
 | |
|  *     if arr.base is NULL:
 | |
|  *         return None             # <<<<<<<<<<<<<<
 | |
|  *     else:
 | |
|  *         return <object>arr.base
 | |
|  */
 | |
|     __Pyx_XDECREF(__pyx_r);
 | |
|     __Pyx_INCREF(Py_None);
 | |
|     __pyx_r = Py_None;
 | |
|     goto __pyx_L0;
 | |
|     goto __pyx_L3;
 | |
|   }
 | |
|   /*else*/ {
 | |
| 
 | |
|     /* "numpy.pxd":979
 | |
|  *         return None
 | |
|  *     else:
 | |
|  *         return <object>arr.base             # <<<<<<<<<<<<<<
 | |
|  */
 | |
|     __Pyx_XDECREF(__pyx_r);
 | |
|     __Pyx_INCREF(((PyObject *)__pyx_v_arr->base));
 | |
|     __pyx_r = ((PyObject *)__pyx_v_arr->base);
 | |
|     goto __pyx_L0;
 | |
|   }
 | |
|   __pyx_L3:;
 | |
| 
 | |
|   __pyx_r = Py_None; __Pyx_INCREF(Py_None);
 | |
|   __pyx_L0:;
 | |
|   __Pyx_XGIVEREF(__pyx_r);
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return __pyx_r;
 | |
| }
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction __pyx_vtable_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(PyTypeObject *t, CYTHON_UNUSED PyObject *a, CYTHON_UNUSED PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *p;
 | |
|   PyObject *o = (*t->tp_alloc)(t, 0);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *)o);
 | |
|   p->__pyx_vtab = __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static void __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction(PyObject *o) {
 | |
|   (*Py_TYPE(o)->tp_free)(o);
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_LossFunction[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_1loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12LossFunction_3dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(__pyx_doc_7sklearn_12linear_model_8sgd_fast_12LossFunction_2dloss)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_LossFunction = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_LossFunction = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_LossFunction = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_LossFunction = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_LossFunction = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.LossFunction"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_LossFunction, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_LossFunction, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_LossFunction, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_LossFunction, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Base class for convex loss functions"), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   0, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Regression __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Regression(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression *)o);
 | |
|   p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_Regression[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_1loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_10Regression_3dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_Regression = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_Regression = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_Regression = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_Regression = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_Regression = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.Regression"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Regression), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_Regression, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_Regression, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_Regression, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_Regression, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Base class for loss functions for regression"), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_Regression, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   0, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Regression, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Classification __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Classification(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification *)o);
 | |
|   p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_Classification[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_1loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_14Classification_3dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_Classification = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_Classification = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_Classification = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_Classification = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_Classification = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.Classification"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Classification), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_Classification, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_Classification, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_Classification, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_Classification, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Base class for loss functions for classification"), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_Classification, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   0, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Classification, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_ModifiedHuber __pyx_vtable_7sklearn_12linear_model_8sgd_fast_ModifiedHuber;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_ModifiedHuber(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_ModifiedHuber;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_ModifiedHuber[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_1loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_3dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_5__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_ModifiedHuber = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_ModifiedHuber = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_ModifiedHuber = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_ModifiedHuber = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_ModifiedHuber = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.ModifiedHuber"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_ModifiedHuber), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_ModifiedHuber, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_ModifiedHuber, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_ModifiedHuber, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_ModifiedHuber, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Modified Huber loss for binary classification with y in {-1, 1}\n\n    This is equivalent to quadratically smoothed SVM with gamma = 2.\n\n    See T. Zhang 'Solving Large Scale Linear Prediction Problems Using\n    Stochastic Gradient Descent', ICML'04.\n    "), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_ModifiedHuber, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   0, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_ModifiedHuber, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Hinge __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Hinge;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Hinge(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Hinge;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_Hinge[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_3loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_5dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_7__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_Hinge = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_Hinge = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_Hinge = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_Hinge = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_Hinge = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.Hinge"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Hinge), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_Hinge, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_Hinge, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_Hinge, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_Hinge, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Hinge loss for binary classification tasks with y in {-1,1}\n\n    Parameters\n    ----------\n\n    threshold : float > 0.0\n        Margin threshold. When threshold=1.0, one gets the loss used by SVM.\n        When threshold=0.0, one gets the loss used by the Perceptron.\n    "), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_Hinge, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   __pyx_pw_7sklearn_12linear_model_8sgd_fast_5Hinge_1__init__, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Hinge, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredHinge __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredHinge;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_SquaredHinge(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge *)o);
 | |
|   p->__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredHinge;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_SquaredHinge[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_3loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_5dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_7__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_SquaredHinge = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_SquaredHinge = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_SquaredHinge = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_SquaredHinge = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredHinge = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.SquaredHinge"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredHinge), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_SquaredHinge, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_SquaredHinge, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_SquaredHinge, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_SquaredHinge, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Squared Hinge loss for binary classification tasks with y in {-1,1}\n\n    Parameters\n    ----------\n\n    threshold : float > 0.0\n        Margin threshold. When threshold=1.0, one gets the loss used by\n        (quadratically penalized) SVM.\n    "), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_SquaredHinge, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   __pyx_pw_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_1__init__, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_SquaredHinge, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Log __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Log;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Log(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Log;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_Log[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_1loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_3dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_3Log_5__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_Log = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_Log = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_Log = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_Log = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_Log = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.Log"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Log), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_Log, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_Log, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_Log, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_Log, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Logistic regression loss for binary classification with y in {-1, 1}"), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_Log, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   0, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Log, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredLoss __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredLoss;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_SquaredLoss(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredLoss;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_SquaredLoss[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_1loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_3dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_5__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_SquaredLoss = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_SquaredLoss = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_SquaredLoss = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_SquaredLoss = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredLoss = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.SquaredLoss"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredLoss), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_SquaredLoss, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_SquaredLoss, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_SquaredLoss, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_SquaredLoss, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Squared loss traditional used in linear regression."), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_SquaredLoss, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   0, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_SquaredLoss, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_Huber __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Huber;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Huber(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Huber;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_Huber[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_3loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_5dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_7__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_Huber = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_Huber = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_Huber = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_Huber = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_Huber = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.Huber"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_Huber), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_Huber, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_Huber, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_Huber, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_Huber, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Huber regression loss\n\n    Variant of the SquaredLoss that is robust to outliers (quadratic near zero,\n    linear in for large errors).\n\n    http://en.wikipedia.org/wiki/Huber_Loss_Function\n    "), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_Huber, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   __pyx_pw_7sklearn_12linear_model_8sgd_fast_5Huber_1__init__, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_Huber, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive __pyx_vtable_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_3loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_5dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_7__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_EpsilonInsensitive = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_EpsilonInsensitive = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_EpsilonInsensitive = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_EpsilonInsensitive = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.EpsilonInsensitive"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_EpsilonInsensitive, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_EpsilonInsensitive, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_EpsilonInsensitive, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_EpsilonInsensitive, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Epsilon-Insensitive loss (used by SVR).\n\n    loss = max(0, |y - p| - epsilon)\n    "), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   __pyx_pw_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_1__init__, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| static struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive;
 | |
| 
 | |
| static PyObject *__pyx_tp_new_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive(PyTypeObject *t, PyObject *a, PyObject *k) {
 | |
|   struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *p;
 | |
|   PyObject *o = __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_LossFunction(t, a, k);
 | |
|   if (!o) return 0;
 | |
|   p = ((struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive *)o);
 | |
|   p->__pyx_base.__pyx_base.__pyx_vtab = (struct __pyx_vtabstruct_7sklearn_12linear_model_8sgd_fast_LossFunction*)__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static PyMethodDef __pyx_methods_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive[] = {
 | |
|   {__Pyx_NAMESTR("loss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_3loss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("dloss"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_5dloss, METH_VARARGS|METH_KEYWORDS, __Pyx_DOCSTR(0)},
 | |
|   {__Pyx_NAMESTR("__reduce__"), (PyCFunction)__pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_7__reduce__, METH_NOARGS, __Pyx_DOCSTR(0)},
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| static PyNumberMethods __pyx_tp_as_number_SquaredEpsilonInsensitive = {
 | |
|   0, /*nb_add*/
 | |
|   0, /*nb_subtract*/
 | |
|   0, /*nb_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_divide*/
 | |
|   #endif
 | |
|   0, /*nb_remainder*/
 | |
|   0, /*nb_divmod*/
 | |
|   0, /*nb_power*/
 | |
|   0, /*nb_negative*/
 | |
|   0, /*nb_positive*/
 | |
|   0, /*nb_absolute*/
 | |
|   0, /*nb_nonzero*/
 | |
|   0, /*nb_invert*/
 | |
|   0, /*nb_lshift*/
 | |
|   0, /*nb_rshift*/
 | |
|   0, /*nb_and*/
 | |
|   0, /*nb_xor*/
 | |
|   0, /*nb_or*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_coerce*/
 | |
|   #endif
 | |
|   0, /*nb_int*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_long*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*nb_float*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_oct*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_hex*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_add*/
 | |
|   0, /*nb_inplace_subtract*/
 | |
|   0, /*nb_inplace_multiply*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*nb_inplace_divide*/
 | |
|   #endif
 | |
|   0, /*nb_inplace_remainder*/
 | |
|   0, /*nb_inplace_power*/
 | |
|   0, /*nb_inplace_lshift*/
 | |
|   0, /*nb_inplace_rshift*/
 | |
|   0, /*nb_inplace_and*/
 | |
|   0, /*nb_inplace_xor*/
 | |
|   0, /*nb_inplace_or*/
 | |
|   0, /*nb_floor_divide*/
 | |
|   0, /*nb_true_divide*/
 | |
|   0, /*nb_inplace_floor_divide*/
 | |
|   0, /*nb_inplace_true_divide*/
 | |
|   #if PY_VERSION_HEX >= 0x02050000
 | |
|   0, /*nb_index*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PySequenceMethods __pyx_tp_as_sequence_SquaredEpsilonInsensitive = {
 | |
|   0, /*sq_length*/
 | |
|   0, /*sq_concat*/
 | |
|   0, /*sq_repeat*/
 | |
|   0, /*sq_item*/
 | |
|   0, /*sq_slice*/
 | |
|   0, /*sq_ass_item*/
 | |
|   0, /*sq_ass_slice*/
 | |
|   0, /*sq_contains*/
 | |
|   0, /*sq_inplace_concat*/
 | |
|   0, /*sq_inplace_repeat*/
 | |
| };
 | |
| 
 | |
| static PyMappingMethods __pyx_tp_as_mapping_SquaredEpsilonInsensitive = {
 | |
|   0, /*mp_length*/
 | |
|   0, /*mp_subscript*/
 | |
|   0, /*mp_ass_subscript*/
 | |
| };
 | |
| 
 | |
| static PyBufferProcs __pyx_tp_as_buffer_SquaredEpsilonInsensitive = {
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getreadbuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getwritebuffer*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getsegcount*/
 | |
|   #endif
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*bf_getcharbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_getbuffer*/
 | |
|   #endif
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*bf_releasebuffer*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyTypeObject __pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive = {
 | |
|   PyVarObject_HEAD_INIT(0, 0)
 | |
|   __Pyx_NAMESTR("sklearn.linear_model.sgd_fast.SquaredEpsilonInsensitive"), /*tp_name*/
 | |
|   sizeof(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive), /*tp_basicsize*/
 | |
|   0, /*tp_itemsize*/
 | |
|   __pyx_tp_dealloc_7sklearn_12linear_model_8sgd_fast_LossFunction, /*tp_dealloc*/
 | |
|   0, /*tp_print*/
 | |
|   0, /*tp_getattr*/
 | |
|   0, /*tp_setattr*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   0, /*tp_compare*/
 | |
|   #else
 | |
|   0, /*reserved*/
 | |
|   #endif
 | |
|   0, /*tp_repr*/
 | |
|   &__pyx_tp_as_number_SquaredEpsilonInsensitive, /*tp_as_number*/
 | |
|   &__pyx_tp_as_sequence_SquaredEpsilonInsensitive, /*tp_as_sequence*/
 | |
|   &__pyx_tp_as_mapping_SquaredEpsilonInsensitive, /*tp_as_mapping*/
 | |
|   0, /*tp_hash*/
 | |
|   0, /*tp_call*/
 | |
|   0, /*tp_str*/
 | |
|   0, /*tp_getattro*/
 | |
|   0, /*tp_setattro*/
 | |
|   &__pyx_tp_as_buffer_SquaredEpsilonInsensitive, /*tp_as_buffer*/
 | |
|   Py_TPFLAGS_DEFAULT|Py_TPFLAGS_CHECKTYPES|Py_TPFLAGS_HAVE_NEWBUFFER|Py_TPFLAGS_BASETYPE, /*tp_flags*/
 | |
|   __Pyx_DOCSTR("Epsilon-Insensitive loss.\n\n    loss = max(0, |y - p| - epsilon)^2\n    "), /*tp_doc*/
 | |
|   0, /*tp_traverse*/
 | |
|   0, /*tp_clear*/
 | |
|   0, /*tp_richcompare*/
 | |
|   0, /*tp_weaklistoffset*/
 | |
|   0, /*tp_iter*/
 | |
|   0, /*tp_iternext*/
 | |
|   __pyx_methods_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive, /*tp_methods*/
 | |
|   0, /*tp_members*/
 | |
|   0, /*tp_getset*/
 | |
|   0, /*tp_base*/
 | |
|   0, /*tp_dict*/
 | |
|   0, /*tp_descr_get*/
 | |
|   0, /*tp_descr_set*/
 | |
|   0, /*tp_dictoffset*/
 | |
|   __pyx_pw_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_1__init__, /*tp_init*/
 | |
|   0, /*tp_alloc*/
 | |
|   __pyx_tp_new_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive, /*tp_new*/
 | |
|   0, /*tp_free*/
 | |
|   0, /*tp_is_gc*/
 | |
|   0, /*tp_bases*/
 | |
|   0, /*tp_mro*/
 | |
|   0, /*tp_cache*/
 | |
|   0, /*tp_subclasses*/
 | |
|   0, /*tp_weaklist*/
 | |
|   0, /*tp_del*/
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|   0, /*tp_version_tag*/
 | |
|   #endif
 | |
| };
 | |
| 
 | |
| static PyMethodDef __pyx_methods[] = {
 | |
|   {0, 0, 0, 0}
 | |
| };
 | |
| 
 | |
| #if PY_MAJOR_VERSION >= 3
 | |
| static struct PyModuleDef __pyx_moduledef = {
 | |
|     PyModuleDef_HEAD_INIT,
 | |
|     __Pyx_NAMESTR("sgd_fast"),
 | |
|     0, /* m_doc */
 | |
|     -1, /* m_size */
 | |
|     __pyx_methods /* m_methods */,
 | |
|     NULL, /* m_reload */
 | |
|     NULL, /* m_traverse */
 | |
|     NULL, /* m_clear */
 | |
|     NULL /* m_free */
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static __Pyx_StringTabEntry __pyx_string_tab[] = {
 | |
|   {&__pyx_kp_s_1, __pyx_k_1, sizeof(__pyx_k_1), 0, 0, 1, 0},
 | |
|   {&__pyx_kp_u_10, __pyx_k_10, sizeof(__pyx_k_10), 0, 1, 0, 0},
 | |
|   {&__pyx_kp_u_12, __pyx_k_12, sizeof(__pyx_k_12), 0, 1, 0, 0},
 | |
|   {&__pyx_kp_u_13, __pyx_k_13, sizeof(__pyx_k_13), 0, 1, 0, 0},
 | |
|   {&__pyx_kp_u_16, __pyx_k_16, sizeof(__pyx_k_16), 0, 1, 0, 0},
 | |
|   {&__pyx_kp_s_2, __pyx_k_2, sizeof(__pyx_k_2), 0, 0, 1, 0},
 | |
|   {&__pyx_kp_s_20, __pyx_k_20, sizeof(__pyx_k_20), 0, 0, 1, 0},
 | |
|   {&__pyx_n_s_21, __pyx_k_21, sizeof(__pyx_k_21), 0, 0, 1, 1},
 | |
|   {&__pyx_kp_s_3, __pyx_k_3, sizeof(__pyx_k_3), 0, 0, 1, 0},
 | |
|   {&__pyx_kp_s_4, __pyx_k_4, sizeof(__pyx_k_4), 0, 0, 1, 0},
 | |
|   {&__pyx_kp_u_6, __pyx_k_6, sizeof(__pyx_k_6), 0, 1, 0, 0},
 | |
|   {&__pyx_kp_u_8, __pyx_k_8, sizeof(__pyx_k_8), 0, 1, 0, 0},
 | |
|   {&__pyx_n_s__C, __pyx_k__C, sizeof(__pyx_k__C), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__NotImplementedError, __pyx_k__NotImplementedError, sizeof(__pyx_k__NotImplementedError), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__RuntimeError, __pyx_k__RuntimeError, sizeof(__pyx_k__RuntimeError), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__ValueError, __pyx_k__ValueError, sizeof(__pyx_k__ValueError), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s____main__, __pyx_k____main__, sizeof(__pyx_k____main__), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s____test__, __pyx_k____test__, sizeof(__pyx_k____test__), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__alpha, __pyx_k__alpha, sizeof(__pyx_k__alpha), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__any, __pyx_k__any, sizeof(__pyx_k__any), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__c, __pyx_k__c, sizeof(__pyx_k__c), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__class_weight, __pyx_k__class_weight, sizeof(__pyx_k__class_weight), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__count, __pyx_k__count, sizeof(__pyx_k__count), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__dataset, __pyx_k__dataset, sizeof(__pyx_k__dataset), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__dloss, __pyx_k__dloss, sizeof(__pyx_k__dloss), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__dtype, __pyx_k__dtype, sizeof(__pyx_k__dtype), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__epoch, __pyx_k__epoch, sizeof(__pyx_k__epoch), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__epsilon, __pyx_k__epsilon, sizeof(__pyx_k__epsilon), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__eta, __pyx_k__eta, sizeof(__pyx_k__eta), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__eta0, __pyx_k__eta0, sizeof(__pyx_k__eta0), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__fit_intercept, __pyx_k__fit_intercept, sizeof(__pyx_k__fit_intercept), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__float64, __pyx_k__float64, sizeof(__pyx_k__float64), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__i, __pyx_k__i, sizeof(__pyx_k__i), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__intercept, __pyx_k__intercept, sizeof(__pyx_k__intercept), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__intercept_decay, __pyx_k__intercept_decay, sizeof(__pyx_k__intercept_decay), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__is_hinge, __pyx_k__is_hinge, sizeof(__pyx_k__is_hinge), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__isinf, __pyx_k__isinf, sizeof(__pyx_k__isinf), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__isnan, __pyx_k__isnan, sizeof(__pyx_k__isnan), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__learning_rate, __pyx_k__learning_rate, sizeof(__pyx_k__learning_rate), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__loss, __pyx_k__loss, sizeof(__pyx_k__loss), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__n_features, __pyx_k__n_features, sizeof(__pyx_k__n_features), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__n_iter, __pyx_k__n_iter, sizeof(__pyx_k__n_iter), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__n_samples, __pyx_k__n_samples, sizeof(__pyx_k__n_samples), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__nonzero, __pyx_k__nonzero, sizeof(__pyx_k__nonzero), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__np, __pyx_k__np, sizeof(__pyx_k__np), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__numpy, __pyx_k__numpy, sizeof(__pyx_k__numpy), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__order, __pyx_k__order, sizeof(__pyx_k__order), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__p, __pyx_k__p, sizeof(__pyx_k__p), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__penalty_type, __pyx_k__penalty_type, sizeof(__pyx_k__penalty_type), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__plain_sgd, __pyx_k__plain_sgd, sizeof(__pyx_k__plain_sgd), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__power_t, __pyx_k__power_t, sizeof(__pyx_k__power_t), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__q, __pyx_k__q, sizeof(__pyx_k__q), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__q_data_ptr, __pyx_k__q_data_ptr, sizeof(__pyx_k__q_data_ptr), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__range, __pyx_k__range, sizeof(__pyx_k__range), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__rho, __pyx_k__rho, sizeof(__pyx_k__rho), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__sample_weight, __pyx_k__sample_weight, sizeof(__pyx_k__sample_weight), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__seed, __pyx_k__seed, sizeof(__pyx_k__seed), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__shape, __pyx_k__shape, sizeof(__pyx_k__shape), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__shuffle, __pyx_k__shuffle, sizeof(__pyx_k__shuffle), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__sumloss, __pyx_k__sumloss, sizeof(__pyx_k__sumloss), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__sys, __pyx_k__sys, sizeof(__pyx_k__sys), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__t, __pyx_k__t, sizeof(__pyx_k__t), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__t_start, __pyx_k__t_start, sizeof(__pyx_k__t_start), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__threshold, __pyx_k__threshold, sizeof(__pyx_k__threshold), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__time, __pyx_k__time, sizeof(__pyx_k__time), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__u, __pyx_k__u, sizeof(__pyx_k__u), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__update, __pyx_k__update, sizeof(__pyx_k__update), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__verbose, __pyx_k__verbose, sizeof(__pyx_k__verbose), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__w, __pyx_k__w, sizeof(__pyx_k__w), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__weight_neg, __pyx_k__weight_neg, sizeof(__pyx_k__weight_neg), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__weight_pos, __pyx_k__weight_pos, sizeof(__pyx_k__weight_pos), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__weights, __pyx_k__weights, sizeof(__pyx_k__weights), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__x_data_ptr, __pyx_k__x_data_ptr, sizeof(__pyx_k__x_data_ptr), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__x_ind_ptr, __pyx_k__x_ind_ptr, sizeof(__pyx_k__x_ind_ptr), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__xnnz, __pyx_k__xnnz, sizeof(__pyx_k__xnnz), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__y, __pyx_k__y, sizeof(__pyx_k__y), 0, 0, 1, 1},
 | |
|   {&__pyx_n_s__zeros, __pyx_k__zeros, sizeof(__pyx_k__zeros), 0, 0, 1, 1},
 | |
|   {0, 0, 0, 0, 0, 0, 0}
 | |
| };
 | |
| static int __Pyx_InitCachedBuiltins(void) {
 | |
|   __pyx_builtin_NotImplementedError = __Pyx_GetName(__pyx_b, __pyx_n_s__NotImplementedError); if (!__pyx_builtin_NotImplementedError) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 64; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_builtin_range = __Pyx_GetName(__pyx_b, __pyx_n_s__range); if (!__pyx_builtin_range) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 438; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_builtin_ValueError = __Pyx_GetName(__pyx_b, __pyx_n_s__ValueError); if (!__pyx_builtin_ValueError) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 508; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_builtin_RuntimeError = __Pyx_GetName(__pyx_b, __pyx_n_s__RuntimeError); if (!__pyx_builtin_RuntimeError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   return 0;
 | |
|   __pyx_L1_error:;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| static int __Pyx_InitCachedConstants(void) {
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   __Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0);
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":508
 | |
|  *         if np.any(np.isinf(weights)) or np.any(np.isnan(weights)) \
 | |
|  *            or np.isnan(intercept) or np.isinf(intercept):
 | |
|  *             raise ValueError("floating-point under-/overflow occured.")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *     w.reset_wscale()
 | |
|  */
 | |
|   __pyx_k_tuple_5 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 508; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_5);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_s_4));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_5, 0, ((PyObject *)__pyx_kp_s_4));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_s_4));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_5));
 | |
| 
 | |
|   /* "numpy.pxd":215
 | |
|  *             if ((flags & pybuf.PyBUF_C_CONTIGUOUS == pybuf.PyBUF_C_CONTIGUOUS)
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_C_CONTIGUOUS)):
 | |
|  *                 raise ValueError(u"ndarray is not C contiguous")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
 | |
|  */
 | |
|   __pyx_k_tuple_7 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_7)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 215; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_7);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_u_6));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_7, 0, ((PyObject *)__pyx_kp_u_6));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_u_6));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_7));
 | |
| 
 | |
|   /* "numpy.pxd":219
 | |
|  *             if ((flags & pybuf.PyBUF_F_CONTIGUOUS == pybuf.PyBUF_F_CONTIGUOUS)
 | |
|  *                 and not PyArray_CHKFLAGS(self, NPY_F_CONTIGUOUS)):
 | |
|  *                 raise ValueError(u"ndarray is not Fortran contiguous")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             info.buf = PyArray_DATA(self)
 | |
|  */
 | |
|   __pyx_k_tuple_9 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_9)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 219; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_9);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_u_8));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_9, 0, ((PyObject *)__pyx_kp_u_8));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_u_8));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_9));
 | |
| 
 | |
|   /* "numpy.pxd":257
 | |
|  *                 if ((descr.byteorder == c'>' and little_endian) or
 | |
|  *                     (descr.byteorder == c'<' and not little_endian)):
 | |
|  *                     raise ValueError(u"Non-native byte order not supported")             # <<<<<<<<<<<<<<
 | |
|  *                 if   t == NPY_BYTE:        f = "b"
 | |
|  *                 elif t == NPY_UBYTE:       f = "B"
 | |
|  */
 | |
|   __pyx_k_tuple_11 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_11)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 257; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_11);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_u_10));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_11, 0, ((PyObject *)__pyx_kp_u_10));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_u_10));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_11));
 | |
| 
 | |
|   /* "numpy.pxd":799
 | |
|  * 
 | |
|  *         if (end - f) - (new_offset - offset[0]) < 15:
 | |
|  *             raise RuntimeError(u"Format string allocated too short, see comment in numpy.pxd")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *         if ((child.byteorder == c'>' and little_endian) or
 | |
|  */
 | |
|   __pyx_k_tuple_14 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_14)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 799; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_14);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_u_13));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_14, 0, ((PyObject *)__pyx_kp_u_13));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_u_13));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_14));
 | |
| 
 | |
|   /* "numpy.pxd":803
 | |
|  *         if ((child.byteorder == c'>' and little_endian) or
 | |
|  *             (child.byteorder == c'<' and not little_endian)):
 | |
|  *             raise ValueError(u"Non-native byte order not supported")             # <<<<<<<<<<<<<<
 | |
|  *             # One could encode it in the format string and have Cython
 | |
|  *             # complain instead, BUT: < and > in format strings also imply
 | |
|  */
 | |
|   __pyx_k_tuple_15 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_15)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 803; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_15);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_u_10));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_15, 0, ((PyObject *)__pyx_kp_u_10));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_u_10));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_15));
 | |
| 
 | |
|   /* "numpy.pxd":823
 | |
|  *             t = child.type_num
 | |
|  *             if end - f < 5:
 | |
|  *                 raise RuntimeError(u"Format string allocated too short.")             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  *             # Until ticket #99 is fixed, use integers to avoid warnings
 | |
|  */
 | |
|   __pyx_k_tuple_17 = PyTuple_New(1); if (unlikely(!__pyx_k_tuple_17)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 823; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_17);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_kp_u_16));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_17, 0, ((PyObject *)__pyx_kp_u_16));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_kp_u_16));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_17));
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":327
 | |
|  * 
 | |
|  * 
 | |
|  * def plain_sgd(np.ndarray[DOUBLE, ndim=1, mode='c'] weights,             # <<<<<<<<<<<<<<
 | |
|  *               double intercept,
 | |
|  *               LossFunction loss,
 | |
|  */
 | |
|   __pyx_k_tuple_18 = PyTuple_New(41); if (unlikely(!__pyx_k_tuple_18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_k_tuple_18);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__weights));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 0, ((PyObject *)__pyx_n_s__weights));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__weights));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__intercept));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 1, ((PyObject *)__pyx_n_s__intercept));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__intercept));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__loss));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 2, ((PyObject *)__pyx_n_s__loss));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__loss));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__penalty_type));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 3, ((PyObject *)__pyx_n_s__penalty_type));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__penalty_type));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__alpha));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 4, ((PyObject *)__pyx_n_s__alpha));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__alpha));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__C));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 5, ((PyObject *)__pyx_n_s__C));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__C));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__rho));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 6, ((PyObject *)__pyx_n_s__rho));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__rho));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__dataset));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 7, ((PyObject *)__pyx_n_s__dataset));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__dataset));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__n_iter));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 8, ((PyObject *)__pyx_n_s__n_iter));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_iter));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__fit_intercept));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 9, ((PyObject *)__pyx_n_s__fit_intercept));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__fit_intercept));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__verbose));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 10, ((PyObject *)__pyx_n_s__verbose));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__verbose));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__shuffle));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 11, ((PyObject *)__pyx_n_s__shuffle));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__shuffle));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__seed));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 12, ((PyObject *)__pyx_n_s__seed));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__seed));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__weight_pos));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 13, ((PyObject *)__pyx_n_s__weight_pos));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__weight_pos));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__weight_neg));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 14, ((PyObject *)__pyx_n_s__weight_neg));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__weight_neg));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__learning_rate));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 15, ((PyObject *)__pyx_n_s__learning_rate));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__learning_rate));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__eta0));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 16, ((PyObject *)__pyx_n_s__eta0));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__eta0));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__power_t));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 17, ((PyObject *)__pyx_n_s__power_t));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__power_t));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__t));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 18, ((PyObject *)__pyx_n_s__t));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__t));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__intercept_decay));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 19, ((PyObject *)__pyx_n_s__intercept_decay));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__intercept_decay));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__n_samples));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 20, ((PyObject *)__pyx_n_s__n_samples));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_samples));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__n_features));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 21, ((PyObject *)__pyx_n_s__n_features));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__n_features));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__w));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 22, ((PyObject *)__pyx_n_s__w));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__w));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__x_data_ptr));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 23, ((PyObject *)__pyx_n_s__x_data_ptr));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__x_data_ptr));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__x_ind_ptr));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 24, ((PyObject *)__pyx_n_s__x_ind_ptr));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__x_ind_ptr));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__xnnz));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 25, ((PyObject *)__pyx_n_s__xnnz));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__xnnz));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__eta));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 26, ((PyObject *)__pyx_n_s__eta));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__eta));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__p));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 27, ((PyObject *)__pyx_n_s__p));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__p));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__update));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 28, ((PyObject *)__pyx_n_s__update));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__update));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__sumloss));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 29, ((PyObject *)__pyx_n_s__sumloss));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__sumloss));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__y));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 30, ((PyObject *)__pyx_n_s__y));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__y));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__sample_weight));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 31, ((PyObject *)__pyx_n_s__sample_weight));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__sample_weight));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__class_weight));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 32, ((PyObject *)__pyx_n_s__class_weight));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__class_weight));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__count));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 33, ((PyObject *)__pyx_n_s__count));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__count));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__epoch));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 34, ((PyObject *)__pyx_n_s__epoch));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__epoch));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__i));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 35, ((PyObject *)__pyx_n_s__i));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__i));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__is_hinge));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 36, ((PyObject *)__pyx_n_s__is_hinge));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__is_hinge));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__q));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 37, ((PyObject *)__pyx_n_s__q));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__q));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__q_data_ptr));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 38, ((PyObject *)__pyx_n_s__q_data_ptr));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__q_data_ptr));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__u));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 39, ((PyObject *)__pyx_n_s__u));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__u));
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__t_start));
 | |
|   PyTuple_SET_ITEM(__pyx_k_tuple_18, 40, ((PyObject *)__pyx_n_s__t_start));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__t_start));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_k_tuple_18));
 | |
|   __pyx_k_codeobj_19 = (PyObject*)__Pyx_PyCode_New(20, 0, 41, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_k_tuple_18, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_20, __pyx_n_s__plain_sgd, 327, __pyx_empty_bytes); if (unlikely(!__pyx_k_codeobj_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return 0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| static int __Pyx_InitGlobals(void) {
 | |
|   if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
 | |
|   __pyx_int_15 = PyInt_FromLong(15); if (unlikely(!__pyx_int_15)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
 | |
|   return 0;
 | |
|   __pyx_L1_error:;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| #if PY_MAJOR_VERSION < 3
 | |
| PyMODINIT_FUNC initsgd_fast(void); /*proto*/
 | |
| PyMODINIT_FUNC initsgd_fast(void)
 | |
| #else
 | |
| PyMODINIT_FUNC PyInit_sgd_fast(void); /*proto*/
 | |
| PyMODINIT_FUNC PyInit_sgd_fast(void)
 | |
| #endif
 | |
| {
 | |
|   PyObject *__pyx_t_1 = NULL;
 | |
|   PyObject *__pyx_t_2 = NULL;
 | |
|   __Pyx_RefNannyDeclarations
 | |
|   #if CYTHON_REFNANNY
 | |
|   __Pyx_RefNanny = __Pyx_RefNannyImportAPI("refnanny");
 | |
|   if (!__Pyx_RefNanny) {
 | |
|       PyErr_Clear();
 | |
|       __Pyx_RefNanny = __Pyx_RefNannyImportAPI("Cython.Runtime.refnanny");
 | |
|       if (!__Pyx_RefNanny)
 | |
|           Py_FatalError("failed to import 'refnanny' module");
 | |
|   }
 | |
|   #endif
 | |
|   __Pyx_RefNannySetupContext("PyMODINIT_FUNC PyInit_sgd_fast(void)", 0);
 | |
|   if ( __Pyx_check_binary_version() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_empty_tuple = PyTuple_New(0); if (unlikely(!__pyx_empty_tuple)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_empty_bytes = PyBytes_FromStringAndSize("", 0); if (unlikely(!__pyx_empty_bytes)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   #ifdef __Pyx_CyFunction_USED
 | |
|   if (__Pyx_CyFunction_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   #endif
 | |
|   #ifdef __Pyx_FusedFunction_USED
 | |
|   if (__pyx_FusedFunction_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   #endif
 | |
|   #ifdef __Pyx_Generator_USED
 | |
|   if (__pyx_Generator_init() < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   #endif
 | |
|   /*--- Library function declarations ---*/
 | |
|   /*--- Threads initialization code ---*/
 | |
|   #if defined(__PYX_FORCE_INIT_THREADS) && __PYX_FORCE_INIT_THREADS
 | |
|   #ifdef WITH_THREAD /* Python build with threading support? */
 | |
|   PyEval_InitThreads();
 | |
|   #endif
 | |
|   #endif
 | |
|   /*--- Module creation code ---*/
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   __pyx_m = Py_InitModule4(__Pyx_NAMESTR("sgd_fast"), __pyx_methods, 0, 0, PYTHON_API_VERSION); Py_XINCREF(__pyx_m);
 | |
|   #else
 | |
|   __pyx_m = PyModule_Create(&__pyx_moduledef);
 | |
|   #endif
 | |
|   if (unlikely(!__pyx_m)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   #if PY_MAJOR_VERSION >= 3
 | |
|   {
 | |
|     PyObject *modules = PyImport_GetModuleDict(); if (unlikely(!modules)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     if (!PyDict_GetItemString(modules, "sklearn.linear_model.sgd_fast")) {
 | |
|       if (unlikely(PyDict_SetItemString(modules, "sklearn.linear_model.sgd_fast", __pyx_m) < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|     }
 | |
|   }
 | |
|   #endif
 | |
|   __pyx_b = PyImport_AddModule(__Pyx_NAMESTR(__Pyx_BUILTIN_MODULE_NAME)); if (unlikely(!__pyx_b)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   #if CYTHON_COMPILING_IN_PYPY
 | |
|   Py_INCREF(__pyx_b);
 | |
|   #endif
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "__builtins__", __pyx_b) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
 | |
|   /*--- Initialize various global constants etc. ---*/
 | |
|   if (unlikely(__Pyx_InitGlobals() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__pyx_module_is_main_sklearn__linear_model__sgd_fast) {
 | |
|     if (__Pyx_SetAttrString(__pyx_m, "__name__", __pyx_n_s____main__) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
 | |
|   }
 | |
|   /*--- Builtin init code ---*/
 | |
|   if (unlikely(__Pyx_InitCachedBuiltins() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   /*--- Constants init code ---*/
 | |
|   if (unlikely(__Pyx_InitCachedConstants() < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   /*--- Global init code ---*/
 | |
|   /*--- Variable export code ---*/
 | |
|   /*--- Function export code ---*/
 | |
|   /*--- Type init code ---*/
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_LossFunction.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_12LossFunction_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_LossFunction.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_12LossFunction_dloss;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_LossFunction) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 46; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_LossFunction.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 46; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "LossFunction", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_LossFunction) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 46; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_LossFunction = &__pyx_type_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Regression.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Regression.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_10Regression_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Regression.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_10Regression_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_Regression.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_Regression) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_Regression.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "Regression", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_Regression) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Regression = &__pyx_type_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Classification.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Classification.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_14Classification_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Classification.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_14Classification_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_Classification.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_Classification) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_Classification.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "Classification", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_Classification) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Classification = &__pyx_type_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_ModifiedHuber = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_ModifiedHuber;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_ModifiedHuber.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_ModifiedHuber.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_ModifiedHuber.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_13ModifiedHuber_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_ModifiedHuber.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_ModifiedHuber) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_ModifiedHuber.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_ModifiedHuber) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "ModifiedHuber", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_ModifiedHuber) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_ModifiedHuber = &__pyx_type_7sklearn_12linear_model_8sgd_fast_ModifiedHuber;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Hinge = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_Hinge;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Hinge.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Hinge.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_5Hinge_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Hinge.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_5Hinge_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_Hinge.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_Hinge) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 134; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_Hinge.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Hinge) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 134; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "Hinge", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_Hinge) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 134; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Hinge = &__pyx_type_7sklearn_12linear_model_8sgd_fast_Hinge;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredHinge = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredHinge;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredHinge.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredHinge.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredHinge.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_12SquaredHinge_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredHinge.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_LossFunction;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredHinge) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 166; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredHinge.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredHinge) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 166; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "SquaredHinge", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredHinge) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 166; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredHinge = &__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredHinge;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Log = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_Log;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Log.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Log.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_3Log_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Log.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_3Log_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_Log.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Classification;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_Log) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 198; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_Log.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Log) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 198; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "Log", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_Log) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 198; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Log = &__pyx_type_7sklearn_12linear_model_8sgd_fast_Log;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredLoss = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredLoss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredLoss.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredLoss.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredLoss.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_11SquaredLoss_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredLoss.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredLoss) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 223; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredLoss.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredLoss) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 223; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "SquaredLoss", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredLoss) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 223; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredLoss = &__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredLoss;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Huber = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_Huber;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Huber.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Huber.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_5Huber_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_Huber.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_5Huber_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_Huber.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_Huber) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 235; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_Huber.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Huber) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 235; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "Huber", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_Huber) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 235; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Huber = &__pyx_type_7sklearn_12linear_model_8sgd_fast_Huber;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_18EpsilonInsensitive_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "EpsilonInsensitive", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 271; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive = &__pyx_type_7sklearn_12linear_model_8sgd_fast_EpsilonInsensitive;
 | |
|   __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive = &__pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive.__pyx_base = *__pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive.__pyx_base.__pyx_base.loss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_loss;
 | |
|   __pyx_vtable_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive.__pyx_base.__pyx_base.dloss = (double (*)(struct __pyx_obj_7sklearn_12linear_model_8sgd_fast_LossFunction *, double, double, int __pyx_skip_dispatch))__pyx_f_7sklearn_12linear_model_8sgd_fast_25SquaredEpsilonInsensitive_dloss;
 | |
|   __pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive.tp_base = __pyx_ptype_7sklearn_12linear_model_8sgd_fast_Regression;
 | |
|   if (PyType_Ready(&__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 298; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetVtable(__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive.tp_dict, __pyx_vtabptr_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 298; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   if (__Pyx_SetAttrString(__pyx_m, "SquaredEpsilonInsensitive", (PyObject *)&__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 298; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive = &__pyx_type_7sklearn_12linear_model_8sgd_fast_SquaredEpsilonInsensitive;
 | |
|   /*--- Type import code ---*/
 | |
|   __pyx_ptype_7cpython_4type_type = __Pyx_ImportType(__Pyx_BUILTIN_MODULE_NAME, "type", 
 | |
|   #if CYTHON_COMPILING_IN_PYPY
 | |
|   sizeof(PyTypeObject),
 | |
|   #else
 | |
|   sizeof(PyHeapTypeObject),
 | |
|   #endif
 | |
|   0); if (unlikely(!__pyx_ptype_7cpython_4type_type)) {__pyx_filename = __pyx_f[2]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_5numpy_dtype = __Pyx_ImportType("numpy", "dtype", sizeof(PyArray_Descr), 0); if (unlikely(!__pyx_ptype_5numpy_dtype)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 155; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_5numpy_flatiter = __Pyx_ImportType("numpy", "flatiter", sizeof(PyArrayIterObject), 0); if (unlikely(!__pyx_ptype_5numpy_flatiter)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 165; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_5numpy_broadcast = __Pyx_ImportType("numpy", "broadcast", sizeof(PyArrayMultiIterObject), 0); if (unlikely(!__pyx_ptype_5numpy_broadcast)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 169; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_5numpy_ndarray = __Pyx_ImportType("numpy", "ndarray", sizeof(PyArrayObject), 0); if (unlikely(!__pyx_ptype_5numpy_ndarray)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 178; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_5numpy_ufunc = __Pyx_ImportType("numpy", "ufunc", sizeof(PyUFuncObject), 0); if (unlikely(!__pyx_ptype_5numpy_ufunc)) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 861; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_5utils_13weight_vector_WeightVector = __Pyx_ImportType("sklearn.utils.weight_vector", "WeightVector", sizeof(struct __pyx_obj_7sklearn_5utils_13weight_vector_WeightVector), 1); if (unlikely(!__pyx_ptype_7sklearn_5utils_13weight_vector_WeightVector)) {__pyx_filename = __pyx_f[3]; __pyx_lineno = 14; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_vtabptr_7sklearn_5utils_13weight_vector_WeightVector = (struct __pyx_vtabstruct_7sklearn_5utils_13weight_vector_WeightVector*)__Pyx_GetVtable(__pyx_ptype_7sklearn_5utils_13weight_vector_WeightVector->tp_dict); if (unlikely(!__pyx_vtabptr_7sklearn_5utils_13weight_vector_WeightVector)) {__pyx_filename = __pyx_f[3]; __pyx_lineno = 14; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_5utils_11seq_dataset_SequentialDataset = __Pyx_ImportType("sklearn.utils.seq_dataset", "SequentialDataset", sizeof(struct __pyx_obj_7sklearn_5utils_11seq_dataset_SequentialDataset), 1); if (unlikely(!__pyx_ptype_7sklearn_5utils_11seq_dataset_SequentialDataset)) {__pyx_filename = __pyx_f[4]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_vtabptr_7sklearn_5utils_11seq_dataset_SequentialDataset = (struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_SequentialDataset*)__Pyx_GetVtable(__pyx_ptype_7sklearn_5utils_11seq_dataset_SequentialDataset->tp_dict); if (unlikely(!__pyx_vtabptr_7sklearn_5utils_11seq_dataset_SequentialDataset)) {__pyx_filename = __pyx_f[4]; __pyx_lineno = 9; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_5utils_11seq_dataset_ArrayDataset = __Pyx_ImportType("sklearn.utils.seq_dataset", "ArrayDataset", sizeof(struct __pyx_obj_7sklearn_5utils_11seq_dataset_ArrayDataset), 1); if (unlikely(!__pyx_ptype_7sklearn_5utils_11seq_dataset_ArrayDataset)) {__pyx_filename = __pyx_f[4]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_vtabptr_7sklearn_5utils_11seq_dataset_ArrayDataset = (struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_ArrayDataset*)__Pyx_GetVtable(__pyx_ptype_7sklearn_5utils_11seq_dataset_ArrayDataset->tp_dict); if (unlikely(!__pyx_vtabptr_7sklearn_5utils_11seq_dataset_ArrayDataset)) {__pyx_filename = __pyx_f[4]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_ptype_7sklearn_5utils_11seq_dataset_CSRDataset = __Pyx_ImportType("sklearn.utils.seq_dataset", "CSRDataset", sizeof(struct __pyx_obj_7sklearn_5utils_11seq_dataset_CSRDataset), 1); if (unlikely(!__pyx_ptype_7sklearn_5utils_11seq_dataset_CSRDataset)) {__pyx_filename = __pyx_f[4]; __pyx_lineno = 34; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __pyx_vtabptr_7sklearn_5utils_11seq_dataset_CSRDataset = (struct __pyx_vtabstruct_7sklearn_5utils_11seq_dataset_CSRDataset*)__Pyx_GetVtable(__pyx_ptype_7sklearn_5utils_11seq_dataset_CSRDataset->tp_dict); if (unlikely(!__pyx_vtabptr_7sklearn_5utils_11seq_dataset_CSRDataset)) {__pyx_filename = __pyx_f[4]; __pyx_lineno = 34; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   /*--- Variable import code ---*/
 | |
|   /*--- Function import code ---*/
 | |
|   /*--- Execution code ---*/
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":11
 | |
|  * 
 | |
|  * 
 | |
|  * import numpy as np             # <<<<<<<<<<<<<<
 | |
|  * import sys
 | |
|  * from time import time
 | |
|  */
 | |
|   __pyx_t_1 = __Pyx_Import(((PyObject *)__pyx_n_s__numpy), 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 11; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   if (PyObject_SetAttr(__pyx_m, __pyx_n_s__np, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 11; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":12
 | |
|  * 
 | |
|  * import numpy as np
 | |
|  * import sys             # <<<<<<<<<<<<<<
 | |
|  * from time import time
 | |
|  * 
 | |
|  */
 | |
|   __pyx_t_1 = __Pyx_Import(((PyObject *)__pyx_n_s__sys), 0, -1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 12; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   if (PyObject_SetAttr(__pyx_m, __pyx_n_s__sys, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 12; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":13
 | |
|  * import numpy as np
 | |
|  * import sys
 | |
|  * from time import time             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * from libc.math cimport exp, log, sqrt, pow, fabs
 | |
|  */
 | |
|   __pyx_t_1 = PyList_New(1); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 13; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   __Pyx_INCREF(((PyObject *)__pyx_n_s__time));
 | |
|   PyList_SET_ITEM(__pyx_t_1, 0, ((PyObject *)__pyx_n_s__time));
 | |
|   __Pyx_GIVEREF(((PyObject *)__pyx_n_s__time));
 | |
|   __pyx_t_2 = __Pyx_Import(((PyObject *)__pyx_n_s__time), ((PyObject *)__pyx_t_1), -1); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 13; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   __Pyx_DECREF(((PyObject *)__pyx_t_1)); __pyx_t_1 = 0;
 | |
|   __pyx_t_1 = PyObject_GetAttr(__pyx_t_2, __pyx_n_s__time);
 | |
|   if (__pyx_t_1 == NULL) {
 | |
|     if (PyErr_ExceptionMatches(PyExc_AttributeError)) __Pyx_RaiseImportError(__pyx_n_s__time);
 | |
|     if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 13; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   }
 | |
|   __Pyx_GOTREF(__pyx_t_1);
 | |
|   if (PyObject_SetAttr(__pyx_m, __pyx_n_s__time, __pyx_t_1) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 13; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0;
 | |
|   __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":22
 | |
|  * from sklearn.utils.seq_dataset cimport SequentialDataset
 | |
|  * 
 | |
|  * np.import_array()             # <<<<<<<<<<<<<<
 | |
|  * 
 | |
|  * 
 | |
|  */
 | |
|   import_array();
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":327
 | |
|  * 
 | |
|  * 
 | |
|  * def plain_sgd(np.ndarray[DOUBLE, ndim=1, mode='c'] weights,             # <<<<<<<<<<<<<<
 | |
|  *               double intercept,
 | |
|  *               LossFunction loss,
 | |
|  */
 | |
|   __pyx_t_2 = PyCFunction_NewEx(&__pyx_mdef_7sklearn_12linear_model_8sgd_fast_1plain_sgd, NULL, __pyx_n_s_21); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(__pyx_t_2);
 | |
|   if (PyObject_SetAttr(__pyx_m, __pyx_n_s__plain_sgd, __pyx_t_2) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 327; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0;
 | |
| 
 | |
|   /* "sklearn/linear_model/sgd_fast.pyx":1
 | |
|  * # encoding: utf-8             # <<<<<<<<<<<<<<
 | |
|  * # cython: cdivision=True
 | |
|  * # cython: boundscheck=False
 | |
|  */
 | |
|   __pyx_t_2 = PyDict_New(); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_GOTREF(((PyObject *)__pyx_t_2));
 | |
|   if (PyObject_SetAttr(__pyx_m, __pyx_n_s____test__, ((PyObject *)__pyx_t_2)) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
 | |
|   __Pyx_DECREF(((PyObject *)__pyx_t_2)); __pyx_t_2 = 0;
 | |
| 
 | |
|   /* "numpy.pxd":975
 | |
|  *      arr.base = baseptr
 | |
|  * 
 | |
|  * cdef inline object get_array_base(ndarray arr):             # <<<<<<<<<<<<<<
 | |
|  *     if arr.base is NULL:
 | |
|  *         return None
 | |
|  */
 | |
|   goto __pyx_L0;
 | |
|   __pyx_L1_error:;
 | |
|   __Pyx_XDECREF(__pyx_t_1);
 | |
|   __Pyx_XDECREF(__pyx_t_2);
 | |
|   if (__pyx_m) {
 | |
|     __Pyx_AddTraceback("init sklearn.linear_model.sgd_fast", __pyx_clineno, __pyx_lineno, __pyx_filename);
 | |
|     Py_DECREF(__pyx_m); __pyx_m = 0;
 | |
|   } else if (!PyErr_Occurred()) {
 | |
|     PyErr_SetString(PyExc_ImportError, "init sklearn.linear_model.sgd_fast");
 | |
|   }
 | |
|   __pyx_L0:;
 | |
|   __Pyx_RefNannyFinishContext();
 | |
|   #if PY_MAJOR_VERSION < 3
 | |
|   return;
 | |
|   #else
 | |
|   return __pyx_m;
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /* Runtime support code */
 | |
| #if CYTHON_REFNANNY
 | |
| static __Pyx_RefNannyAPIStruct *__Pyx_RefNannyImportAPI(const char *modname) {
 | |
|     PyObject *m = NULL, *p = NULL;
 | |
|     void *r = NULL;
 | |
|     m = PyImport_ImportModule((char *)modname);
 | |
|     if (!m) goto end;
 | |
|     p = PyObject_GetAttrString(m, (char *)"RefNannyAPI");
 | |
|     if (!p) goto end;
 | |
|     r = PyLong_AsVoidPtr(p);
 | |
| end:
 | |
|     Py_XDECREF(p);
 | |
|     Py_XDECREF(m);
 | |
|     return (__Pyx_RefNannyAPIStruct *)r;
 | |
| }
 | |
| #endif /* CYTHON_REFNANNY */
 | |
| 
 | |
| static PyObject *__Pyx_GetName(PyObject *dict, PyObject *name) {
 | |
|     PyObject *result;
 | |
|     result = PyObject_GetAttr(dict, name);
 | |
|     if (!result) {
 | |
|         if (dict != __pyx_b) {
 | |
|             PyErr_Clear();
 | |
|             result = PyObject_GetAttr(__pyx_b, name);
 | |
|         }
 | |
|         if (!result) {
 | |
|             PyErr_SetObject(PyExc_NameError, name);
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_ErrRestore(PyObject *type, PyObject *value, PyObject *tb) {
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     PyObject *tmp_type, *tmp_value, *tmp_tb;
 | |
|     PyThreadState *tstate = PyThreadState_GET();
 | |
|     tmp_type = tstate->curexc_type;
 | |
|     tmp_value = tstate->curexc_value;
 | |
|     tmp_tb = tstate->curexc_traceback;
 | |
|     tstate->curexc_type = type;
 | |
|     tstate->curexc_value = value;
 | |
|     tstate->curexc_traceback = tb;
 | |
|     Py_XDECREF(tmp_type);
 | |
|     Py_XDECREF(tmp_value);
 | |
|     Py_XDECREF(tmp_tb);
 | |
| #else
 | |
|     PyErr_Restore(type, value, tb);
 | |
| #endif
 | |
| }
 | |
| static CYTHON_INLINE void __Pyx_ErrFetch(PyObject **type, PyObject **value, PyObject **tb) {
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     PyThreadState *tstate = PyThreadState_GET();
 | |
|     *type = tstate->curexc_type;
 | |
|     *value = tstate->curexc_value;
 | |
|     *tb = tstate->curexc_traceback;
 | |
|     tstate->curexc_type = 0;
 | |
|     tstate->curexc_value = 0;
 | |
|     tstate->curexc_traceback = 0;
 | |
| #else
 | |
|     PyErr_Fetch(type, value, tb);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if PY_MAJOR_VERSION < 3
 | |
| static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb,
 | |
|                         CYTHON_UNUSED PyObject *cause) {
 | |
|     Py_XINCREF(type);
 | |
|     if (!value || value == Py_None)
 | |
|         value = NULL;
 | |
|     else
 | |
|         Py_INCREF(value);
 | |
|     if (!tb || tb == Py_None)
 | |
|         tb = NULL;
 | |
|     else {
 | |
|         Py_INCREF(tb);
 | |
|         if (!PyTraceBack_Check(tb)) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                 "raise: arg 3 must be a traceback or None");
 | |
|             goto raise_error;
 | |
|         }
 | |
|     }
 | |
|     #if PY_VERSION_HEX < 0x02050000
 | |
|     if (PyClass_Check(type)) {
 | |
|     #else
 | |
|     if (PyType_Check(type)) {
 | |
|     #endif
 | |
| #if CYTHON_COMPILING_IN_PYPY
 | |
|         if (!value) {
 | |
|             Py_INCREF(Py_None);
 | |
|             value = Py_None;
 | |
|         }
 | |
| #endif
 | |
|         PyErr_NormalizeException(&type, &value, &tb);
 | |
|     } else {
 | |
|         if (value) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                 "instance exception may not have a separate value");
 | |
|             goto raise_error;
 | |
|         }
 | |
|         value = type;
 | |
|         #if PY_VERSION_HEX < 0x02050000
 | |
|             if (PyInstance_Check(type)) {
 | |
|                 type = (PyObject*) ((PyInstanceObject*)type)->in_class;
 | |
|                 Py_INCREF(type);
 | |
|             }
 | |
|             else {
 | |
|                 type = 0;
 | |
|                 PyErr_SetString(PyExc_TypeError,
 | |
|                     "raise: exception must be an old-style class or instance");
 | |
|                 goto raise_error;
 | |
|             }
 | |
|         #else
 | |
|             type = (PyObject*) Py_TYPE(type);
 | |
|             Py_INCREF(type);
 | |
|             if (!PyType_IsSubtype((PyTypeObject *)type, (PyTypeObject *)PyExc_BaseException)) {
 | |
|                 PyErr_SetString(PyExc_TypeError,
 | |
|                     "raise: exception class must be a subclass of BaseException");
 | |
|                 goto raise_error;
 | |
|             }
 | |
|         #endif
 | |
|     }
 | |
|     __Pyx_ErrRestore(type, value, tb);
 | |
|     return;
 | |
| raise_error:
 | |
|     Py_XDECREF(value);
 | |
|     Py_XDECREF(type);
 | |
|     Py_XDECREF(tb);
 | |
|     return;
 | |
| }
 | |
| #else /* Python 3+ */
 | |
| static void __Pyx_Raise(PyObject *type, PyObject *value, PyObject *tb, PyObject *cause) {
 | |
|     PyObject* owned_instance = NULL;
 | |
|     if (tb == Py_None) {
 | |
|         tb = 0;
 | |
|     } else if (tb && !PyTraceBack_Check(tb)) {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|             "raise: arg 3 must be a traceback or None");
 | |
|         goto bad;
 | |
|     }
 | |
|     if (value == Py_None)
 | |
|         value = 0;
 | |
|     if (PyExceptionInstance_Check(type)) {
 | |
|         if (value) {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                 "instance exception may not have a separate value");
 | |
|             goto bad;
 | |
|         }
 | |
|         value = type;
 | |
|         type = (PyObject*) Py_TYPE(value);
 | |
|     } else if (PyExceptionClass_Check(type)) {
 | |
|         PyObject *args;
 | |
|         if (!value)
 | |
|             args = PyTuple_New(0);
 | |
|         else if (PyTuple_Check(value)) {
 | |
|             Py_INCREF(value);
 | |
|             args = value;
 | |
|         }
 | |
|         else
 | |
|             args = PyTuple_Pack(1, value);
 | |
|         if (!args)
 | |
|             goto bad;
 | |
|         owned_instance = PyEval_CallObject(type, args);
 | |
|         Py_DECREF(args);
 | |
|         if (!owned_instance)
 | |
|             goto bad;
 | |
|         value = owned_instance;
 | |
|         if (!PyExceptionInstance_Check(value)) {
 | |
|             PyErr_Format(PyExc_TypeError,
 | |
|                          "calling %R should have returned an instance of "
 | |
|                          "BaseException, not %R",
 | |
|                          type, Py_TYPE(value));
 | |
|             goto bad;
 | |
|         }
 | |
|     } else {
 | |
|         PyErr_SetString(PyExc_TypeError,
 | |
|             "raise: exception class must be a subclass of BaseException");
 | |
|         goto bad;
 | |
|     }
 | |
|     if (cause && cause != Py_None) {
 | |
|         PyObject *fixed_cause;
 | |
|         if (PyExceptionClass_Check(cause)) {
 | |
|             fixed_cause = PyObject_CallObject(cause, NULL);
 | |
|             if (fixed_cause == NULL)
 | |
|                 goto bad;
 | |
|         }
 | |
|         else if (PyExceptionInstance_Check(cause)) {
 | |
|             fixed_cause = cause;
 | |
|             Py_INCREF(fixed_cause);
 | |
|         }
 | |
|         else {
 | |
|             PyErr_SetString(PyExc_TypeError,
 | |
|                             "exception causes must derive from "
 | |
|                             "BaseException");
 | |
|             goto bad;
 | |
|         }
 | |
|         PyException_SetCause(value, fixed_cause);
 | |
|     }
 | |
|     PyErr_SetObject(type, value);
 | |
|     if (tb) {
 | |
|         PyThreadState *tstate = PyThreadState_GET();
 | |
|         PyObject* tmp_tb = tstate->curexc_traceback;
 | |
|         if (tb != tmp_tb) {
 | |
|             Py_INCREF(tb);
 | |
|             tstate->curexc_traceback = tb;
 | |
|             Py_XDECREF(tmp_tb);
 | |
|         }
 | |
|     }
 | |
| bad:
 | |
|     Py_XDECREF(owned_instance);
 | |
|     return;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __Pyx_RaiseArgtupleInvalid(
 | |
|     const char* func_name,
 | |
|     int exact,
 | |
|     Py_ssize_t num_min,
 | |
|     Py_ssize_t num_max,
 | |
|     Py_ssize_t num_found)
 | |
| {
 | |
|     Py_ssize_t num_expected;
 | |
|     const char *more_or_less;
 | |
|     if (num_found < num_min) {
 | |
|         num_expected = num_min;
 | |
|         more_or_less = "at least";
 | |
|     } else {
 | |
|         num_expected = num_max;
 | |
|         more_or_less = "at most";
 | |
|     }
 | |
|     if (exact) {
 | |
|         more_or_less = "exactly";
 | |
|     }
 | |
|     PyErr_Format(PyExc_TypeError,
 | |
|                  "%s() takes %s %" CYTHON_FORMAT_SSIZE_T "d positional argument%s (%" CYTHON_FORMAT_SSIZE_T "d given)",
 | |
|                  func_name, more_or_less, num_expected,
 | |
|                  (num_expected == 1) ? "" : "s", num_found);
 | |
| }
 | |
| 
 | |
| static void __Pyx_RaiseDoubleKeywordsError(
 | |
|     const char* func_name,
 | |
|     PyObject* kw_name)
 | |
| {
 | |
|     PyErr_Format(PyExc_TypeError,
 | |
|         #if PY_MAJOR_VERSION >= 3
 | |
|         "%s() got multiple values for keyword argument '%U'", func_name, kw_name);
 | |
|         #else
 | |
|         "%s() got multiple values for keyword argument '%s'", func_name,
 | |
|         PyString_AsString(kw_name));
 | |
|         #endif
 | |
| }
 | |
| 
 | |
| static int __Pyx_ParseOptionalKeywords(
 | |
|     PyObject *kwds,
 | |
|     PyObject **argnames[],
 | |
|     PyObject *kwds2,
 | |
|     PyObject *values[],
 | |
|     Py_ssize_t num_pos_args,
 | |
|     const char* function_name)
 | |
| {
 | |
|     PyObject *key = 0, *value = 0;
 | |
|     Py_ssize_t pos = 0;
 | |
|     PyObject*** name;
 | |
|     PyObject*** first_kw_arg = argnames + num_pos_args;
 | |
|     while (PyDict_Next(kwds, &pos, &key, &value)) {
 | |
|         name = first_kw_arg;
 | |
|         while (*name && (**name != key)) name++;
 | |
|         if (*name) {
 | |
|             values[name-argnames] = value;
 | |
|             continue;
 | |
|         }
 | |
|         name = first_kw_arg;
 | |
|         #if PY_MAJOR_VERSION < 3
 | |
|         if (likely(PyString_CheckExact(key)) || likely(PyString_Check(key))) {
 | |
|             while (*name) {
 | |
|                 if ((CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**name) == PyString_GET_SIZE(key))
 | |
|                         && _PyString_Eq(**name, key)) {
 | |
|                     values[name-argnames] = value;
 | |
|                     break;
 | |
|                 }
 | |
|                 name++;
 | |
|             }
 | |
|             if (*name) continue;
 | |
|             else {
 | |
|                 PyObject*** argname = argnames;
 | |
|                 while (argname != first_kw_arg) {
 | |
|                     if ((**argname == key) || (
 | |
|                             (CYTHON_COMPILING_IN_PYPY || PyString_GET_SIZE(**argname) == PyString_GET_SIZE(key))
 | |
|                              && _PyString_Eq(**argname, key))) {
 | |
|                         goto arg_passed_twice;
 | |
|                     }
 | |
|                     argname++;
 | |
|                 }
 | |
|             }
 | |
|         } else
 | |
|         #endif
 | |
|         if (likely(PyUnicode_Check(key))) {
 | |
|             while (*name) {
 | |
|                 int cmp = (**name == key) ? 0 :
 | |
|                 #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3
 | |
|                     (PyUnicode_GET_SIZE(**name) != PyUnicode_GET_SIZE(key)) ? 1 :
 | |
|                 #endif
 | |
|                     PyUnicode_Compare(**name, key);
 | |
|                 if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad;
 | |
|                 if (cmp == 0) {
 | |
|                     values[name-argnames] = value;
 | |
|                     break;
 | |
|                 }
 | |
|                 name++;
 | |
|             }
 | |
|             if (*name) continue;
 | |
|             else {
 | |
|                 PyObject*** argname = argnames;
 | |
|                 while (argname != first_kw_arg) {
 | |
|                     int cmp = (**argname == key) ? 0 :
 | |
|                     #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION >= 3
 | |
|                         (PyUnicode_GET_SIZE(**argname) != PyUnicode_GET_SIZE(key)) ? 1 :
 | |
|                     #endif
 | |
|                         PyUnicode_Compare(**argname, key);
 | |
|                     if (cmp < 0 && unlikely(PyErr_Occurred())) goto bad;
 | |
|                     if (cmp == 0) goto arg_passed_twice;
 | |
|                     argname++;
 | |
|                 }
 | |
|             }
 | |
|         } else
 | |
|             goto invalid_keyword_type;
 | |
|         if (kwds2) {
 | |
|             if (unlikely(PyDict_SetItem(kwds2, key, value))) goto bad;
 | |
|         } else {
 | |
|             goto invalid_keyword;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| arg_passed_twice:
 | |
|     __Pyx_RaiseDoubleKeywordsError(function_name, key);
 | |
|     goto bad;
 | |
| invalid_keyword_type:
 | |
|     PyErr_Format(PyExc_TypeError,
 | |
|         "%s() keywords must be strings", function_name);
 | |
|     goto bad;
 | |
| invalid_keyword:
 | |
|     PyErr_Format(PyExc_TypeError,
 | |
|     #if PY_MAJOR_VERSION < 3
 | |
|         "%s() got an unexpected keyword argument '%s'",
 | |
|         function_name, PyString_AsString(key));
 | |
|     #else
 | |
|         "%s() got an unexpected keyword argument '%U'",
 | |
|         function_name, key);
 | |
|     #endif
 | |
| bad:
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static int __Pyx_ArgTypeTest(PyObject *obj, PyTypeObject *type, int none_allowed,
 | |
|     const char *name, int exact)
 | |
| {
 | |
|     if (!type) {
 | |
|         PyErr_Format(PyExc_SystemError, "Missing type object");
 | |
|         return 0;
 | |
|     }
 | |
|     if (none_allowed && obj == Py_None) return 1;
 | |
|     else if (exact) {
 | |
|         if (Py_TYPE(obj) == type) return 1;
 | |
|     }
 | |
|     else {
 | |
|         if (PyObject_TypeCheck(obj, type)) return 1;
 | |
|     }
 | |
|     PyErr_Format(PyExc_TypeError,
 | |
|         "Argument '%s' has incorrect type (expected %s, got %s)",
 | |
|         name, type->tp_name, Py_TYPE(obj)->tp_name);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_IsLittleEndian(void) {
 | |
|   unsigned int n = 1;
 | |
|   return *(unsigned char*)(&n) != 0;
 | |
| }
 | |
| static void __Pyx_BufFmt_Init(__Pyx_BufFmt_Context* ctx,
 | |
|                               __Pyx_BufFmt_StackElem* stack,
 | |
|                               __Pyx_TypeInfo* type) {
 | |
|   stack[0].field = &ctx->root;
 | |
|   stack[0].parent_offset = 0;
 | |
|   ctx->root.type = type;
 | |
|   ctx->root.name = "buffer dtype";
 | |
|   ctx->root.offset = 0;
 | |
|   ctx->head = stack;
 | |
|   ctx->head->field = &ctx->root;
 | |
|   ctx->fmt_offset = 0;
 | |
|   ctx->head->parent_offset = 0;
 | |
|   ctx->new_packmode = '@';
 | |
|   ctx->enc_packmode = '@';
 | |
|   ctx->new_count = 1;
 | |
|   ctx->enc_count = 0;
 | |
|   ctx->enc_type = 0;
 | |
|   ctx->is_complex = 0;
 | |
|   ctx->is_valid_array = 0;
 | |
|   ctx->struct_alignment = 0;
 | |
|   while (type->typegroup == 'S') {
 | |
|     ++ctx->head;
 | |
|     ctx->head->field = type->fields;
 | |
|     ctx->head->parent_offset = 0;
 | |
|     type = type->fields->type;
 | |
|   }
 | |
| }
 | |
| static int __Pyx_BufFmt_ParseNumber(const char** ts) {
 | |
|     int count;
 | |
|     const char* t = *ts;
 | |
|     if (*t < '0' || *t > '9') {
 | |
|       return -1;
 | |
|     } else {
 | |
|         count = *t++ - '0';
 | |
|         while (*t >= '0' && *t < '9') {
 | |
|             count *= 10;
 | |
|             count += *t++ - '0';
 | |
|         }
 | |
|     }
 | |
|     *ts = t;
 | |
|     return count;
 | |
| }
 | |
| static int __Pyx_BufFmt_ExpectNumber(const char **ts) {
 | |
|     int number = __Pyx_BufFmt_ParseNumber(ts);
 | |
|     if (number == -1) /* First char was not a digit */
 | |
|         PyErr_Format(PyExc_ValueError,\
 | |
|                      "Does not understand character buffer dtype format string ('%c')", **ts);
 | |
|     return number;
 | |
| }
 | |
| static void __Pyx_BufFmt_RaiseUnexpectedChar(char ch) {
 | |
|   PyErr_Format(PyExc_ValueError,
 | |
|                "Unexpected format string character: '%c'", ch);
 | |
| }
 | |
| static const char* __Pyx_BufFmt_DescribeTypeChar(char ch, int is_complex) {
 | |
|   switch (ch) {
 | |
|     case 'c': return "'char'";
 | |
|     case 'b': return "'signed char'";
 | |
|     case 'B': return "'unsigned char'";
 | |
|     case 'h': return "'short'";
 | |
|     case 'H': return "'unsigned short'";
 | |
|     case 'i': return "'int'";
 | |
|     case 'I': return "'unsigned int'";
 | |
|     case 'l': return "'long'";
 | |
|     case 'L': return "'unsigned long'";
 | |
|     case 'q': return "'long long'";
 | |
|     case 'Q': return "'unsigned long long'";
 | |
|     case 'f': return (is_complex ? "'complex float'" : "'float'");
 | |
|     case 'd': return (is_complex ? "'complex double'" : "'double'");
 | |
|     case 'g': return (is_complex ? "'complex long double'" : "'long double'");
 | |
|     case 'T': return "a struct";
 | |
|     case 'O': return "Python object";
 | |
|     case 'P': return "a pointer";
 | |
|     case 's': case 'p': return "a string";
 | |
|     case 0: return "end";
 | |
|     default: return "unparseable format string";
 | |
|   }
 | |
| }
 | |
| static size_t __Pyx_BufFmt_TypeCharToStandardSize(char ch, int is_complex) {
 | |
|   switch (ch) {
 | |
|     case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1;
 | |
|     case 'h': case 'H': return 2;
 | |
|     case 'i': case 'I': case 'l': case 'L': return 4;
 | |
|     case 'q': case 'Q': return 8;
 | |
|     case 'f': return (is_complex ? 8 : 4);
 | |
|     case 'd': return (is_complex ? 16 : 8);
 | |
|     case 'g': {
 | |
|       PyErr_SetString(PyExc_ValueError, "Python does not define a standard format string size for long double ('g')..");
 | |
|       return 0;
 | |
|     }
 | |
|     case 'O': case 'P': return sizeof(void*);
 | |
|     default:
 | |
|       __Pyx_BufFmt_RaiseUnexpectedChar(ch);
 | |
|       return 0;
 | |
|     }
 | |
| }
 | |
| static size_t __Pyx_BufFmt_TypeCharToNativeSize(char ch, int is_complex) {
 | |
|   switch (ch) {
 | |
|     case 'c': case 'b': case 'B': case 's': case 'p': return 1;
 | |
|     case 'h': case 'H': return sizeof(short);
 | |
|     case 'i': case 'I': return sizeof(int);
 | |
|     case 'l': case 'L': return sizeof(long);
 | |
|     #ifdef HAVE_LONG_LONG
 | |
|     case 'q': case 'Q': return sizeof(PY_LONG_LONG);
 | |
|     #endif
 | |
|     case 'f': return sizeof(float) * (is_complex ? 2 : 1);
 | |
|     case 'd': return sizeof(double) * (is_complex ? 2 : 1);
 | |
|     case 'g': return sizeof(long double) * (is_complex ? 2 : 1);
 | |
|     case 'O': case 'P': return sizeof(void*);
 | |
|     default: {
 | |
|       __Pyx_BufFmt_RaiseUnexpectedChar(ch);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| typedef struct { char c; short x; } __Pyx_st_short;
 | |
| typedef struct { char c; int x; } __Pyx_st_int;
 | |
| typedef struct { char c; long x; } __Pyx_st_long;
 | |
| typedef struct { char c; float x; } __Pyx_st_float;
 | |
| typedef struct { char c; double x; } __Pyx_st_double;
 | |
| typedef struct { char c; long double x; } __Pyx_st_longdouble;
 | |
| typedef struct { char c; void *x; } __Pyx_st_void_p;
 | |
| #ifdef HAVE_LONG_LONG
 | |
| typedef struct { char c; PY_LONG_LONG x; } __Pyx_st_longlong;
 | |
| #endif
 | |
| static size_t __Pyx_BufFmt_TypeCharToAlignment(char ch, CYTHON_UNUSED int is_complex) {
 | |
|   switch (ch) {
 | |
|     case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1;
 | |
|     case 'h': case 'H': return sizeof(__Pyx_st_short) - sizeof(short);
 | |
|     case 'i': case 'I': return sizeof(__Pyx_st_int) - sizeof(int);
 | |
|     case 'l': case 'L': return sizeof(__Pyx_st_long) - sizeof(long);
 | |
| #ifdef HAVE_LONG_LONG
 | |
|     case 'q': case 'Q': return sizeof(__Pyx_st_longlong) - sizeof(PY_LONG_LONG);
 | |
| #endif
 | |
|     case 'f': return sizeof(__Pyx_st_float) - sizeof(float);
 | |
|     case 'd': return sizeof(__Pyx_st_double) - sizeof(double);
 | |
|     case 'g': return sizeof(__Pyx_st_longdouble) - sizeof(long double);
 | |
|     case 'P': case 'O': return sizeof(__Pyx_st_void_p) - sizeof(void*);
 | |
|     default:
 | |
|       __Pyx_BufFmt_RaiseUnexpectedChar(ch);
 | |
|       return 0;
 | |
|     }
 | |
| }
 | |
| /* These are for computing the padding at the end of the struct to align
 | |
|    on the first member of the struct. This will probably the same as above,
 | |
|    but we don't have any guarantees.
 | |
|  */
 | |
| typedef struct { short x; char c; } __Pyx_pad_short;
 | |
| typedef struct { int x; char c; } __Pyx_pad_int;
 | |
| typedef struct { long x; char c; } __Pyx_pad_long;
 | |
| typedef struct { float x; char c; } __Pyx_pad_float;
 | |
| typedef struct { double x; char c; } __Pyx_pad_double;
 | |
| typedef struct { long double x; char c; } __Pyx_pad_longdouble;
 | |
| typedef struct { void *x; char c; } __Pyx_pad_void_p;
 | |
| #ifdef HAVE_LONG_LONG
 | |
| typedef struct { PY_LONG_LONG x; char c; } __Pyx_pad_longlong;
 | |
| #endif
 | |
| static size_t __Pyx_BufFmt_TypeCharToPadding(char ch, CYTHON_UNUSED int is_complex) {
 | |
|   switch (ch) {
 | |
|     case '?': case 'c': case 'b': case 'B': case 's': case 'p': return 1;
 | |
|     case 'h': case 'H': return sizeof(__Pyx_pad_short) - sizeof(short);
 | |
|     case 'i': case 'I': return sizeof(__Pyx_pad_int) - sizeof(int);
 | |
|     case 'l': case 'L': return sizeof(__Pyx_pad_long) - sizeof(long);
 | |
| #ifdef HAVE_LONG_LONG
 | |
|     case 'q': case 'Q': return sizeof(__Pyx_pad_longlong) - sizeof(PY_LONG_LONG);
 | |
| #endif
 | |
|     case 'f': return sizeof(__Pyx_pad_float) - sizeof(float);
 | |
|     case 'd': return sizeof(__Pyx_pad_double) - sizeof(double);
 | |
|     case 'g': return sizeof(__Pyx_pad_longdouble) - sizeof(long double);
 | |
|     case 'P': case 'O': return sizeof(__Pyx_pad_void_p) - sizeof(void*);
 | |
|     default:
 | |
|       __Pyx_BufFmt_RaiseUnexpectedChar(ch);
 | |
|       return 0;
 | |
|     }
 | |
| }
 | |
| static char __Pyx_BufFmt_TypeCharToGroup(char ch, int is_complex) {
 | |
|   switch (ch) {
 | |
|     case 'c':
 | |
|         return 'H';
 | |
|     case 'b': case 'h': case 'i':
 | |
|     case 'l': case 'q': case 's': case 'p':
 | |
|         return 'I';
 | |
|     case 'B': case 'H': case 'I': case 'L': case 'Q':
 | |
|         return 'U';
 | |
|     case 'f': case 'd': case 'g':
 | |
|         return (is_complex ? 'C' : 'R');
 | |
|     case 'O':
 | |
|         return 'O';
 | |
|     case 'P':
 | |
|         return 'P';
 | |
|     default: {
 | |
|       __Pyx_BufFmt_RaiseUnexpectedChar(ch);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static void __Pyx_BufFmt_RaiseExpected(__Pyx_BufFmt_Context* ctx) {
 | |
|   if (ctx->head == NULL || ctx->head->field == &ctx->root) {
 | |
|     const char* expected;
 | |
|     const char* quote;
 | |
|     if (ctx->head == NULL) {
 | |
|       expected = "end";
 | |
|       quote = "";
 | |
|     } else {
 | |
|       expected = ctx->head->field->type->name;
 | |
|       quote = "'";
 | |
|     }
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "Buffer dtype mismatch, expected %s%s%s but got %s",
 | |
|                  quote, expected, quote,
 | |
|                  __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex));
 | |
|   } else {
 | |
|     __Pyx_StructField* field = ctx->head->field;
 | |
|     __Pyx_StructField* parent = (ctx->head - 1)->field;
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "Buffer dtype mismatch, expected '%s' but got %s in '%s.%s'",
 | |
|                  field->type->name, __Pyx_BufFmt_DescribeTypeChar(ctx->enc_type, ctx->is_complex),
 | |
|                  parent->type->name, field->name);
 | |
|   }
 | |
| }
 | |
| static int __Pyx_BufFmt_ProcessTypeChunk(__Pyx_BufFmt_Context* ctx) {
 | |
|   char group;
 | |
|   size_t size, offset, arraysize = 1;
 | |
|   if (ctx->enc_type == 0) return 0;
 | |
|   if (ctx->head->field->type->arraysize[0]) {
 | |
|     int i, ndim = 0;
 | |
|     if (ctx->enc_type == 's' || ctx->enc_type == 'p') {
 | |
|         ctx->is_valid_array = ctx->head->field->type->ndim == 1;
 | |
|         ndim = 1;
 | |
|         if (ctx->enc_count != ctx->head->field->type->arraysize[0]) {
 | |
|             PyErr_Format(PyExc_ValueError,
 | |
|                          "Expected a dimension of size %zu, got %zu",
 | |
|                          ctx->head->field->type->arraysize[0], ctx->enc_count);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     if (!ctx->is_valid_array) {
 | |
|       PyErr_Format(PyExc_ValueError, "Expected %d dimensions, got %d",
 | |
|                    ctx->head->field->type->ndim, ndim);
 | |
|       return -1;
 | |
|     }
 | |
|     for (i = 0; i < ctx->head->field->type->ndim; i++) {
 | |
|       arraysize *= ctx->head->field->type->arraysize[i];
 | |
|     }
 | |
|     ctx->is_valid_array = 0;
 | |
|     ctx->enc_count = 1;
 | |
|   }
 | |
|   group = __Pyx_BufFmt_TypeCharToGroup(ctx->enc_type, ctx->is_complex);
 | |
|   do {
 | |
|     __Pyx_StructField* field = ctx->head->field;
 | |
|     __Pyx_TypeInfo* type = field->type;
 | |
|     if (ctx->enc_packmode == '@' || ctx->enc_packmode == '^') {
 | |
|       size = __Pyx_BufFmt_TypeCharToNativeSize(ctx->enc_type, ctx->is_complex);
 | |
|     } else {
 | |
|       size = __Pyx_BufFmt_TypeCharToStandardSize(ctx->enc_type, ctx->is_complex);
 | |
|     }
 | |
|     if (ctx->enc_packmode == '@') {
 | |
|       size_t align_at = __Pyx_BufFmt_TypeCharToAlignment(ctx->enc_type, ctx->is_complex);
 | |
|       size_t align_mod_offset;
 | |
|       if (align_at == 0) return -1;
 | |
|       align_mod_offset = ctx->fmt_offset % align_at;
 | |
|       if (align_mod_offset > 0) ctx->fmt_offset += align_at - align_mod_offset;
 | |
|       if (ctx->struct_alignment == 0)
 | |
|           ctx->struct_alignment = __Pyx_BufFmt_TypeCharToPadding(ctx->enc_type,
 | |
|                                                                  ctx->is_complex);
 | |
|     }
 | |
|     if (type->size != size || type->typegroup != group) {
 | |
|       if (type->typegroup == 'C' && type->fields != NULL) {
 | |
|         size_t parent_offset = ctx->head->parent_offset + field->offset;
 | |
|         ++ctx->head;
 | |
|         ctx->head->field = type->fields;
 | |
|         ctx->head->parent_offset = parent_offset;
 | |
|         continue;
 | |
|       }
 | |
|       if ((type->typegroup == 'H' || group == 'H') && type->size == size) {
 | |
|       } else {
 | |
|           __Pyx_BufFmt_RaiseExpected(ctx);
 | |
|           return -1;
 | |
|       }
 | |
|     }
 | |
|     offset = ctx->head->parent_offset + field->offset;
 | |
|     if (ctx->fmt_offset != offset) {
 | |
|       PyErr_Format(PyExc_ValueError,
 | |
|                    "Buffer dtype mismatch; next field is at offset %" CYTHON_FORMAT_SSIZE_T "d but %" CYTHON_FORMAT_SSIZE_T "d expected",
 | |
|                    (Py_ssize_t)ctx->fmt_offset, (Py_ssize_t)offset);
 | |
|       return -1;
 | |
|     }
 | |
|     ctx->fmt_offset += size;
 | |
|     if (arraysize)
 | |
|       ctx->fmt_offset += (arraysize - 1) * size;
 | |
|     --ctx->enc_count; /* Consume from buffer string */
 | |
|     while (1) {
 | |
|       if (field == &ctx->root) {
 | |
|         ctx->head = NULL;
 | |
|         if (ctx->enc_count != 0) {
 | |
|           __Pyx_BufFmt_RaiseExpected(ctx);
 | |
|           return -1;
 | |
|         }
 | |
|         break; /* breaks both loops as ctx->enc_count == 0 */
 | |
|       }
 | |
|       ctx->head->field = ++field;
 | |
|       if (field->type == NULL) {
 | |
|         --ctx->head;
 | |
|         field = ctx->head->field;
 | |
|         continue;
 | |
|       } else if (field->type->typegroup == 'S') {
 | |
|         size_t parent_offset = ctx->head->parent_offset + field->offset;
 | |
|         if (field->type->fields->type == NULL) continue; /* empty struct */
 | |
|         field = field->type->fields;
 | |
|         ++ctx->head;
 | |
|         ctx->head->field = field;
 | |
|         ctx->head->parent_offset = parent_offset;
 | |
|         break;
 | |
|       } else {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   } while (ctx->enc_count);
 | |
|   ctx->enc_type = 0;
 | |
|   ctx->is_complex = 0;
 | |
|   return 0;
 | |
| }
 | |
| static CYTHON_INLINE PyObject *
 | |
| __pyx_buffmt_parse_array(__Pyx_BufFmt_Context* ctx, const char** tsp)
 | |
| {
 | |
|     const char *ts = *tsp;
 | |
|     int i = 0, number;
 | |
|     int ndim = ctx->head->field->type->ndim;
 | |
| ;
 | |
|     ++ts;
 | |
|     if (ctx->new_count != 1) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "Cannot handle repeated arrays in format string");
 | |
|         return NULL;
 | |
|     }
 | |
|     if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL;
 | |
|     while (*ts && *ts != ')') {
 | |
|         if (isspace(*ts))
 | |
|             continue;
 | |
|         number = __Pyx_BufFmt_ExpectNumber(&ts);
 | |
|         if (number == -1) return NULL;
 | |
|         if (i < ndim && (size_t) number != ctx->head->field->type->arraysize[i])
 | |
|             return PyErr_Format(PyExc_ValueError,
 | |
|                         "Expected a dimension of size %zu, got %d",
 | |
|                         ctx->head->field->type->arraysize[i], number);
 | |
|         if (*ts != ',' && *ts != ')')
 | |
|             return PyErr_Format(PyExc_ValueError,
 | |
|                                 "Expected a comma in format string, got '%c'", *ts);
 | |
|         if (*ts == ',') ts++;
 | |
|         i++;
 | |
|     }
 | |
|     if (i != ndim)
 | |
|         return PyErr_Format(PyExc_ValueError, "Expected %d dimension(s), got %d",
 | |
|                             ctx->head->field->type->ndim, i);
 | |
|     if (!*ts) {
 | |
|         PyErr_SetString(PyExc_ValueError,
 | |
|                         "Unexpected end of format string, expected ')'");
 | |
|         return NULL;
 | |
|     }
 | |
|     ctx->is_valid_array = 1;
 | |
|     ctx->new_count = 1;
 | |
|     *tsp = ++ts;
 | |
|     return Py_None;
 | |
| }
 | |
| static const char* __Pyx_BufFmt_CheckString(__Pyx_BufFmt_Context* ctx, const char* ts) {
 | |
|   int got_Z = 0;
 | |
|   while (1) {
 | |
|     switch(*ts) {
 | |
|       case 0:
 | |
|         if (ctx->enc_type != 0 && ctx->head == NULL) {
 | |
|           __Pyx_BufFmt_RaiseExpected(ctx);
 | |
|           return NULL;
 | |
|         }
 | |
|         if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL;
 | |
|         if (ctx->head != NULL) {
 | |
|           __Pyx_BufFmt_RaiseExpected(ctx);
 | |
|           return NULL;
 | |
|         }
 | |
|                 return ts;
 | |
|       case ' ':
 | |
|       case 10:
 | |
|       case 13:
 | |
|         ++ts;
 | |
|         break;
 | |
|       case '<':
 | |
|         if (!__Pyx_IsLittleEndian()) {
 | |
|           PyErr_SetString(PyExc_ValueError, "Little-endian buffer not supported on big-endian compiler");
 | |
|           return NULL;
 | |
|         }
 | |
|         ctx->new_packmode = '=';
 | |
|         ++ts;
 | |
|         break;
 | |
|       case '>':
 | |
|       case '!':
 | |
|         if (__Pyx_IsLittleEndian()) {
 | |
|           PyErr_SetString(PyExc_ValueError, "Big-endian buffer not supported on little-endian compiler");
 | |
|           return NULL;
 | |
|         }
 | |
|         ctx->new_packmode = '=';
 | |
|         ++ts;
 | |
|         break;
 | |
|       case '=':
 | |
|       case '@':
 | |
|       case '^':
 | |
|         ctx->new_packmode = *ts++;
 | |
|         break;
 | |
|       case 'T': /* substruct */
 | |
|         {
 | |
|           const char* ts_after_sub;
 | |
|           size_t i, struct_count = ctx->new_count;
 | |
|           size_t struct_alignment = ctx->struct_alignment;
 | |
|           ctx->new_count = 1;
 | |
|           ++ts;
 | |
|           if (*ts != '{') {
 | |
|             PyErr_SetString(PyExc_ValueError, "Buffer acquisition: Expected '{' after 'T'");
 | |
|             return NULL;
 | |
|           }
 | |
|           if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL;
 | |
|           ctx->enc_type = 0; /* Erase processed last struct element */
 | |
|           ctx->enc_count = 0;
 | |
|           ctx->struct_alignment = 0;
 | |
|           ++ts;
 | |
|           ts_after_sub = ts;
 | |
|           for (i = 0; i != struct_count; ++i) {
 | |
|             ts_after_sub = __Pyx_BufFmt_CheckString(ctx, ts);
 | |
|             if (!ts_after_sub) return NULL;
 | |
|           }
 | |
|           ts = ts_after_sub;
 | |
|           if (struct_alignment) ctx->struct_alignment = struct_alignment;
 | |
|         }
 | |
|         break;
 | |
|       case '}': /* end of substruct; either repeat or move on */
 | |
|         {
 | |
|           size_t alignment = ctx->struct_alignment;
 | |
|           ++ts;
 | |
|           if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL;
 | |
|           ctx->enc_type = 0; /* Erase processed last struct element */
 | |
|           if (alignment && ctx->fmt_offset % alignment) {
 | |
|             ctx->fmt_offset += alignment - (ctx->fmt_offset % alignment);
 | |
|           }
 | |
|         }
 | |
|         return ts;
 | |
|       case 'x':
 | |
|         if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL;
 | |
|         ctx->fmt_offset += ctx->new_count;
 | |
|         ctx->new_count = 1;
 | |
|         ctx->enc_count = 0;
 | |
|         ctx->enc_type = 0;
 | |
|         ctx->enc_packmode = ctx->new_packmode;
 | |
|         ++ts;
 | |
|         break;
 | |
|       case 'Z':
 | |
|         got_Z = 1;
 | |
|         ++ts;
 | |
|         if (*ts != 'f' && *ts != 'd' && *ts != 'g') {
 | |
|           __Pyx_BufFmt_RaiseUnexpectedChar('Z');
 | |
|           return NULL;
 | |
|         }        /* fall through */
 | |
|       case 'c': case 'b': case 'B': case 'h': case 'H': case 'i': case 'I':
 | |
|       case 'l': case 'L': case 'q': case 'Q':
 | |
|       case 'f': case 'd': case 'g':
 | |
|       case 'O': case 's': case 'p':
 | |
|         if (ctx->enc_type == *ts && got_Z == ctx->is_complex &&
 | |
|             ctx->enc_packmode == ctx->new_packmode) {
 | |
|           ctx->enc_count += ctx->new_count;
 | |
|         } else {
 | |
|           if (__Pyx_BufFmt_ProcessTypeChunk(ctx) == -1) return NULL;
 | |
|           ctx->enc_count = ctx->new_count;
 | |
|           ctx->enc_packmode = ctx->new_packmode;
 | |
|           ctx->enc_type = *ts;
 | |
|           ctx->is_complex = got_Z;
 | |
|         }
 | |
|         ++ts;
 | |
|         ctx->new_count = 1;
 | |
|         got_Z = 0;
 | |
|         break;
 | |
|       case ':':
 | |
|         ++ts;
 | |
|         while(*ts != ':') ++ts;
 | |
|         ++ts;
 | |
|         break;
 | |
|       case '(':
 | |
|         if (!__pyx_buffmt_parse_array(ctx, &ts)) return NULL;
 | |
|         break;
 | |
|       default:
 | |
|         {
 | |
|           int number = __Pyx_BufFmt_ExpectNumber(&ts);
 | |
|           if (number == -1) return NULL;
 | |
|           ctx->new_count = (size_t)number;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| static CYTHON_INLINE void __Pyx_ZeroBuffer(Py_buffer* buf) {
 | |
|   buf->buf = NULL;
 | |
|   buf->obj = NULL;
 | |
|   buf->strides = __Pyx_zeros;
 | |
|   buf->shape = __Pyx_zeros;
 | |
|   buf->suboffsets = __Pyx_minusones;
 | |
| }
 | |
| static CYTHON_INLINE int __Pyx_GetBufferAndValidate(
 | |
|         Py_buffer* buf, PyObject* obj,  __Pyx_TypeInfo* dtype, int flags,
 | |
|         int nd, int cast, __Pyx_BufFmt_StackElem* stack)
 | |
| {
 | |
|   if (obj == Py_None || obj == NULL) {
 | |
|     __Pyx_ZeroBuffer(buf);
 | |
|     return 0;
 | |
|   }
 | |
|   buf->buf = NULL;
 | |
|   if (__Pyx_GetBuffer(obj, buf, flags) == -1) goto fail;
 | |
|   if (buf->ndim != nd) {
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "Buffer has wrong number of dimensions (expected %d, got %d)",
 | |
|                  nd, buf->ndim);
 | |
|     goto fail;
 | |
|   }
 | |
|   if (!cast) {
 | |
|     __Pyx_BufFmt_Context ctx;
 | |
|     __Pyx_BufFmt_Init(&ctx, stack, dtype);
 | |
|     if (!__Pyx_BufFmt_CheckString(&ctx, buf->format)) goto fail;
 | |
|   }
 | |
|   if ((unsigned)buf->itemsize != dtype->size) {
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|       "Item size of buffer (%" CYTHON_FORMAT_SSIZE_T "d byte%s) does not match size of '%s' (%" CYTHON_FORMAT_SSIZE_T "d byte%s)",
 | |
|       buf->itemsize, (buf->itemsize > 1) ? "s" : "",
 | |
|       dtype->name, (Py_ssize_t)dtype->size, (dtype->size > 1) ? "s" : "");
 | |
|     goto fail;
 | |
|   }
 | |
|   if (buf->suboffsets == NULL) buf->suboffsets = __Pyx_minusones;
 | |
|   return 0;
 | |
| fail:;
 | |
|   __Pyx_ZeroBuffer(buf);
 | |
|   return -1;
 | |
| }
 | |
| static CYTHON_INLINE void __Pyx_SafeReleaseBuffer(Py_buffer* info) {
 | |
|   if (info->buf == NULL) return;
 | |
|   if (info->suboffsets == __Pyx_minusones) info->suboffsets = NULL;
 | |
|   __Pyx_ReleaseBuffer(info);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_TypeTest(PyObject *obj, PyTypeObject *type) {
 | |
|     if (unlikely(!type)) {
 | |
|         PyErr_Format(PyExc_SystemError, "Missing type object");
 | |
|         return 0;
 | |
|     }
 | |
|     if (likely(PyObject_TypeCheck(obj, type)))
 | |
|         return 1;
 | |
|     PyErr_Format(PyExc_TypeError, "Cannot convert %.200s to %.200s",
 | |
|                  Py_TYPE(obj)->tp_name, type->tp_name);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void __Pyx_RaiseBufferFallbackError(void) {
 | |
|   PyErr_Format(PyExc_ValueError,
 | |
|      "Buffer acquisition failed on assignment; and then reacquiring the old buffer failed too!");
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseTooManyValuesError(Py_ssize_t expected) {
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "too many values to unpack (expected %" CYTHON_FORMAT_SSIZE_T "d)", expected);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseNeedMoreValuesError(Py_ssize_t index) {
 | |
|     PyErr_Format(PyExc_ValueError,
 | |
|                  "need more than %" CYTHON_FORMAT_SSIZE_T "d value%s to unpack",
 | |
|                  index, (index == 1) ? "" : "s");
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseNoneNotIterableError(void) {
 | |
|     PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable");
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_IterFinish(void) {
 | |
| #if CYTHON_COMPILING_IN_CPYTHON
 | |
|     PyThreadState *tstate = PyThreadState_GET();
 | |
|     PyObject* exc_type = tstate->curexc_type;
 | |
|     if (unlikely(exc_type)) {
 | |
|         if (likely(exc_type == PyExc_StopIteration) || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration)) {
 | |
|             PyObject *exc_value, *exc_tb;
 | |
|             exc_value = tstate->curexc_value;
 | |
|             exc_tb = tstate->curexc_traceback;
 | |
|             tstate->curexc_type = 0;
 | |
|             tstate->curexc_value = 0;
 | |
|             tstate->curexc_traceback = 0;
 | |
|             Py_DECREF(exc_type);
 | |
|             Py_XDECREF(exc_value);
 | |
|             Py_XDECREF(exc_tb);
 | |
|             return 0;
 | |
|         } else {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| #else
 | |
|     if (unlikely(PyErr_Occurred())) {
 | |
|         if (likely(PyErr_ExceptionMatches(PyExc_StopIteration))) {
 | |
|             PyErr_Clear();
 | |
|             return 0;
 | |
|         } else {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __Pyx_IternextUnpackEndCheck(PyObject *retval, Py_ssize_t expected) {
 | |
|     if (unlikely(retval)) {
 | |
|         Py_DECREF(retval);
 | |
|         __Pyx_RaiseTooManyValuesError(expected);
 | |
|         return -1;
 | |
|     } else {
 | |
|         return __Pyx_IterFinish();
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if PY_MAJOR_VERSION < 3
 | |
| static int __Pyx_GetBuffer(PyObject *obj, Py_buffer *view, int flags) {
 | |
|     CYTHON_UNUSED PyObject *getbuffer_cobj;
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|     if (PyObject_CheckBuffer(obj)) return PyObject_GetBuffer(obj, view, flags);
 | |
|   #endif
 | |
|         if (PyObject_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) return __pyx_pw_5numpy_7ndarray_1__getbuffer__(obj, view, flags);
 | |
|   #if PY_VERSION_HEX < 0x02060000
 | |
|     if (obj->ob_type->tp_dict &&
 | |
|         (getbuffer_cobj = PyMapping_GetItemString(obj->ob_type->tp_dict,
 | |
|                                              "__pyx_getbuffer"))) {
 | |
|         getbufferproc func;
 | |
|       #if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 0)
 | |
|         func = (getbufferproc) PyCapsule_GetPointer(getbuffer_cobj, "getbuffer(obj, view, flags)");
 | |
|       #else
 | |
|         func = (getbufferproc) PyCObject_AsVoidPtr(getbuffer_cobj);
 | |
|       #endif
 | |
|         Py_DECREF(getbuffer_cobj);
 | |
|         if (!func)
 | |
|             goto fail;
 | |
|         return func(obj, view, flags);
 | |
|     } else {
 | |
|         PyErr_Clear();
 | |
|     }
 | |
|   #endif
 | |
|     PyErr_Format(PyExc_TypeError, "'%100s' does not have the buffer interface", Py_TYPE(obj)->tp_name);
 | |
| #if PY_VERSION_HEX < 0x02060000
 | |
| fail:
 | |
| #endif
 | |
|     return -1;
 | |
| }
 | |
| static void __Pyx_ReleaseBuffer(Py_buffer *view) {
 | |
|     PyObject *obj = view->obj;
 | |
|     CYTHON_UNUSED PyObject *releasebuffer_cobj;
 | |
|     if (!obj) return;
 | |
|   #if PY_VERSION_HEX >= 0x02060000
 | |
|     if (PyObject_CheckBuffer(obj)) {
 | |
|         PyBuffer_Release(view);
 | |
|         return;
 | |
|     }
 | |
|   #endif
 | |
|         if (PyObject_TypeCheck(obj, __pyx_ptype_5numpy_ndarray)) { __pyx_pw_5numpy_7ndarray_3__releasebuffer__(obj, view); return; }
 | |
|   #if PY_VERSION_HEX < 0x02060000
 | |
|     if (obj->ob_type->tp_dict &&
 | |
|         (releasebuffer_cobj = PyMapping_GetItemString(obj->ob_type->tp_dict,
 | |
|                                                       "__pyx_releasebuffer"))) {
 | |
|         releasebufferproc func;
 | |
|       #if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 0)
 | |
|         func = (releasebufferproc) PyCapsule_GetPointer(releasebuffer_cobj, "releasebuffer(obj, view)");
 | |
|       #else
 | |
|         func = (releasebufferproc) PyCObject_AsVoidPtr(releasebuffer_cobj);
 | |
|       #endif
 | |
|         Py_DECREF(releasebuffer_cobj);
 | |
|         if (!func)
 | |
|             goto fail;
 | |
|         func(obj, view);
 | |
|         return;
 | |
|     } else {
 | |
|         PyErr_Clear();
 | |
|     }
 | |
|   #endif
 | |
|     goto nofail;
 | |
| #if PY_VERSION_HEX < 0x02060000
 | |
| fail:
 | |
| #endif
 | |
|     PyErr_WriteUnraisable(obj);
 | |
| nofail:
 | |
|     Py_DECREF(obj);
 | |
|     view->obj = NULL;
 | |
| }
 | |
| #endif /*  PY_MAJOR_VERSION < 3 */
 | |
| 
 | |
| 
 | |
|     static PyObject *__Pyx_Import(PyObject *name, PyObject *from_list, long level) {
 | |
|     PyObject *py_import = 0;
 | |
|     PyObject *empty_list = 0;
 | |
|     PyObject *module = 0;
 | |
|     PyObject *global_dict = 0;
 | |
|     PyObject *empty_dict = 0;
 | |
|     PyObject *list;
 | |
|     py_import = __Pyx_GetAttrString(__pyx_b, "__import__");
 | |
|     if (!py_import)
 | |
|         goto bad;
 | |
|     if (from_list)
 | |
|         list = from_list;
 | |
|     else {
 | |
|         empty_list = PyList_New(0);
 | |
|         if (!empty_list)
 | |
|             goto bad;
 | |
|         list = empty_list;
 | |
|     }
 | |
|     global_dict = PyModule_GetDict(__pyx_m);
 | |
|     if (!global_dict)
 | |
|         goto bad;
 | |
|     empty_dict = PyDict_New();
 | |
|     if (!empty_dict)
 | |
|         goto bad;
 | |
|     #if PY_VERSION_HEX >= 0x02050000
 | |
|     {
 | |
|         #if PY_MAJOR_VERSION >= 3
 | |
|         if (level == -1) {
 | |
|             if (strchr(__Pyx_MODULE_NAME, '.')) {
 | |
|                 /* try package relative import first */
 | |
|                 PyObject *py_level = PyInt_FromLong(1);
 | |
|                 if (!py_level)
 | |
|                     goto bad;
 | |
|                 module = PyObject_CallFunctionObjArgs(py_import,
 | |
|                     name, global_dict, empty_dict, list, py_level, NULL);
 | |
|                 Py_DECREF(py_level);
 | |
|                 if (!module) {
 | |
|                     if (!PyErr_ExceptionMatches(PyExc_ImportError))
 | |
|                         goto bad;
 | |
|                     PyErr_Clear();
 | |
|                 }
 | |
|             }
 | |
|             level = 0; /* try absolute import on failure */
 | |
|         }
 | |
|         #endif
 | |
|         if (!module) {
 | |
|             PyObject *py_level = PyInt_FromLong(level);
 | |
|             if (!py_level)
 | |
|                 goto bad;
 | |
|             module = PyObject_CallFunctionObjArgs(py_import,
 | |
|                 name, global_dict, empty_dict, list, py_level, NULL);
 | |
|             Py_DECREF(py_level);
 | |
|         }
 | |
|     }
 | |
|     #else
 | |
|     if (level>0) {
 | |
|         PyErr_SetString(PyExc_RuntimeError, "Relative import is not supported for Python <=2.4.");
 | |
|         goto bad;
 | |
|     }
 | |
|     module = PyObject_CallFunctionObjArgs(py_import,
 | |
|         name, global_dict, empty_dict, list, NULL);
 | |
|     #endif
 | |
| bad:
 | |
|     Py_XDECREF(empty_list);
 | |
|     Py_XDECREF(py_import);
 | |
|     Py_XDECREF(empty_dict);
 | |
|     return module;
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE void __Pyx_RaiseImportError(PyObject *name) {
 | |
| #if PY_MAJOR_VERSION < 3
 | |
|     PyErr_Format(PyExc_ImportError, "cannot import name %.230s",
 | |
|                  PyString_AsString(name));
 | |
| #else
 | |
|     PyErr_Format(PyExc_ImportError, "cannot import name %S", name);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION < 3
 | |
| static PyObject *__Pyx_GetStdout(void) {
 | |
|     PyObject *f = PySys_GetObject((char *)"stdout");
 | |
|     if (!f) {
 | |
|         PyErr_SetString(PyExc_RuntimeError, "lost sys.stdout");
 | |
|     }
 | |
|     return f;
 | |
| }
 | |
| static int __Pyx_Print(PyObject* f, PyObject *arg_tuple, int newline) {
 | |
|     int i;
 | |
|     if (!f) {
 | |
|         if (!(f = __Pyx_GetStdout()))
 | |
|             return -1;
 | |
|     }
 | |
|     Py_INCREF(f);
 | |
|     for (i=0; i < PyTuple_GET_SIZE(arg_tuple); i++) {
 | |
|         PyObject* v;
 | |
|         if (PyFile_SoftSpace(f, 1)) {
 | |
|             if (PyFile_WriteString(" ", f) < 0)
 | |
|                 goto error;
 | |
|         }
 | |
|         v = PyTuple_GET_ITEM(arg_tuple, i);
 | |
|         if (PyFile_WriteObject(v, f, Py_PRINT_RAW) < 0)
 | |
|             goto error;
 | |
|         if (PyString_Check(v)) {
 | |
|             char *s = PyString_AsString(v);
 | |
|             Py_ssize_t len = PyString_Size(v);
 | |
|             if (len > 0 &&
 | |
|                 isspace(Py_CHARMASK(s[len-1])) &&
 | |
|                 s[len-1] != ' ')
 | |
|                     PyFile_SoftSpace(f, 0);
 | |
|         }
 | |
|     }
 | |
|     if (newline) {
 | |
|         if (PyFile_WriteString("\n", f) < 0)
 | |
|             goto error;
 | |
|         PyFile_SoftSpace(f, 0);
 | |
|     }
 | |
|     Py_DECREF(f);
 | |
|     return 0;
 | |
| error:
 | |
|     Py_DECREF(f);
 | |
|     return -1;
 | |
| }
 | |
| #else /* Python 3 has a print function */
 | |
| static int __Pyx_Print(PyObject* stream, PyObject *arg_tuple, int newline) {
 | |
|     PyObject* kwargs = 0;
 | |
|     PyObject* result = 0;
 | |
|     PyObject* end_string;
 | |
|     if (unlikely(!__pyx_print)) {
 | |
|         __pyx_print = __Pyx_GetAttrString(__pyx_b, "print");
 | |
|         if (!__pyx_print)
 | |
|             return -1;
 | |
|     }
 | |
|     if (stream) {
 | |
|         kwargs = PyDict_New();
 | |
|         if (unlikely(!kwargs))
 | |
|             return -1;
 | |
|         if (unlikely(PyDict_SetItemString(kwargs, "file", stream) < 0))
 | |
|             goto bad;
 | |
|         if (!newline) {
 | |
|             end_string = PyUnicode_FromStringAndSize(" ", 1);
 | |
|             if (unlikely(!end_string))
 | |
|                 goto bad;
 | |
|             if (PyDict_SetItemString(kwargs, "end", end_string) < 0) {
 | |
|                 Py_DECREF(end_string);
 | |
|                 goto bad;
 | |
|             }
 | |
|             Py_DECREF(end_string);
 | |
|         }
 | |
|     } else if (!newline) {
 | |
|         if (unlikely(!__pyx_print_kwargs)) {
 | |
|             __pyx_print_kwargs = PyDict_New();
 | |
|             if (unlikely(!__pyx_print_kwargs))
 | |
|                 return -1;
 | |
|             end_string = PyUnicode_FromStringAndSize(" ", 1);
 | |
|             if (unlikely(!end_string))
 | |
|                 return -1;
 | |
|             if (PyDict_SetItemString(__pyx_print_kwargs, "end", end_string) < 0) {
 | |
|                 Py_DECREF(end_string);
 | |
|                 return -1;
 | |
|             }
 | |
|             Py_DECREF(end_string);
 | |
|         }
 | |
|         kwargs = __pyx_print_kwargs;
 | |
|     }
 | |
|     result = PyObject_Call(__pyx_print, arg_tuple, kwargs);
 | |
|     if (unlikely(kwargs) && (kwargs != __pyx_print_kwargs))
 | |
|         Py_DECREF(kwargs);
 | |
|     if (!result)
 | |
|         return -1;
 | |
|     Py_DECREF(result);
 | |
|     return 0;
 | |
| bad:
 | |
|     if (kwargs != __pyx_print_kwargs)
 | |
|         Py_XDECREF(kwargs);
 | |
|     return -1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if !CYTHON_COMPILING_IN_PYPY && PY_MAJOR_VERSION < 3
 | |
| static int __Pyx_PrintOne(PyObject* f, PyObject *o) {
 | |
|     if (!f) {
 | |
|         if (!(f = __Pyx_GetStdout()))
 | |
|             return -1;
 | |
|     }
 | |
|     Py_INCREF(f);
 | |
|     if (PyFile_SoftSpace(f, 0)) {
 | |
|         if (PyFile_WriteString(" ", f) < 0)
 | |
|             goto error;
 | |
|     }
 | |
|     if (PyFile_WriteObject(o, f, Py_PRINT_RAW) < 0)
 | |
|         goto error;
 | |
|     if (PyFile_WriteString("\n", f) < 0)
 | |
|         goto error;
 | |
|     Py_DECREF(f);
 | |
|     return 0;
 | |
| error:
 | |
|     Py_DECREF(f);
 | |
|     return -1;
 | |
|     /* the line below is just to avoid C compiler
 | |
|      * warnings about unused functions */
 | |
|     return __Pyx_Print(f, NULL, 0);
 | |
| }
 | |
| #else /* Python 3 has a print function */
 | |
| static int __Pyx_PrintOne(PyObject* stream, PyObject *o) {
 | |
|     int res;
 | |
|     PyObject* arg_tuple = PyTuple_Pack(1, o);
 | |
|     if (unlikely(!arg_tuple))
 | |
|         return -1;
 | |
|     res = __Pyx_Print(stream, arg_tuple, 1);
 | |
|     Py_DECREF(arg_tuple);
 | |
|     return res;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
|   #ifdef __cplusplus
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) {
 | |
|       return ::std::complex< float >(x, y);
 | |
|     }
 | |
|   #else
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) {
 | |
|       return x + y*(__pyx_t_float_complex)_Complex_I;
 | |
|     }
 | |
|   #endif
 | |
| #else
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __pyx_t_float_complex_from_parts(float x, float y) {
 | |
|       __pyx_t_float_complex z;
 | |
|       z.real = x;
 | |
|       z.imag = y;
 | |
|       return z;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
| #else
 | |
|     static CYTHON_INLINE int __Pyx_c_eqf(__pyx_t_float_complex a, __pyx_t_float_complex b) {
 | |
|        return (a.real == b.real) && (a.imag == b.imag);
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_sumf(__pyx_t_float_complex a, __pyx_t_float_complex b) {
 | |
|         __pyx_t_float_complex z;
 | |
|         z.real = a.real + b.real;
 | |
|         z.imag = a.imag + b.imag;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_difff(__pyx_t_float_complex a, __pyx_t_float_complex b) {
 | |
|         __pyx_t_float_complex z;
 | |
|         z.real = a.real - b.real;
 | |
|         z.imag = a.imag - b.imag;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_prodf(__pyx_t_float_complex a, __pyx_t_float_complex b) {
 | |
|         __pyx_t_float_complex z;
 | |
|         z.real = a.real * b.real - a.imag * b.imag;
 | |
|         z.imag = a.real * b.imag + a.imag * b.real;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_quotf(__pyx_t_float_complex a, __pyx_t_float_complex b) {
 | |
|         __pyx_t_float_complex z;
 | |
|         float denom = b.real * b.real + b.imag * b.imag;
 | |
|         z.real = (a.real * b.real + a.imag * b.imag) / denom;
 | |
|         z.imag = (a.imag * b.real - a.real * b.imag) / denom;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_negf(__pyx_t_float_complex a) {
 | |
|         __pyx_t_float_complex z;
 | |
|         z.real = -a.real;
 | |
|         z.imag = -a.imag;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE int __Pyx_c_is_zerof(__pyx_t_float_complex a) {
 | |
|        return (a.real == 0) && (a.imag == 0);
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_conjf(__pyx_t_float_complex a) {
 | |
|         __pyx_t_float_complex z;
 | |
|         z.real =  a.real;
 | |
|         z.imag = -a.imag;
 | |
|         return z;
 | |
|     }
 | |
|     #if 1
 | |
|         static CYTHON_INLINE float __Pyx_c_absf(__pyx_t_float_complex z) {
 | |
|           #if !defined(HAVE_HYPOT) || defined(_MSC_VER)
 | |
|             return sqrtf(z.real*z.real + z.imag*z.imag);
 | |
|           #else
 | |
|             return hypotf(z.real, z.imag);
 | |
|           #endif
 | |
|         }
 | |
|         static CYTHON_INLINE __pyx_t_float_complex __Pyx_c_powf(__pyx_t_float_complex a, __pyx_t_float_complex b) {
 | |
|             __pyx_t_float_complex z;
 | |
|             float r, lnr, theta, z_r, z_theta;
 | |
|             if (b.imag == 0 && b.real == (int)b.real) {
 | |
|                 if (b.real < 0) {
 | |
|                     float denom = a.real * a.real + a.imag * a.imag;
 | |
|                     a.real = a.real / denom;
 | |
|                     a.imag = -a.imag / denom;
 | |
|                     b.real = -b.real;
 | |
|                 }
 | |
|                 switch ((int)b.real) {
 | |
|                     case 0:
 | |
|                         z.real = 1;
 | |
|                         z.imag = 0;
 | |
|                         return z;
 | |
|                     case 1:
 | |
|                         return a;
 | |
|                     case 2:
 | |
|                         z = __Pyx_c_prodf(a, a);
 | |
|                         return __Pyx_c_prodf(a, a);
 | |
|                     case 3:
 | |
|                         z = __Pyx_c_prodf(a, a);
 | |
|                         return __Pyx_c_prodf(z, a);
 | |
|                     case 4:
 | |
|                         z = __Pyx_c_prodf(a, a);
 | |
|                         return __Pyx_c_prodf(z, z);
 | |
|                 }
 | |
|             }
 | |
|             if (a.imag == 0) {
 | |
|                 if (a.real == 0) {
 | |
|                     return a;
 | |
|                 }
 | |
|                 r = a.real;
 | |
|                 theta = 0;
 | |
|             } else {
 | |
|                 r = __Pyx_c_absf(a);
 | |
|                 theta = atan2f(a.imag, a.real);
 | |
|             }
 | |
|             lnr = logf(r);
 | |
|             z_r = expf(lnr * b.real - theta * b.imag);
 | |
|             z_theta = theta * b.real + lnr * b.imag;
 | |
|             z.real = z_r * cosf(z_theta);
 | |
|             z.imag = z_r * sinf(z_theta);
 | |
|             return z;
 | |
|         }
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
|   #ifdef __cplusplus
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) {
 | |
|       return ::std::complex< double >(x, y);
 | |
|     }
 | |
|   #else
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) {
 | |
|       return x + y*(__pyx_t_double_complex)_Complex_I;
 | |
|     }
 | |
|   #endif
 | |
| #else
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __pyx_t_double_complex_from_parts(double x, double y) {
 | |
|       __pyx_t_double_complex z;
 | |
|       z.real = x;
 | |
|       z.imag = y;
 | |
|       return z;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if CYTHON_CCOMPLEX
 | |
| #else
 | |
|     static CYTHON_INLINE int __Pyx_c_eq(__pyx_t_double_complex a, __pyx_t_double_complex b) {
 | |
|        return (a.real == b.real) && (a.imag == b.imag);
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_sum(__pyx_t_double_complex a, __pyx_t_double_complex b) {
 | |
|         __pyx_t_double_complex z;
 | |
|         z.real = a.real + b.real;
 | |
|         z.imag = a.imag + b.imag;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_diff(__pyx_t_double_complex a, __pyx_t_double_complex b) {
 | |
|         __pyx_t_double_complex z;
 | |
|         z.real = a.real - b.real;
 | |
|         z.imag = a.imag - b.imag;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_prod(__pyx_t_double_complex a, __pyx_t_double_complex b) {
 | |
|         __pyx_t_double_complex z;
 | |
|         z.real = a.real * b.real - a.imag * b.imag;
 | |
|         z.imag = a.real * b.imag + a.imag * b.real;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_quot(__pyx_t_double_complex a, __pyx_t_double_complex b) {
 | |
|         __pyx_t_double_complex z;
 | |
|         double denom = b.real * b.real + b.imag * b.imag;
 | |
|         z.real = (a.real * b.real + a.imag * b.imag) / denom;
 | |
|         z.imag = (a.imag * b.real - a.real * b.imag) / denom;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_neg(__pyx_t_double_complex a) {
 | |
|         __pyx_t_double_complex z;
 | |
|         z.real = -a.real;
 | |
|         z.imag = -a.imag;
 | |
|         return z;
 | |
|     }
 | |
|     static CYTHON_INLINE int __Pyx_c_is_zero(__pyx_t_double_complex a) {
 | |
|        return (a.real == 0) && (a.imag == 0);
 | |
|     }
 | |
|     static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_conj(__pyx_t_double_complex a) {
 | |
|         __pyx_t_double_complex z;
 | |
|         z.real =  a.real;
 | |
|         z.imag = -a.imag;
 | |
|         return z;
 | |
|     }
 | |
|     #if 1
 | |
|         static CYTHON_INLINE double __Pyx_c_abs(__pyx_t_double_complex z) {
 | |
|           #if !defined(HAVE_HYPOT) || defined(_MSC_VER)
 | |
|             return sqrt(z.real*z.real + z.imag*z.imag);
 | |
|           #else
 | |
|             return hypot(z.real, z.imag);
 | |
|           #endif
 | |
|         }
 | |
|         static CYTHON_INLINE __pyx_t_double_complex __Pyx_c_pow(__pyx_t_double_complex a, __pyx_t_double_complex b) {
 | |
|             __pyx_t_double_complex z;
 | |
|             double r, lnr, theta, z_r, z_theta;
 | |
|             if (b.imag == 0 && b.real == (int)b.real) {
 | |
|                 if (b.real < 0) {
 | |
|                     double denom = a.real * a.real + a.imag * a.imag;
 | |
|                     a.real = a.real / denom;
 | |
|                     a.imag = -a.imag / denom;
 | |
|                     b.real = -b.real;
 | |
|                 }
 | |
|                 switch ((int)b.real) {
 | |
|                     case 0:
 | |
|                         z.real = 1;
 | |
|                         z.imag = 0;
 | |
|                         return z;
 | |
|                     case 1:
 | |
|                         return a;
 | |
|                     case 2:
 | |
|                         z = __Pyx_c_prod(a, a);
 | |
|                         return __Pyx_c_prod(a, a);
 | |
|                     case 3:
 | |
|                         z = __Pyx_c_prod(a, a);
 | |
|                         return __Pyx_c_prod(z, a);
 | |
|                     case 4:
 | |
|                         z = __Pyx_c_prod(a, a);
 | |
|                         return __Pyx_c_prod(z, z);
 | |
|                 }
 | |
|             }
 | |
|             if (a.imag == 0) {
 | |
|                 if (a.real == 0) {
 | |
|                     return a;
 | |
|                 }
 | |
|                 r = a.real;
 | |
|                 theta = 0;
 | |
|             } else {
 | |
|                 r = __Pyx_c_abs(a);
 | |
|                 theta = atan2(a.imag, a.real);
 | |
|             }
 | |
|             lnr = log(r);
 | |
|             z_r = exp(lnr * b.real - theta * b.imag);
 | |
|             z_theta = theta * b.real + lnr * b.imag;
 | |
|             z.real = z_r * cos(z_theta);
 | |
|             z.imag = z_r * sin(z_theta);
 | |
|             return z;
 | |
|         }
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| static CYTHON_INLINE unsigned char __Pyx_PyInt_AsUnsignedChar(PyObject* x) {
 | |
|     const unsigned char neg_one = (unsigned char)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(unsigned char) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(unsigned char)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to unsigned char" :
 | |
|                     "value too large to convert to unsigned char");
 | |
|             }
 | |
|             return (unsigned char)-1;
 | |
|         }
 | |
|         return (unsigned char)val;
 | |
|     }
 | |
|     return (unsigned char)__Pyx_PyInt_AsUnsignedLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE unsigned short __Pyx_PyInt_AsUnsignedShort(PyObject* x) {
 | |
|     const unsigned short neg_one = (unsigned short)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(unsigned short) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(unsigned short)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to unsigned short" :
 | |
|                     "value too large to convert to unsigned short");
 | |
|             }
 | |
|             return (unsigned short)-1;
 | |
|         }
 | |
|         return (unsigned short)val;
 | |
|     }
 | |
|     return (unsigned short)__Pyx_PyInt_AsUnsignedLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE unsigned int __Pyx_PyInt_AsUnsignedInt(PyObject* x) {
 | |
|     const unsigned int neg_one = (unsigned int)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(unsigned int) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(unsigned int)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to unsigned int" :
 | |
|                     "value too large to convert to unsigned int");
 | |
|             }
 | |
|             return (unsigned int)-1;
 | |
|         }
 | |
|         return (unsigned int)val;
 | |
|     }
 | |
|     return (unsigned int)__Pyx_PyInt_AsUnsignedLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE char __Pyx_PyInt_AsChar(PyObject* x) {
 | |
|     const char neg_one = (char)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(char) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(char)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to char" :
 | |
|                     "value too large to convert to char");
 | |
|             }
 | |
|             return (char)-1;
 | |
|         }
 | |
|         return (char)val;
 | |
|     }
 | |
|     return (char)__Pyx_PyInt_AsLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE short __Pyx_PyInt_AsShort(PyObject* x) {
 | |
|     const short neg_one = (short)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(short) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(short)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to short" :
 | |
|                     "value too large to convert to short");
 | |
|             }
 | |
|             return (short)-1;
 | |
|         }
 | |
|         return (short)val;
 | |
|     }
 | |
|     return (short)__Pyx_PyInt_AsLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_PyInt_AsInt(PyObject* x) {
 | |
|     const int neg_one = (int)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(int) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(int)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to int" :
 | |
|                     "value too large to convert to int");
 | |
|             }
 | |
|             return (int)-1;
 | |
|         }
 | |
|         return (int)val;
 | |
|     }
 | |
|     return (int)__Pyx_PyInt_AsLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE signed char __Pyx_PyInt_AsSignedChar(PyObject* x) {
 | |
|     const signed char neg_one = (signed char)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(signed char) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(signed char)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to signed char" :
 | |
|                     "value too large to convert to signed char");
 | |
|             }
 | |
|             return (signed char)-1;
 | |
|         }
 | |
|         return (signed char)val;
 | |
|     }
 | |
|     return (signed char)__Pyx_PyInt_AsSignedLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE signed short __Pyx_PyInt_AsSignedShort(PyObject* x) {
 | |
|     const signed short neg_one = (signed short)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(signed short) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(signed short)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to signed short" :
 | |
|                     "value too large to convert to signed short");
 | |
|             }
 | |
|             return (signed short)-1;
 | |
|         }
 | |
|         return (signed short)val;
 | |
|     }
 | |
|     return (signed short)__Pyx_PyInt_AsSignedLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE signed int __Pyx_PyInt_AsSignedInt(PyObject* x) {
 | |
|     const signed int neg_one = (signed int)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(signed int) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(signed int)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to signed int" :
 | |
|                     "value too large to convert to signed int");
 | |
|             }
 | |
|             return (signed int)-1;
 | |
|         }
 | |
|         return (signed int)val;
 | |
|     }
 | |
|     return (signed int)__Pyx_PyInt_AsSignedLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_PyInt_AsLongDouble(PyObject* x) {
 | |
|     const int neg_one = (int)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
|     if (sizeof(int) < sizeof(long)) {
 | |
|         long val = __Pyx_PyInt_AsLong(x);
 | |
|         if (unlikely(val != (long)(int)val)) {
 | |
|             if (!unlikely(val == -1 && PyErr_Occurred())) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                     (is_unsigned && unlikely(val < 0)) ?
 | |
|                     "can't convert negative value to int" :
 | |
|                     "value too large to convert to int");
 | |
|             }
 | |
|             return (int)-1;
 | |
|         }
 | |
|         return (int)val;
 | |
|     }
 | |
|     return (int)__Pyx_PyInt_AsLong(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE unsigned long __Pyx_PyInt_AsUnsignedLong(PyObject* x) {
 | |
|     const unsigned long neg_one = (unsigned long)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (likely(PyInt_Check(x))) {
 | |
|         long val = PyInt_AS_LONG(x);
 | |
|         if (is_unsigned && unlikely(val < 0)) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative value to unsigned long");
 | |
|             return (unsigned long)-1;
 | |
|         }
 | |
|         return (unsigned long)val;
 | |
|     } else
 | |
| #endif
 | |
|     if (likely(PyLong_Check(x))) {
 | |
|         if (is_unsigned) {
 | |
|             if (unlikely(Py_SIZE(x) < 0)) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                                 "can't convert negative value to unsigned long");
 | |
|                 return (unsigned long)-1;
 | |
|             }
 | |
|             return (unsigned long)PyLong_AsUnsignedLong(x);
 | |
|         } else {
 | |
|             return (unsigned long)PyLong_AsLong(x);
 | |
|         }
 | |
|     } else {
 | |
|         unsigned long val;
 | |
|         PyObject *tmp = __Pyx_PyNumber_Int(x);
 | |
|         if (!tmp) return (unsigned long)-1;
 | |
|         val = __Pyx_PyInt_AsUnsignedLong(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|         return val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE unsigned PY_LONG_LONG __Pyx_PyInt_AsUnsignedLongLong(PyObject* x) {
 | |
|     const unsigned PY_LONG_LONG neg_one = (unsigned PY_LONG_LONG)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (likely(PyInt_Check(x))) {
 | |
|         long val = PyInt_AS_LONG(x);
 | |
|         if (is_unsigned && unlikely(val < 0)) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative value to unsigned PY_LONG_LONG");
 | |
|             return (unsigned PY_LONG_LONG)-1;
 | |
|         }
 | |
|         return (unsigned PY_LONG_LONG)val;
 | |
|     } else
 | |
| #endif
 | |
|     if (likely(PyLong_Check(x))) {
 | |
|         if (is_unsigned) {
 | |
|             if (unlikely(Py_SIZE(x) < 0)) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                                 "can't convert negative value to unsigned PY_LONG_LONG");
 | |
|                 return (unsigned PY_LONG_LONG)-1;
 | |
|             }
 | |
|             return (unsigned PY_LONG_LONG)PyLong_AsUnsignedLongLong(x);
 | |
|         } else {
 | |
|             return (unsigned PY_LONG_LONG)PyLong_AsLongLong(x);
 | |
|         }
 | |
|     } else {
 | |
|         unsigned PY_LONG_LONG val;
 | |
|         PyObject *tmp = __Pyx_PyNumber_Int(x);
 | |
|         if (!tmp) return (unsigned PY_LONG_LONG)-1;
 | |
|         val = __Pyx_PyInt_AsUnsignedLongLong(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|         return val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE long __Pyx_PyInt_AsLong(PyObject* x) {
 | |
|     const long neg_one = (long)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (likely(PyInt_Check(x))) {
 | |
|         long val = PyInt_AS_LONG(x);
 | |
|         if (is_unsigned && unlikely(val < 0)) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative value to long");
 | |
|             return (long)-1;
 | |
|         }
 | |
|         return (long)val;
 | |
|     } else
 | |
| #endif
 | |
|     if (likely(PyLong_Check(x))) {
 | |
|         if (is_unsigned) {
 | |
|             if (unlikely(Py_SIZE(x) < 0)) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                                 "can't convert negative value to long");
 | |
|                 return (long)-1;
 | |
|             }
 | |
|             return (long)PyLong_AsUnsignedLong(x);
 | |
|         } else {
 | |
|             return (long)PyLong_AsLong(x);
 | |
|         }
 | |
|     } else {
 | |
|         long val;
 | |
|         PyObject *tmp = __Pyx_PyNumber_Int(x);
 | |
|         if (!tmp) return (long)-1;
 | |
|         val = __Pyx_PyInt_AsLong(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|         return val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE PY_LONG_LONG __Pyx_PyInt_AsLongLong(PyObject* x) {
 | |
|     const PY_LONG_LONG neg_one = (PY_LONG_LONG)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (likely(PyInt_Check(x))) {
 | |
|         long val = PyInt_AS_LONG(x);
 | |
|         if (is_unsigned && unlikely(val < 0)) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative value to PY_LONG_LONG");
 | |
|             return (PY_LONG_LONG)-1;
 | |
|         }
 | |
|         return (PY_LONG_LONG)val;
 | |
|     } else
 | |
| #endif
 | |
|     if (likely(PyLong_Check(x))) {
 | |
|         if (is_unsigned) {
 | |
|             if (unlikely(Py_SIZE(x) < 0)) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                                 "can't convert negative value to PY_LONG_LONG");
 | |
|                 return (PY_LONG_LONG)-1;
 | |
|             }
 | |
|             return (PY_LONG_LONG)PyLong_AsUnsignedLongLong(x);
 | |
|         } else {
 | |
|             return (PY_LONG_LONG)PyLong_AsLongLong(x);
 | |
|         }
 | |
|     } else {
 | |
|         PY_LONG_LONG val;
 | |
|         PyObject *tmp = __Pyx_PyNumber_Int(x);
 | |
|         if (!tmp) return (PY_LONG_LONG)-1;
 | |
|         val = __Pyx_PyInt_AsLongLong(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|         return val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE signed long __Pyx_PyInt_AsSignedLong(PyObject* x) {
 | |
|     const signed long neg_one = (signed long)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (likely(PyInt_Check(x))) {
 | |
|         long val = PyInt_AS_LONG(x);
 | |
|         if (is_unsigned && unlikely(val < 0)) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative value to signed long");
 | |
|             return (signed long)-1;
 | |
|         }
 | |
|         return (signed long)val;
 | |
|     } else
 | |
| #endif
 | |
|     if (likely(PyLong_Check(x))) {
 | |
|         if (is_unsigned) {
 | |
|             if (unlikely(Py_SIZE(x) < 0)) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                                 "can't convert negative value to signed long");
 | |
|                 return (signed long)-1;
 | |
|             }
 | |
|             return (signed long)PyLong_AsUnsignedLong(x);
 | |
|         } else {
 | |
|             return (signed long)PyLong_AsLong(x);
 | |
|         }
 | |
|     } else {
 | |
|         signed long val;
 | |
|         PyObject *tmp = __Pyx_PyNumber_Int(x);
 | |
|         if (!tmp) return (signed long)-1;
 | |
|         val = __Pyx_PyInt_AsSignedLong(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|         return val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE signed PY_LONG_LONG __Pyx_PyInt_AsSignedLongLong(PyObject* x) {
 | |
|     const signed PY_LONG_LONG neg_one = (signed PY_LONG_LONG)-1, const_zero = 0;
 | |
|     const int is_unsigned = neg_one > const_zero;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (likely(PyInt_Check(x))) {
 | |
|         long val = PyInt_AS_LONG(x);
 | |
|         if (is_unsigned && unlikely(val < 0)) {
 | |
|             PyErr_SetString(PyExc_OverflowError,
 | |
|                             "can't convert negative value to signed PY_LONG_LONG");
 | |
|             return (signed PY_LONG_LONG)-1;
 | |
|         }
 | |
|         return (signed PY_LONG_LONG)val;
 | |
|     } else
 | |
| #endif
 | |
|     if (likely(PyLong_Check(x))) {
 | |
|         if (is_unsigned) {
 | |
|             if (unlikely(Py_SIZE(x) < 0)) {
 | |
|                 PyErr_SetString(PyExc_OverflowError,
 | |
|                                 "can't convert negative value to signed PY_LONG_LONG");
 | |
|                 return (signed PY_LONG_LONG)-1;
 | |
|             }
 | |
|             return (signed PY_LONG_LONG)PyLong_AsUnsignedLongLong(x);
 | |
|         } else {
 | |
|             return (signed PY_LONG_LONG)PyLong_AsLongLong(x);
 | |
|         }
 | |
|     } else {
 | |
|         signed PY_LONG_LONG val;
 | |
|         PyObject *tmp = __Pyx_PyNumber_Int(x);
 | |
|         if (!tmp) return (signed PY_LONG_LONG)-1;
 | |
|         val = __Pyx_PyInt_AsSignedLongLong(tmp);
 | |
|         Py_DECREF(tmp);
 | |
|         return val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void __Pyx_WriteUnraisable(const char *name, CYTHON_UNUSED int clineno,
 | |
|                                   CYTHON_UNUSED int lineno, CYTHON_UNUSED const char *filename) {
 | |
|     PyObject *old_exc, *old_val, *old_tb;
 | |
|     PyObject *ctx;
 | |
|     __Pyx_ErrFetch(&old_exc, &old_val, &old_tb);
 | |
|     #if PY_MAJOR_VERSION < 3
 | |
|     ctx = PyString_FromString(name);
 | |
|     #else
 | |
|     ctx = PyUnicode_FromString(name);
 | |
|     #endif
 | |
|     __Pyx_ErrRestore(old_exc, old_val, old_tb);
 | |
|     if (!ctx) {
 | |
|         PyErr_WriteUnraisable(Py_None);
 | |
|     } else {
 | |
|         PyErr_WriteUnraisable(ctx);
 | |
|         Py_DECREF(ctx);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int __Pyx_check_binary_version(void) {
 | |
|     char ctversion[4], rtversion[4];
 | |
|     PyOS_snprintf(ctversion, 4, "%d.%d", PY_MAJOR_VERSION, PY_MINOR_VERSION);
 | |
|     PyOS_snprintf(rtversion, 4, "%s", Py_GetVersion());
 | |
|     if (ctversion[0] != rtversion[0] || ctversion[2] != rtversion[2]) {
 | |
|         char message[200];
 | |
|         PyOS_snprintf(message, sizeof(message),
 | |
|                       "compiletime version %s of module '%.100s' "
 | |
|                       "does not match runtime version %s",
 | |
|                       ctversion, __Pyx_MODULE_NAME, rtversion);
 | |
|         #if PY_VERSION_HEX < 0x02050000
 | |
|         return PyErr_Warn(NULL, message);
 | |
|         #else
 | |
|         return PyErr_WarnEx(NULL, message, 1);
 | |
|         #endif
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int __Pyx_SetVtable(PyObject *dict, void *vtable) {
 | |
| #if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION==3&&PY_MINOR_VERSION==0)
 | |
|     PyObject *ob = PyCapsule_New(vtable, 0, 0);
 | |
| #else
 | |
|     PyObject *ob = PyCObject_FromVoidPtr(vtable, 0);
 | |
| #endif
 | |
|     if (!ob)
 | |
|         goto bad;
 | |
|     if (PyDict_SetItemString(dict, "__pyx_vtable__", ob) < 0)
 | |
|         goto bad;
 | |
|     Py_DECREF(ob);
 | |
|     return 0;
 | |
| bad:
 | |
|     Py_XDECREF(ob);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| #ifndef __PYX_HAVE_RT_ImportModule
 | |
| #define __PYX_HAVE_RT_ImportModule
 | |
| static PyObject *__Pyx_ImportModule(const char *name) {
 | |
|     PyObject *py_name = 0;
 | |
|     PyObject *py_module = 0;
 | |
|     py_name = __Pyx_PyIdentifier_FromString(name);
 | |
|     if (!py_name)
 | |
|         goto bad;
 | |
|     py_module = PyImport_Import(py_name);
 | |
|     Py_DECREF(py_name);
 | |
|     return py_module;
 | |
| bad:
 | |
|     Py_XDECREF(py_name);
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef __PYX_HAVE_RT_ImportType
 | |
| #define __PYX_HAVE_RT_ImportType
 | |
| static PyTypeObject *__Pyx_ImportType(const char *module_name, const char *class_name,
 | |
|     size_t size, int strict)
 | |
| {
 | |
|     PyObject *py_module = 0;
 | |
|     PyObject *result = 0;
 | |
|     PyObject *py_name = 0;
 | |
|     char warning[200];
 | |
|     py_module = __Pyx_ImportModule(module_name);
 | |
|     if (!py_module)
 | |
|         goto bad;
 | |
|     py_name = __Pyx_PyIdentifier_FromString(class_name);
 | |
|     if (!py_name)
 | |
|         goto bad;
 | |
|     result = PyObject_GetAttr(py_module, py_name);
 | |
|     Py_DECREF(py_name);
 | |
|     py_name = 0;
 | |
|     Py_DECREF(py_module);
 | |
|     py_module = 0;
 | |
|     if (!result)
 | |
|         goto bad;
 | |
|     if (!PyType_Check(result)) {
 | |
|         PyErr_Format(PyExc_TypeError,
 | |
|             "%s.%s is not a type object",
 | |
|             module_name, class_name);
 | |
|         goto bad;
 | |
|     }
 | |
|     if (!strict && (size_t)((PyTypeObject *)result)->tp_basicsize > size) {
 | |
|         PyOS_snprintf(warning, sizeof(warning),
 | |
|             "%s.%s size changed, may indicate binary incompatibility",
 | |
|             module_name, class_name);
 | |
|         #if PY_VERSION_HEX < 0x02050000
 | |
|         if (PyErr_Warn(NULL, warning) < 0) goto bad;
 | |
|         #else
 | |
|         if (PyErr_WarnEx(NULL, warning, 0) < 0) goto bad;
 | |
|         #endif
 | |
|     }
 | |
|     else if ((size_t)((PyTypeObject *)result)->tp_basicsize != size) {
 | |
|         PyErr_Format(PyExc_ValueError,
 | |
|             "%s.%s has the wrong size, try recompiling",
 | |
|             module_name, class_name);
 | |
|         goto bad;
 | |
|     }
 | |
|     return (PyTypeObject *)result;
 | |
| bad:
 | |
|     Py_XDECREF(py_module);
 | |
|     Py_XDECREF(result);
 | |
|     return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void* __Pyx_GetVtable(PyObject *dict) {
 | |
|     void* ptr;
 | |
|     PyObject *ob = PyMapping_GetItemString(dict, (char *)"__pyx_vtable__");
 | |
|     if (!ob)
 | |
|         goto bad;
 | |
| #if PY_VERSION_HEX >= 0x02070000 && !(PY_MAJOR_VERSION==3&&PY_MINOR_VERSION==0)
 | |
|     ptr = PyCapsule_GetPointer(ob, 0);
 | |
| #else
 | |
|     ptr = PyCObject_AsVoidPtr(ob);
 | |
| #endif
 | |
|     if (!ptr && !PyErr_Occurred())
 | |
|         PyErr_SetString(PyExc_RuntimeError, "invalid vtable found for imported type");
 | |
|     Py_DECREF(ob);
 | |
|     return ptr;
 | |
| bad:
 | |
|     Py_XDECREF(ob);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int __pyx_bisect_code_objects(__Pyx_CodeObjectCacheEntry* entries, int count, int code_line) {
 | |
|     int start = 0, mid = 0, end = count - 1;
 | |
|     if (end >= 0 && code_line > entries[end].code_line) {
 | |
|         return count;
 | |
|     }
 | |
|     while (start < end) {
 | |
|         mid = (start + end) / 2;
 | |
|         if (code_line < entries[mid].code_line) {
 | |
|             end = mid;
 | |
|         } else if (code_line > entries[mid].code_line) {
 | |
|              start = mid + 1;
 | |
|         } else {
 | |
|             return mid;
 | |
|         }
 | |
|     }
 | |
|     if (code_line <= entries[mid].code_line) {
 | |
|         return mid;
 | |
|     } else {
 | |
|         return mid + 1;
 | |
|     }
 | |
| }
 | |
| static PyCodeObject *__pyx_find_code_object(int code_line) {
 | |
|     PyCodeObject* code_object;
 | |
|     int pos;
 | |
|     if (unlikely(!code_line) || unlikely(!__pyx_code_cache.entries)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line);
 | |
|     if (unlikely(pos >= __pyx_code_cache.count) || unlikely(__pyx_code_cache.entries[pos].code_line != code_line)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     code_object = __pyx_code_cache.entries[pos].code_object;
 | |
|     Py_INCREF(code_object);
 | |
|     return code_object;
 | |
| }
 | |
| static void __pyx_insert_code_object(int code_line, PyCodeObject* code_object) {
 | |
|     int pos, i;
 | |
|     __Pyx_CodeObjectCacheEntry* entries = __pyx_code_cache.entries;
 | |
|     if (unlikely(!code_line)) {
 | |
|         return;
 | |
|     }
 | |
|     if (unlikely(!entries)) {
 | |
|         entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Malloc(64*sizeof(__Pyx_CodeObjectCacheEntry));
 | |
|         if (likely(entries)) {
 | |
|             __pyx_code_cache.entries = entries;
 | |
|             __pyx_code_cache.max_count = 64;
 | |
|             __pyx_code_cache.count = 1;
 | |
|             entries[0].code_line = code_line;
 | |
|             entries[0].code_object = code_object;
 | |
|             Py_INCREF(code_object);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     pos = __pyx_bisect_code_objects(__pyx_code_cache.entries, __pyx_code_cache.count, code_line);
 | |
|     if ((pos < __pyx_code_cache.count) && unlikely(__pyx_code_cache.entries[pos].code_line == code_line)) {
 | |
|         PyCodeObject* tmp = entries[pos].code_object;
 | |
|         entries[pos].code_object = code_object;
 | |
|         Py_DECREF(tmp);
 | |
|         return;
 | |
|     }
 | |
|     if (__pyx_code_cache.count == __pyx_code_cache.max_count) {
 | |
|         int new_max = __pyx_code_cache.max_count + 64;
 | |
|         entries = (__Pyx_CodeObjectCacheEntry*)PyMem_Realloc(
 | |
|             __pyx_code_cache.entries, new_max*sizeof(__Pyx_CodeObjectCacheEntry));
 | |
|         if (unlikely(!entries)) {
 | |
|             return;
 | |
|         }
 | |
|         __pyx_code_cache.entries = entries;
 | |
|         __pyx_code_cache.max_count = new_max;
 | |
|     }
 | |
|     for (i=__pyx_code_cache.count; i>pos; i--) {
 | |
|         entries[i] = entries[i-1];
 | |
|     }
 | |
|     entries[pos].code_line = code_line;
 | |
|     entries[pos].code_object = code_object;
 | |
|     __pyx_code_cache.count++;
 | |
|     Py_INCREF(code_object);
 | |
| }
 | |
| 
 | |
| #include "compile.h"
 | |
| #include "frameobject.h"
 | |
| #include "traceback.h"
 | |
| static PyCodeObject* __Pyx_CreateCodeObjectForTraceback(
 | |
|             const char *funcname, int c_line,
 | |
|             int py_line, const char *filename) {
 | |
|     PyCodeObject *py_code = 0;
 | |
|     PyObject *py_srcfile = 0;
 | |
|     PyObject *py_funcname = 0;
 | |
|     #if PY_MAJOR_VERSION < 3
 | |
|     py_srcfile = PyString_FromString(filename);
 | |
|     #else
 | |
|     py_srcfile = PyUnicode_FromString(filename);
 | |
|     #endif
 | |
|     if (!py_srcfile) goto bad;
 | |
|     if (c_line) {
 | |
|         #if PY_MAJOR_VERSION < 3
 | |
|         py_funcname = PyString_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line);
 | |
|         #else
 | |
|         py_funcname = PyUnicode_FromFormat( "%s (%s:%d)", funcname, __pyx_cfilenm, c_line);
 | |
|         #endif
 | |
|     }
 | |
|     else {
 | |
|         #if PY_MAJOR_VERSION < 3
 | |
|         py_funcname = PyString_FromString(funcname);
 | |
|         #else
 | |
|         py_funcname = PyUnicode_FromString(funcname);
 | |
|         #endif
 | |
|     }
 | |
|     if (!py_funcname) goto bad;
 | |
|     py_code = __Pyx_PyCode_New(
 | |
|         0,            /*int argcount,*/
 | |
|         0,            /*int kwonlyargcount,*/
 | |
|         0,            /*int nlocals,*/
 | |
|         0,            /*int stacksize,*/
 | |
|         0,            /*int flags,*/
 | |
|         __pyx_empty_bytes, /*PyObject *code,*/
 | |
|         __pyx_empty_tuple, /*PyObject *consts,*/
 | |
|         __pyx_empty_tuple, /*PyObject *names,*/
 | |
|         __pyx_empty_tuple, /*PyObject *varnames,*/
 | |
|         __pyx_empty_tuple, /*PyObject *freevars,*/
 | |
|         __pyx_empty_tuple, /*PyObject *cellvars,*/
 | |
|         py_srcfile,   /*PyObject *filename,*/
 | |
|         py_funcname,  /*PyObject *name,*/
 | |
|         py_line,      /*int firstlineno,*/
 | |
|         __pyx_empty_bytes  /*PyObject *lnotab*/
 | |
|     );
 | |
|     Py_DECREF(py_srcfile);
 | |
|     Py_DECREF(py_funcname);
 | |
|     return py_code;
 | |
| bad:
 | |
|     Py_XDECREF(py_srcfile);
 | |
|     Py_XDECREF(py_funcname);
 | |
|     return NULL;
 | |
| }
 | |
| static void __Pyx_AddTraceback(const char *funcname, int c_line,
 | |
|                                int py_line, const char *filename) {
 | |
|     PyCodeObject *py_code = 0;
 | |
|     PyObject *py_globals = 0;
 | |
|     PyFrameObject *py_frame = 0;
 | |
|     py_code = __pyx_find_code_object(c_line ? c_line : py_line);
 | |
|     if (!py_code) {
 | |
|         py_code = __Pyx_CreateCodeObjectForTraceback(
 | |
|             funcname, c_line, py_line, filename);
 | |
|         if (!py_code) goto bad;
 | |
|         __pyx_insert_code_object(c_line ? c_line : py_line, py_code);
 | |
|     }
 | |
|     py_globals = PyModule_GetDict(__pyx_m);
 | |
|     if (!py_globals) goto bad;
 | |
|     py_frame = PyFrame_New(
 | |
|         PyThreadState_GET(), /*PyThreadState *tstate,*/
 | |
|         py_code,             /*PyCodeObject *code,*/
 | |
|         py_globals,          /*PyObject *globals,*/
 | |
|         0                    /*PyObject *locals*/
 | |
|     );
 | |
|     if (!py_frame) goto bad;
 | |
|     py_frame->f_lineno = py_line;
 | |
|     PyTraceBack_Here(py_frame);
 | |
| bad:
 | |
|     Py_XDECREF(py_code);
 | |
|     Py_XDECREF(py_frame);
 | |
| }
 | |
| 
 | |
| static int __Pyx_InitStrings(__Pyx_StringTabEntry *t) {
 | |
|     while (t->p) {
 | |
|         #if PY_MAJOR_VERSION < 3
 | |
|         if (t->is_unicode) {
 | |
|             *t->p = PyUnicode_DecodeUTF8(t->s, t->n - 1, NULL);
 | |
|         } else if (t->intern) {
 | |
|             *t->p = PyString_InternFromString(t->s);
 | |
|         } else {
 | |
|             *t->p = PyString_FromStringAndSize(t->s, t->n - 1);
 | |
|         }
 | |
|         #else  /* Python 3+ has unicode identifiers */
 | |
|         if (t->is_unicode | t->is_str) {
 | |
|             if (t->intern) {
 | |
|                 *t->p = PyUnicode_InternFromString(t->s);
 | |
|             } else if (t->encoding) {
 | |
|                 *t->p = PyUnicode_Decode(t->s, t->n - 1, t->encoding, NULL);
 | |
|             } else {
 | |
|                 *t->p = PyUnicode_FromStringAndSize(t->s, t->n - 1);
 | |
|             }
 | |
|         } else {
 | |
|             *t->p = PyBytes_FromStringAndSize(t->s, t->n - 1);
 | |
|         }
 | |
|         #endif
 | |
|         if (!*t->p)
 | |
|             return -1;
 | |
|         ++t;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Type Conversion Functions */
 | |
| 
 | |
| static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) {
 | |
|    int is_true = x == Py_True;
 | |
|    if (is_true | (x == Py_False) | (x == Py_None)) return is_true;
 | |
|    else return PyObject_IsTrue(x);
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x) {
 | |
|   PyNumberMethods *m;
 | |
|   const char *name = NULL;
 | |
|   PyObject *res = NULL;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|   if (PyInt_Check(x) || PyLong_Check(x))
 | |
| #else
 | |
|   if (PyLong_Check(x))
 | |
| #endif
 | |
|     return Py_INCREF(x), x;
 | |
|   m = Py_TYPE(x)->tp_as_number;
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|   if (m && m->nb_int) {
 | |
|     name = "int";
 | |
|     res = PyNumber_Int(x);
 | |
|   }
 | |
|   else if (m && m->nb_long) {
 | |
|     name = "long";
 | |
|     res = PyNumber_Long(x);
 | |
|   }
 | |
| #else
 | |
|   if (m && m->nb_int) {
 | |
|     name = "int";
 | |
|     res = PyNumber_Long(x);
 | |
|   }
 | |
| #endif
 | |
|   if (res) {
 | |
| #if PY_VERSION_HEX < 0x03000000
 | |
|     if (!PyInt_Check(res) && !PyLong_Check(res)) {
 | |
| #else
 | |
|     if (!PyLong_Check(res)) {
 | |
| #endif
 | |
|       PyErr_Format(PyExc_TypeError,
 | |
|                    "__%s__ returned non-%s (type %.200s)",
 | |
|                    name, name, Py_TYPE(res)->tp_name);
 | |
|       Py_DECREF(res);
 | |
|       return NULL;
 | |
|     }
 | |
|   }
 | |
|   else if (!PyErr_Occurred()) {
 | |
|     PyErr_SetString(PyExc_TypeError,
 | |
|                     "an integer is required");
 | |
|   }
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) {
 | |
|   Py_ssize_t ival;
 | |
|   PyObject* x = PyNumber_Index(b);
 | |
|   if (!x) return -1;
 | |
|   ival = PyInt_AsSsize_t(x);
 | |
|   Py_DECREF(x);
 | |
|   return ival;
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) {
 | |
| #if PY_VERSION_HEX < 0x02050000
 | |
|    if (ival <= LONG_MAX)
 | |
|        return PyInt_FromLong((long)ival);
 | |
|    else {
 | |
|        unsigned char *bytes = (unsigned char *) &ival;
 | |
|        int one = 1; int little = (int)*(unsigned char*)&one;
 | |
|        return _PyLong_FromByteArray(bytes, sizeof(size_t), little, 0);
 | |
|    }
 | |
| #else
 | |
|    return PyInt_FromSize_t(ival);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static CYTHON_INLINE size_t __Pyx_PyInt_AsSize_t(PyObject* x) {
 | |
|    unsigned PY_LONG_LONG val = __Pyx_PyInt_AsUnsignedLongLong(x);
 | |
|    if (unlikely(val == (unsigned PY_LONG_LONG)-1 && PyErr_Occurred())) {
 | |
|        return (size_t)-1;
 | |
|    } else if (unlikely(val != (unsigned PY_LONG_LONG)(size_t)val)) {
 | |
|        PyErr_SetString(PyExc_OverflowError,
 | |
|                        "value too large to convert to size_t");
 | |
|        return (size_t)-1;
 | |
|    }
 | |
|    return (size_t)val;
 | |
| }
 | |
| 
 | |
| 
 | |
| #endif /* Py_PYTHON_H */
 |