mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			592 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Coq
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Coq
		
	
	
		
			Executable File
		
	
	
	
	
| Require Export Basics.
 | ||
| Module NatList.
 | ||
| Import Playground1.
 | ||
| 
 | ||
| Inductive natprod : Type :=
 | ||
| 	pair : nat -> nat -> natprod.
 | ||
| 
 | ||
| Definition fst (p : natprod) : nat :=
 | ||
| 	match p with
 | ||
| 		| pair x y => x
 | ||
| 	end.
 | ||
| 
 | ||
| Definition snd (p : natprod) : nat :=
 | ||
| 	match p with
 | ||
| 		| pair x y => y
 | ||
| 	end.
 | ||
| 
 | ||
| Notation "( x , y )" := (pair x y).
 | ||
| 
 | ||
| Definition swap_pair (p : natprod) : natprod :=
 | ||
| 	match p with
 | ||
| 			| (x, y) => (y, x)
 | ||
| 	end.
 | ||
| 
 | ||
| Theorem surjective_pairing' : forall (n m : nat),
 | ||
| 	(n, m) = (fst (n, m), snd (n, m)).
 | ||
| Proof.
 | ||
| 	reflexivity.  Qed.
 | ||
| 
 | ||
| Theorem surjective_pairing : forall (p : natprod),
 | ||
| 	p = (fst p, snd p).
 | ||
| Proof.
 | ||
| 	intros p.
 | ||
| 	destruct p as (n, m).
 | ||
| 	simpl.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem snd_fst_is_swap : forall (p : natprod),
 | ||
| 	(snd p, fst p) = swap_pair p.
 | ||
| Proof.
 | ||
| 	intros p.
 | ||
| 	destruct p.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem fst_swap_is_snd : forall (p : natprod),
 | ||
| 	 fst (swap_pair p) = snd p.
 | ||
| Proof.
 | ||
| 	intros p.
 | ||
| 	destruct p.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Inductive natlist : Type :=
 | ||
| 	| nil : natlist
 | ||
| 	| cons : nat -> natlist -> natlist.
 | ||
| 
 | ||
| Definition l_123 := cons (S O) (cons (S (S O)) (cons (S (S (S O))) nil)).
 | ||
| 
 | ||
| Notation "x :: l" := (cons x l) (at level 60, right associativity).
 | ||
| Notation "[ ]" := nil.
 | ||
| Notation "[]" := nil.
 | ||
| Notation "[ x , .. , y ]" := (cons x .. (cons y nil) ..).
 | ||
| 
 | ||
| Fixpoint repeat (n count : nat) : natlist :=
 | ||
| 	match count with
 | ||
| 		| O => nil
 | ||
| 		| S count' => n :: (repeat n count')
 | ||
| 	end.
 | ||
| 
 | ||
| Fixpoint length (l:natlist) : nat :=
 | ||
| 	match l with
 | ||
| 		| nil => O
 | ||
| 		| h :: t => S (length t)
 | ||
| 	end.
 | ||
| 
 | ||
| Fixpoint app (l1 l2 : natlist) : natlist :=
 | ||
| 	match l1 with
 | ||
| 		| nil => l2
 | ||
| 		| h :: t => h :: (app t l2)
 | ||
| 	end.
 | ||
| 
 | ||
| Notation "x ++ y" := (app x y) (right associativity, at level 60).
 | ||
| 
 | ||
| (*
 | ||
| Example test_app1: [1,2,3] ++ [4,5] = [1,2,3,4,5].
 | ||
| Proof. reflexivity. Qed.
 | ||
| Example test_app2: nil ++ [4,5] = [4,5].
 | ||
| Proof. reflexivity. Qed.
 | ||
| Example test_app3: [1,2,3] ++ [] = [1,2,3].
 | ||
| Proof. reflexivity. Qed.
 | ||
| *)
 | ||
| 
 | ||
| Definition head (l : natlist) : nat :=
 | ||
| 	match l with
 | ||
| 		| nil => O
 | ||
| 		| h :: t => h
 | ||
| 	end.
 | ||
| 
 | ||
| Definition tl (l : natlist) : natlist :=
 | ||
| 	match l with
 | ||
| 		| nil => nil
 | ||
| 		| h :: t => t
 | ||
| 	end.
 | ||
| 
 | ||
| 			(*
 | ||
| Example test_tl: tl [1,2,3] = [2,3].
 | ||
| Proof. reflexivity. Qed.
 | ||
| *)
 | ||
| 
 | ||
| Fixpoint nonzeros (l:natlist) : natlist :=
 | ||
| 	match l with
 | ||
| 		| nil => nil
 | ||
| 		| O :: r => nonzeros r
 | ||
| 		| n :: r => n :: (nonzeros r)
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_nonzeros: nonzeros [O,S O,O,S (S O), S (S (S O)),O,O] = [S O,S (S O), S (S (S O))].
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint oddmembers (l:natlist) : natlist :=
 | ||
| 	match l with
 | ||
| 		| nil => nil
 | ||
| 		| n :: r => match (oddb n) with
 | ||
| 										| true => n :: (oddmembers r)
 | ||
| 										| false => oddmembers r
 | ||
| 								end
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_oddmembers: oddmembers [O, S O, O, S (S O), S (S (S O)), O, O] = [S O, S (S (S O))].
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint countoddmembers (l:natlist) : nat :=
 | ||
| 		length (oddmembers l).
 | ||
| 
 | ||
| Example test_countoddmembers2: countoddmembers [O, S (S O), S (S (S (S O)))] = O.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Example test_countoddmembers3: countoddmembers [] = O.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint alternate (l1 l2 : natlist) : natlist :=
 | ||
| 		match l1 with
 | ||
| 				| nil => l2
 | ||
| 				| a :: r1 => match l2 with
 | ||
| 											| nil => l1
 | ||
| 											| b :: r2 => a :: b :: (alternate r1 r2)
 | ||
| 										end
 | ||
| 		end.
 | ||
| 
 | ||
| Example test_alternative1: alternate [S O, S (S O), S (S (S O))] [S (S (S (S O))), S (S (S (S (S O)))), S (S (S (S (S (S O)))))] =
 | ||
| 		[S O, S (S (S (S O))), S (S O), S (S (S (S (S O)))), S (S (S O)), S (S (S (S (S (S O)))))].
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Definition bag := natlist.
 | ||
| 
 | ||
| Fixpoint count (v : nat) (s: bag) : nat :=
 | ||
| 	match s with
 | ||
| 		| nil => O
 | ||
| 		| v' :: r => match (beq_nat v' v) with
 | ||
| 										| true => S (count v r)
 | ||
| 										| false => count v r
 | ||
| 								 end
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_count1: count (S O) [S O, S (S O), S (S (S O)), S O, S (S (S (S O))), S O] = S (S (S O)).
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Definition sum : bag -> bag -> bag := app.
 | ||
| 
 | ||
| Example test_sum1: count (S O) (sum [S O, S (S O), S (S (S O))] [S O, S (S (S (S O))), S O]) = S (S (S O)).
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Definition add (v:nat) (s:bag) : bag := v :: s.
 | ||
| 
 | ||
| Example test_add1: count (S O) (add (S O) [S O, S (S (S (S O))), S O]) = S (S (S O)).
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Definition member (v:nat) (s:bag) : bool :=
 | ||
| 	ble_nat (S O) (count v s).
 | ||
| 
 | ||
| Example test_member1: member (S O) [S O, S (S (S (S O))), S O] = true.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Example test_member2: member (S (S O)) [S O, S (S (S (S O))), S O] = false.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint remove_one (v:nat) (s:bag) : bag :=
 | ||
| 	match s with
 | ||
| 		| nil => nil
 | ||
| 		| v' :: r => match (beq_nat v v') with
 | ||
| 									| true => r
 | ||
| 									| false => v' :: (remove_one v r)
 | ||
| 								 end
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_remove_one1: count (S (S (S (S (S O)))))
 | ||
| 																(remove_one (S (S (S (S (S O)))))
 | ||
| 																[S (S O), S O, S (S (S (S (S O)))), S (S (S (S O))), S O]) = O.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint remove_all (v:nat) (s:bag) : bag :=
 | ||
| 	match s with
 | ||
| 		| nil => nil
 | ||
| 		| v' :: r => match (beq_nat v v') with
 | ||
| 										| true => remove_all v r
 | ||
| 										| false => v' :: (remove_all v r)
 | ||
| 								 end
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_remove_all1: count (S (S (S (S (S O)))))
 | ||
| 																(remove_all (S (S (S (S (S O)))))
 | ||
| 																[S (S O), S O, S (S (S (S (S O)))), S (S (S (S O))), S O]) = O.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint subset (s1:bag) (s2:bag) : bool :=
 | ||
| 		match s1 with
 | ||
| 			| nil => true
 | ||
| 			| v :: r => andb (member v s2)
 | ||
| 											 (subset r (remove_one v s2))
 | ||
| 		end.
 | ||
| 
 | ||
| Definition test_subset1: subset [S O, S (S O)] [S (S O), S O, S (S (S (S O))), S O] = true.
 | ||
| Proof. reflexivity. Qed.
 | ||
| Definition test_subset2: subset [S O, S (S O), S (S O)] [S (S O), S O, S (S (S (S O))), S O] = false.
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem bag_count_add : forall n t: nat, forall s : bag,
 | ||
| 				count n s = t -> count n (add n s) = S t.
 | ||
| Proof.
 | ||
| 	intros n t s.
 | ||
| 	intros H.
 | ||
| 	induction s.
 | ||
| 	simpl.
 | ||
| 	rewrite <- beq_nat_refl.
 | ||
| 	rewrite <- H.
 | ||
| 	reflexivity.
 | ||
| 	rewrite <- H.
 | ||
| 	simpl.
 | ||
| 	rewrite <- beq_nat_refl.
 | ||
| 	reflexivity.
 | ||
| Qed.
 | ||
| 
 | ||
| Theorem nil_app : forall l:natlist,
 | ||
| 	[] ++ l = l.
 | ||
| Proof.
 | ||
| 	reflexivity. Qed.
 | ||
| 
 | ||
| Theorem tl_length_pred : forall l:natlist,
 | ||
| 	pred (length l) = length (tl l).
 | ||
| Proof.
 | ||
| 	intros l. destruct l as [| n l'].
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons n l'".
 | ||
| 		reflexivity. Qed.
 | ||
| 
 | ||
| Theorem app_ass:forall l1 l2 l3 : natlist,
 | ||
| 	(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
 | ||
| Proof.
 | ||
| 	intros l1 l2 l3. induction l1 as [| n l1'].
 | ||
| 	Case "l1 = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l1 = cons n l1'".
 | ||
| 		simpl. rewrite -> IHl1'. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem app_length: forall l1 l2 : natlist,
 | ||
| 	length (l1 ++ l2) = (length l1) + (length l2).
 | ||
| Proof.
 | ||
| 	intros l1 l2. induction l1 as [| n l1'].
 | ||
| 	Case "l1 = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l1 = cons".
 | ||
| 		simpl. rewrite -> IHl1'. reflexivity. Qed.
 | ||
| 
 | ||
| Fixpoint snoc (l:natlist) (v:nat) : natlist :=
 | ||
| 	match l with
 | ||
| 		| nil => [v]
 | ||
| 		| h :: t => h :: (snoc t v)
 | ||
| 	end.
 | ||
| 
 | ||
| Fixpoint rev (l:natlist) : natlist :=
 | ||
| 	match l with
 | ||
| 		| nil => nil
 | ||
| 		| h :: t => snoc (rev t) h
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_rev1: rev [S O, S (S O), S (S (S O))] = [S (S (S O)), S (S O), S O].
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem length_snoc : forall n : nat, forall l : natlist,
 | ||
| 	length (snoc l n) = S (length l).
 | ||
| Proof.
 | ||
| 	intros n l. induction l as [| n' l'].
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons n' l'".
 | ||
| 		simpl. rewrite -> IHl'. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem rev_length : forall l : natlist,
 | ||
| 	length (rev l) = length l.
 | ||
| Proof.
 | ||
| 	intros l. induction l as [| n l'].
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons".
 | ||
| 		simpl. rewrite -> length_snoc.
 | ||
| 		rewrite -> IHl'. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem app_nil_end : forall l :natlist,
 | ||
| 	l ++ [] = l.
 | ||
| Proof.
 | ||
| 	intros l.
 | ||
| 	induction l.
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons".
 | ||
| 		simpl. rewrite -> IHl. reflexivity. Qed.
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| Theorem rev_snoc : forall l: natlist, forall n : nat,
 | ||
| 	rev (snoc l n) = n :: (rev l).
 | ||
| Proof.
 | ||
| 	intros l n.
 | ||
| 	induction l.
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons".
 | ||
| 		simpl.
 | ||
| 		rewrite -> IHl.
 | ||
| 		reflexivity.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem rev_involutive : forall l : natlist,
 | ||
| 	rev (rev l) = l.
 | ||
| Proof.
 | ||
| 	intros l.
 | ||
| 	induction l.
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons".
 | ||
| 		simpl.
 | ||
| 		rewrite -> rev_snoc.
 | ||
| 		rewrite -> IHl.
 | ||
| 		reflexivity.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem app_ass4 : forall l1 l2 l3 l4 : natlist,
 | ||
| 	l1 ++ (l2 ++ (l3 ++ l4)) = ((l1 ++ l2) ++ l3) ++ l4.
 | ||
| Proof.
 | ||
| 	intros l1 l2 l3 l4.
 | ||
| 	rewrite -> app_ass.
 | ||
| 	rewrite -> app_ass.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem snoc_append : forall (l : natlist) (n : nat),
 | ||
| 	snoc l n = l ++ [n].
 | ||
| Proof.
 | ||
| 	intros l n.
 | ||
| 	induction l.
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons".
 | ||
| 		simpl.
 | ||
| 		rewrite -> IHl.
 | ||
| 		reflexivity.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem nonzeros_length : forall l1 l2 : natlist,
 | ||
| 	nonzeros (l1 ++ l2) = (nonzeros l1) ++ (nonzeros l2).
 | ||
| Proof.
 | ||
| 	intros l1 l2.
 | ||
| 	induction l1.
 | ||
| 	Case "l1 = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l1 = cons".
 | ||
| 		simpl.
 | ||
| 		rewrite -> IHl1.
 | ||
| 		destruct n.
 | ||
| 		reflexivity.
 | ||
| 		reflexivity.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem distr_rev : forall l1 l2 : natlist,
 | ||
| 	rev (l1 ++ l2) = (rev l2) ++ (rev l1).
 | ||
| Proof.
 | ||
| 	intros l1 l2.
 | ||
| 	induction l1.
 | ||
| 	Case "l1 = nil".
 | ||
| 		simpl.
 | ||
| 		rewrite -> app_nil_end.
 | ||
| 		reflexivity.
 | ||
| 	Case "l1 = cons".
 | ||
| 		simpl.
 | ||
| 		rewrite -> IHl1.
 | ||
| 		simpl.
 | ||
| 		rewrite -> snoc_append.
 | ||
| 		rewrite -> snoc_append.
 | ||
| 		rewrite -> app_ass.
 | ||
| 		reflexivity.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem count_number_nonzero : forall (s : bag),
 | ||
| 	ble_nat O (count (S O) (S O :: s)) = true.
 | ||
| Proof.
 | ||
| 	intros s.
 | ||
| 	induction s.
 | ||
| 		reflexivity.
 | ||
| 		reflexivity.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem ble_n_Sn : forall n,
 | ||
| 	ble_nat n (S n) = true.
 | ||
| Proof.
 | ||
| 	intros n. induction n as [| n'].
 | ||
| 	Case "0".
 | ||
| 		simpl. reflexivity.
 | ||
| 	Case "S n'".
 | ||
| 		simpl. rewrite -> IHn'. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem remove_decreases_count: forall (s : bag),
 | ||
| 	ble_nat (count O (remove_one O s)) (count O s) = true.
 | ||
| Proof.
 | ||
| 	intros s.
 | ||
| 	induction s.
 | ||
| 	Case "s = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "s = cons".
 | ||
| 		simpl.
 | ||
| 		induction n.
 | ||
| 		SCase "n = O".
 | ||
| 			simpl.  rewrite -> ble_n_Sn.
 | ||
| 			reflexivity.
 | ||
| 		SCase "n = S n'".
 | ||
| 			simpl.
 | ||
| 			rewrite -> IHs.
 | ||
| 			reflexivity.
 | ||
| 			Qed.
 | ||
| 
 | ||
| Inductive natoption : Type :=
 | ||
| 	| Some : nat -> natoption
 | ||
| 	| None : natoption.
 | ||
| 
 | ||
| Fixpoint index (n:nat) (l:natlist) : natoption :=
 | ||
| 	match l with
 | ||
| 		| nil => None
 | ||
| 		| a :: l' => if beq_nat n O then Some a else index (pred n) l'
 | ||
|   end.
 | ||
| 
 | ||
| Definition option_elim (o : natoption) (d : nat) : nat :=
 | ||
| 	match o with
 | ||
| 		| Some n' => n'
 | ||
| 		| None => d
 | ||
| 	end.
 | ||
| 
 | ||
| Definition hd_opt (l : natlist) : natoption :=
 | ||
| 	match l with
 | ||
| 		| nil => None
 | ||
| 		| v :: r => Some v
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_hd_opt1 : hd_opt [] = None.
 | ||
| Proof. reflexivity. Qed.
 | ||
| Example test_hd_opt2 : hd_opt [S O] = Some (S O).
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem option_elim_hd : forall l:natlist,
 | ||
| 	head l = option_elim (hd_opt l) O.
 | ||
| Proof.
 | ||
| 	intros l.
 | ||
| 	destruct l.
 | ||
| 	reflexivity.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Fixpoint beq_natlist (l1 l2 : natlist) : bool :=
 | ||
| 	match l1 with
 | ||
| 		| nil => match l2 with
 | ||
| 							| nil => true
 | ||
| 							| _ => false
 | ||
| 						 end
 | ||
| 		| v1 :: r1 => match l2 with
 | ||
| 									 | nil => false
 | ||
| 									 | v2 :: r2 => if beq_nat v1 v2 then beq_natlist r1 r2
 | ||
| 																 else false
 | ||
| 									end
 | ||
| 	end.
 | ||
| 
 | ||
| Example test_beq_natlist1 : (beq_natlist nil nil = true).
 | ||
| Proof. reflexivity. Qed.
 | ||
| Example test_beq_natlist2 : (beq_natlist [S O, S (S O), S (S (S O))]
 | ||
| 																				 [S O, S (S O), S (S (S O))] = true).
 | ||
| Proof. reflexivity. Qed.
 | ||
| 
 | ||
| Theorem beq_natlist_refl : forall l:natlist,
 | ||
| 	beq_natlist l l = true.
 | ||
| Proof.
 | ||
| 	intros l.
 | ||
| 	induction l.
 | ||
| 	Case "l = nil".
 | ||
| 		reflexivity.
 | ||
| 	Case "l = cons".
 | ||
| 		simpl.
 | ||
| 		rewrite <- beq_nat_refl.
 | ||
| 		rewrite -> IHl.
 | ||
| 		reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem silly1 : forall (n m o p : nat),
 | ||
| 	n = m -> [n, o] = [n, p] -> [n, o] = [m, p].
 | ||
| Proof.
 | ||
| 	intros n m o p eq1 eq2.
 | ||
| 	rewrite <- eq1.
 | ||
| 	apply eq2. Qed.
 | ||
| 
 | ||
| Theorem silly2a : forall (n m : nat),
 | ||
| 	(n,n) = (m,m) ->
 | ||
| 		(forall (q r : nat), (q, q) = (r, r) -> [q] = [r]) ->
 | ||
| 			[n] = [m].
 | ||
| Proof.
 | ||
| 	intros n m eq1 eq2.
 | ||
| 	apply eq2.
 | ||
| 	apply eq1.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem silly_ex :
 | ||
| 	(forall n, evenb n = true -> oddb (S n) = true) ->
 | ||
| 	evenb (S (S (S O))) = true ->
 | ||
| 	oddb (S (S (S (S O)))) = true.
 | ||
| Proof.
 | ||
| 	intros eq1 eq2.
 | ||
| 	apply eq1.
 | ||
| 	apply eq2.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem silly3 : forall (n : nat),
 | ||
| 	true = beq_nat n (S (S (S (S (S O))))) ->
 | ||
| 	beq_nat (S (S n)) (S (S (S (S (S (S (S O))))))) = true.
 | ||
| Proof.
 | ||
| 	intros n H.
 | ||
| 	symmetry.
 | ||
| 	apply H.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem rev_exercise : forall (l l' : natlist),
 | ||
| 	l = rev l' -> l' = rev l.
 | ||
| Proof.
 | ||
| 	intros l l' H.
 | ||
| 	rewrite -> H.
 | ||
| 	rewrite -> rev_involutive.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| Theorem beq_nat_sym : forall (n m:nat), forall (b: bool),
 | ||
| 	beq_nat n m = b -> beq_nat m n = b.
 | ||
| Proof.
 | ||
| 	intros n.
 | ||
| 	induction n as [| n'].
 | ||
| 	Case "n = O".
 | ||
| 		intros m b eq1.
 | ||
| 		induction m.
 | ||
| 		SCase "m = 0".
 | ||
| 			apply eq1.
 | ||
| 		SCase "m = S m'".
 | ||
| 			apply eq1.
 | ||
| 	Case "n = S n'".
 | ||
| 		induction m.
 | ||
| 		SCase "m = 0".
 | ||
| 			intros b eq1.
 | ||
| 			apply eq1.
 | ||
| 		SCase "m = S m'".
 | ||
| 			intros b eq1.
 | ||
| 			apply IHn'.
 | ||
| 			apply eq1.
 | ||
| 		Qed.
 | ||
| 
 | ||
| Theorem app_ass' : forall l1 l2 l3 : natlist,
 | ||
| 	(l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3).
 | ||
| Proof.
 | ||
| 	intros l1. induction l1 as [ | n l1'].
 | ||
| 	reflexivity.
 | ||
| 	simpl.
 | ||
| 	intros l2 l3.
 | ||
| 	rewrite -> IHl1'.
 | ||
| 	reflexivity.
 | ||
| 	Qed.
 | ||
| 
 | ||
| End NatList.
 |