Files
linguist/samples/X10/KMeansSPMD.x10
2015-08-24 13:26:43 -04:00

193 lines
7.4 KiB
Plaintext

/*
* This file is part of the X10 project (http://x10-lang.org).
*
* This file is licensed to You under the Eclipse Public License (EPL);
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.opensource.org/licenses/eclipse-1.0.php
*
* (C) Copyright IBM Corporation 2006-2014.
*/
import x10.io.Console;
import x10.io.File;
import x10.io.Marshal;
import x10.io.IOException;
import x10.util.OptionsParser;
import x10.util.Option;
import x10.util.Team;
/**
* An SPMD formulation of KMeans.
*
* For a highly optimized and scalable version of this benchmark see
* KMeans.x10 in the X10 Benchmarks (separate download from x10-lang.org)
*/
public class KMeansSPMD {
public static def printClusters (clusters:Rail[Float], dims:long) {
for (d in 0..(dims-1)) {
for (k in 0..(clusters.size/dims-1)) {
if (k>0)
Console.OUT.print(" ");
Console.OUT.print(clusters(k*dims+d).toString());
}
Console.OUT.println();
}
}
public static def main (args:Rail[String]) {here == Place.FIRST_PLACE } {
val opts = new OptionsParser(args, [
Option("q","quiet","just print time taken"),
Option("v","verbose","print out each iteration"),
Option("h","help","this information")
], [
Option("p","points","location of data file"),
Option("i","iterations","quit after this many iterations"),
Option("c","clusters","number of clusters to find"),
Option("d","dim","number of dimensions"),
Option("s","slices","factor by which to oversubscribe computational resources"),
Option("n","num","quantity of points")
]);
if (opts.filteredArgs().size!=0L) {
Console.ERR.println("Unexpected arguments: "+opts.filteredArgs());
Console.ERR.println("Use -h or --help.");
System.setExitCode(1n);
return;
}
if (opts("-h")) {
Console.OUT.println(opts.usage(""));
return;
}
val fname = opts("-p", "points.dat");
val num_clusters=opts("-c",4);
val num_slices=opts("-s",1);
val num_global_points=opts("-n", 2000);
val iterations=opts("-i",50);
val dim=opts("-d", 4);
val verbose = opts("-v");
val quiet = opts("-q");
if (!quiet)
Console.OUT.println("points: "+num_global_points+" clusters: "+num_clusters+" dim: "+dim);
// file is dimension-major
val file = new File(fname);
val fr = file.openRead();
val init_points = (long) => Float.fromIntBits(Marshal.INT.read(fr).reverseBytes());
val num_file_points = (file.size() / dim / 4) as Int;
val file_points = new Rail[Float](num_file_points*dim, init_points);
val team = Team.WORLD;
val num_slice_points = num_global_points / num_slices / Place.numPlaces();
finish {
for (h in Place.places()) at(h) async {
var compute_time:Long = 0;
var comm_time:Long = 0;
var barrier_time:Long = 0;
val host_clusters = new Rail[Float](num_clusters*dim, (i:long)=>file_points(i));
val host_cluster_counts = new Rail[Int](num_clusters);
for (slice in 0..(num_slices-1)) {
// carve out local portion of points (point-major)
val offset = (slice*Place.numPlaces() + here.id) * num_slice_points;
if (verbose)
Console.OUT.println(h.toString()+" gets "+offset+" len "+num_slice_points);
val init = (i:long) => {
val p=i%num_slice_points;
val d=i/num_slice_points;
return file_points(offset+p+d*num_file_points);
};
// these are pretty big so allocate up front
val host_points = new Rail[Float](num_slice_points*dim, init);
val host_nearest = new Rail[Float](num_slice_points);
val start_time = System.currentTimeMillis();
barrier_time -= System.nanoTime();
team.barrier();
barrier_time += System.nanoTime();
main_loop: for (iter in 0..(iterations-1)) {
//if (offset==0) Console.OUT.println("Iteration: "+iter);
val old_clusters = new Rail[Float](host_clusters.size);
Rail.copy(host_clusters, 0L, old_clusters, 0L, host_clusters.size);
host_clusters.clear();
host_cluster_counts.clear();
compute_time -= System.nanoTime();
for (p in 0..(num_slice_points-1)) {
var closest:Long = -1;
var closest_dist:Float = Float.MAX_VALUE;
for (k in 0..(num_clusters-1)) {
var dist : Float = 0;
for (d in 0..(dim-1)) {
val tmp = host_points(p+d*num_slice_points) - old_clusters(k*dim+d);
dist += tmp * tmp;
}
if (dist < closest_dist) {
closest_dist = dist;
closest = k;
}
}
for (d in 0..(dim-1)) {
host_clusters(closest*dim+d) += host_points(p+d*num_slice_points);
}
host_cluster_counts(closest)++;
}
compute_time += System.nanoTime();
comm_time -= System.nanoTime();
team.allreduce(host_clusters, 0L, host_clusters, 0L, host_clusters.size, Team.ADD);
team.allreduce(host_cluster_counts, 0L, host_cluster_counts, 0L, host_cluster_counts.size, Team.ADD);
comm_time += System.nanoTime();
for (k in 0..(num_clusters-1)) {
for (d in 0..(dim-1)) host_clusters(k*dim+d) /= host_cluster_counts(k);
}
if (offset==0 && verbose) {
Console.OUT.println("Iteration: "+iter);
printClusters(host_clusters,dim);
}
// TEST FOR CONVERGENCE
for (j in 0..(num_clusters*dim-1)) {
if (true/*||Math.abs(clusters_old(j)-host_clusters(j))>0.0001*/) continue main_loop;
}
break;
} // main_loop
} // slice
Console.OUT.printf("%d: computation %.3f s communication %.3f s (barrier %.3f s)\n",
here.id, compute_time/1E9, comm_time/1E9, barrier_time/1E9);
team.barrier();
if (here.id == 0) {
Console.OUT.println("\nFinal results:");
printClusters(host_clusters,dim);
}
} // async
} // finish
}
}
// vim: shiftwidth=4:tabstop=4:expandtab