mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			708 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Coq
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			708 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Coq
		
	
	
		
			Executable File
		
	
	
	
	
| Inductive day : Type :=
 | |
| | monday : day
 | |
| | tuesday : day
 | |
| | wednesday : day
 | |
| | thursday : day
 | |
| | friday : day
 | |
| | saturday : day
 | |
| | sunday : day.
 | |
| 
 | |
| Definition next_weekday (d:day) : day :=
 | |
|   match d with
 | |
|   | monday => tuesday
 | |
|   | tuesday => wednesday
 | |
|   | wednesday => thursday
 | |
|   | thursday => friday
 | |
|   | friday => monday
 | |
|   | saturday => monday
 | |
|   | sunday => monday
 | |
|   end.
 | |
| 
 | |
| Example test_next_weekday:
 | |
| (next_weekday (next_weekday saturday)) = tuesday.
 | |
| 
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Inductive bool : Type :=
 | |
| 	| true : bool
 | |
| 	| false : bool.
 | |
| 
 | |
| Definition negb (b:bool) : bool :=
 | |
| 													 match b with
 | |
| 																			 | true => false
 | |
| 																			 | false => true
 | |
| 													 end.
 | |
| 
 | |
| Definition andb (b1:bool) (b2:bool) : bool :=
 | |
| 		match b1 with
 | |
| 		 | true => b2
 | |
| 		 | false => false
 | |
| 	  end.
 | |
| 
 | |
| Definition orb (b1:bool) (b2:bool) : bool :=
 | |
| 		match b1 with
 | |
| 		  | true => true
 | |
| 		  | false => b2
 | |
| 		end.
 | |
| 
 | |
| Example test_orb1: (orb true false) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Example test_orb2: (orb false false) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Example test_orb3: (orb false true) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Example test_orb4: (orb true true) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Definition nandb (b1: bool) (b2:bool) : bool :=
 | |
| 	match b1 with
 | |
| 		| true => match b2 with
 | |
| 										| false => true
 | |
| 										| true => false
 | |
| 							end
 | |
| 		| false => true
 | |
| 	end.
 | |
| 
 | |
| Example test_nandb1: (nandb true false) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_nandb2: (nandb false false) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_nandb3: (nandb false true) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_nandb4: (nandb true true) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Definition andb3 (b1: bool) (b2:bool) (b3:bool) : bool :=
 | |
| 	match b1 with
 | |
|     | false => false
 | |
| 		| true => match b2 with
 | |
| 								| false => false
 | |
| 								| true => b3
 | |
| 							end
 | |
| 	end.
 | |
| 
 | |
| Example test_andb31: (andb3 true true true) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_andb32: (andb3 false true true) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_andb33: (andb3 true false true) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_andb34: (andb3 true true false) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Module Playground1.
 | |
| 
 | |
| Inductive nat : Type :=
 | |
| 	| O : nat
 | |
| 	| S : nat -> nat.
 | |
| 
 | |
| Definition pred (n : nat) : nat :=
 | |
| 	match n with
 | |
| 		| O => O
 | |
| 		| S n' => n'
 | |
| 	end.
 | |
| 
 | |
| Definition minustwo (n : nat) : nat :=
 | |
| 	match n with
 | |
| 		| O => O
 | |
| 		| S O => O
 | |
| 		| S (S n') => n'
 | |
| 	end.
 | |
| 
 | |
| Fixpoint evenb (n : nat) : bool :=
 | |
| 	match n with
 | |
| 		| O => true
 | |
| 		| S O => false
 | |
| 		| S (S n') => evenb n'
 | |
| 	end.
 | |
| 
 | |
| Definition oddb (n : nat) : bool := negb (evenb n).
 | |
| 
 | |
| Example test_oddb1: (oddb (S O)) = true.
 | |
| Proof. reflexivity. Qed.
 | |
| Example test_oddb2: (oddb (S (S (S (S O))))) = false.
 | |
| Proof. reflexivity. Qed.
 | |
| 
 | |
| Fixpoint plus (n : nat) (m : nat) : nat :=
 | |
| 	match n with
 | |
| 		| O => m
 | |
| 		| S n' => S (plus n' m)
 | |
| 	end.
 | |
| 
 | |
| Fixpoint mult (n m : nat) : nat :=
 | |
| 	match n with
 | |
| 		| O => O
 | |
| 		| S n' => plus m (mult n' m)
 | |
| 	end.
 | |
| 
 | |
| Fixpoint minus (n m : nat) : nat :=
 | |
| 	match n, m with
 | |
| 		| O, _ => n
 | |
| 		| S n', O => S n'
 | |
| 		| S n', S m' => minus n' m'
 | |
| 	end.
 | |
| 
 | |
| Fixpoint exp (base power : nat) : nat :=
 | |
| 	match power with
 | |
| 		| O => S O
 | |
| 		| S p => mult base (exp base p)
 | |
| 	end.
 | |
| 
 | |
| Fixpoint factorial (n : nat) : nat :=
 | |
| 	match n with
 | |
| 		| O => S O
 | |
| 		| S n' => mult n (factorial n')
 | |
| 	end.
 | |
| 
 | |
| Example test_factorial1: (factorial (S (S (S O)))) = (S (S (S (S (S (S O)))))).
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Notation "x + y" := (plus x y) (at level 50, left associativity) : nat_scope.
 | |
| Notation "x - y" := (minus x y) (at level 50, left associativity) : nat_scope.
 | |
| Notation "x * y" := (mult x y) (at level 40, left associativity) : nat_scope.
 | |
| 
 | |
| Fixpoint beq_nat (n m : nat) : bool :=
 | |
| 	match n with
 | |
| 		| O => match m with
 | |
| 						| O => true
 | |
| 						| S m' => false
 | |
| 					 end
 | |
| 		| S n' => match m with
 | |
| 							| O => false
 | |
| 							| S m' => beq_nat n' m'
 | |
| 							end
 | |
| 	end.
 | |
| 
 | |
| Fixpoint ble_nat (n m : nat) : bool :=
 | |
| 	match n with
 | |
| 		| O => true
 | |
| 		| S n' => 
 | |
| 				match m with
 | |
| 					| O => false
 | |
| 					| S m' => ble_nat n' m'
 | |
| 				end
 | |
| 	end.
 | |
| 
 | |
| Example test_ble_nat1: (ble_nat (S (S O)) (S (S O))) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_ble_nat2: (ble_nat (S (S O)) (S (S (S (S O))))) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_ble_nat3: (ble_nat (S (S (S (S O)))) (S (S O))) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Definition blt_nat (n m : nat) : bool :=
 | |
| 		(andb (negb (beq_nat n m)) (ble_nat n m)).
 | |
| 
 | |
| Example test_blt_nat1: (blt_nat (S (S O)) (S (S O))) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_blt_nat3: (blt_nat (S (S (S (S O)))) (S (S O))) = false.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| Example test_blt_nat2 : (blt_nat (S (S O)) (S (S (S (S O))))) = true.
 | |
| Proof. simpl. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_O_n : forall n : nat, O + n = n.
 | |
| Proof.
 | |
| 	simpl. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_O_n' : forall n : nat, O + n = n.
 | |
| Proof.
 | |
| 	reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_O_n'' : forall n : nat, O + n = n.
 | |
| Proof.
 | |
| 	intros n. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_1_1 : forall n : nat, (S O) + n = S n.
 | |
| Proof.
 | |
| 	intros n. reflexivity. Qed.
 | |
| 
 | |
| Theorem mult_0_1: forall n : nat, O * n = O.
 | |
| Proof.
 | |
| 	intros n. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_id_example : forall n m:nat,
 | |
| 	n = m -> n + n = m + m.
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	intros H.
 | |
| 	rewrite -> H.
 | |
| 	reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_id_exercise : forall n m o: nat,
 | |
| 	n = m -> m = o -> n + m = m + o.
 | |
| Proof.
 | |
| 	intros n m o.
 | |
| 	intros H.
 | |
| 	intros H'.
 | |
| 	rewrite -> H.
 | |
| 	rewrite <- H'.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_0_plus : forall n m : nat,
 | |
| 				(O + n) * m = n * m.
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	rewrite -> plus_O_n.
 | |
| 	reflexivity. Qed.
 | |
| 
 | |
| Theorem mult_1_plus : forall n m: nat,
 | |
| 	((S O) + n) * m = m + (n * m).
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	rewrite -> plus_1_1.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_1 : forall n : nat,
 | |
| 				n * (S O) = n.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	induction n as [| n'].
 | |
| 	reflexivity.
 | |
| 	simpl.
 | |
| 	rewrite -> IHn'.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem plus_1_neq_0 : forall n : nat,
 | |
| 				beq_nat (n + (S O)) O = false.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	destruct n as [| n'].
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem zero_nbeq_plus_1 : forall n : nat,
 | |
| 				beq_nat O (n + (S O)) = false.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	destruct n.
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| Qed.
 | |
| 
 | |
| Require String. Open Scope string_scope.
 | |
| 
 | |
| Ltac move_to_top x :=
 | |
| match reverse goal with
 | |
| | H : _ |- _ => try move x after H
 | |
| end.
 | |
| 
 | |
| Tactic Notation "assert_eq" ident(x) constr(v) :=
 | |
| 	let H := fresh in
 | |
| 	assert (x = v) as H by reflexivity;
 | |
| 	clear H.
 | |
| 
 | |
| 	Tactic Notation "Case_aux" ident(x) constr(name) :=
 | |
| 		first [
 | |
| 		set (x := name); move_to_top x
 | |
| 		| assert_eq x name; move_to_top x
 | |
| 		| fail 1 "because we are working on a different case" ].
 | |
| 
 | |
| 		Ltac Case name := Case_aux Case name.
 | |
| 		Ltac SCase name := Case_aux SCase name.
 | |
| 		Ltac SSCase name := Case_aux SSCase name.
 | |
| 		Ltac SSSCase name := Case_aux SSSCase name.
 | |
| 		Ltac SSSSCase name := Case_aux SSSSCase name.
 | |
| 		Ltac SSSSSCase name := Case_aux SSSSSCase name.
 | |
| 		Ltac SSSSSSCase name := Case_aux SSSSSSCase name.
 | |
| 		Ltac SSSSSSSCase name := Case_aux SSSSSSSCase name.
 | |
| 
 | |
| Theorem andb_true_elim1 : forall b c : bool,
 | |
| 				andb b c = true -> b = true.
 | |
| Proof.
 | |
| 	intros b c H.
 | |
| 	destruct b.
 | |
| 	Case "b = true".
 | |
| 		reflexivity.
 | |
| 	Case "b = false".
 | |
| 		rewrite <- H. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_0_r : forall n : nat, n + O = n.
 | |
| Proof.
 | |
| 	intros n. induction n as [| n'].
 | |
| 	Case "n = 0". reflexivity.
 | |
| 	Case "n = S n'". simpl. rewrite -> IHn'. reflexivity. Qed.
 | |
| 
 | |
| Theorem minus_diag : forall n,
 | |
| 				minus n n = O.
 | |
| Proof.
 | |
| 	intros n. induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		simpl. reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl. rewrite -> IHn'. reflexivity. Qed.
 | |
| 
 | |
| 
 | |
| Theorem mult_0_r : forall n:nat,
 | |
| 				n * O = O.
 | |
| Proof.
 | |
| 	intros n. induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl. rewrite -> IHn'. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_n_Sm : forall n m : nat,
 | |
| 				S (n + m) = n + (S m).
 | |
| Proof.
 | |
| 	intros n m. induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl. rewrite -> IHn'. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_assoc : forall n m p : nat,
 | |
| 					n + (m + p) = (n + m) + p.
 | |
| Proof.
 | |
| 	intros n m p.
 | |
| 	induction n as [| n'].
 | |
| 	reflexivity.
 | |
| 	simpl.
 | |
| 	rewrite -> IHn'.
 | |
| 	reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_distr : forall n m: nat, S (n + m) = n + (S m).
 | |
| Proof.
 | |
| 	intros n m.  induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl. rewrite -> IHn'. reflexivity. Qed.
 | |
| 
 | |
| Theorem mult_distr : forall n m: nat, n * ((S O) + m) = n * (S m).
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	induction n as [| n'].
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem plus_comm : forall n m : nat,
 | |
| 	n + m = m + n.
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		simpl.
 | |
| 		rewrite -> plus_0_r.
 | |
| 		reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl.
 | |
| 		rewrite -> IHn'.
 | |
| 		rewrite -> plus_distr.
 | |
| 		reflexivity. Qed.
 | |
| 
 | |
| Fixpoint double (n:nat) :=
 | |
| 	match n with
 | |
| 		| O => O
 | |
| 		| S n' => S (S (double n'))
 | |
| 	end.
 | |
| 
 | |
| Lemma double_plus : forall n, double n = n + n.
 | |
| Proof.
 | |
| 	intros n. induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl. rewrite -> IHn'.
 | |
| 		rewrite -> plus_distr. reflexivity.
 | |
| 		Qed.
 | |
| 
 | |
| Theorem beq_nat_refl : forall n : nat,
 | |
| 	true = beq_nat n n.
 | |
| Proof.
 | |
| 	intros n. induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		reflexivity.
 | |
| 	Case "n = S n".
 | |
| 		simpl. rewrite <- IHn'.
 | |
| 		reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_rearrange: forall n m p q : nat,
 | |
| 				(n + m) + (p + q) = (m + n) + (p + q).
 | |
| Proof.
 | |
| 	intros n m p q.
 | |
| 	assert(H: n + m = m + n).
 | |
| 		Case "Proof by assertion".
 | |
| 		rewrite -> plus_comm. reflexivity.
 | |
| 	rewrite -> H. reflexivity. Qed.
 | |
| 
 | |
| Theorem plus_swap : forall n m p: nat,
 | |
| 				n + (m + p) = m + (n + p).
 | |
| Proof.
 | |
| 	intros n m p.
 | |
| 	rewrite -> plus_assoc.
 | |
| 	assert(H: m + (n + p) = (m + n) + p).
 | |
| 	rewrite -> plus_assoc.
 | |
| 	reflexivity.
 | |
| 	rewrite -> H.
 | |
| 	assert(H2: m + n = n + m).
 | |
| 	rewrite -> plus_comm.
 | |
| 	reflexivity.
 | |
| 	rewrite -> H2.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem plus_swap' : forall n m p: nat,
 | |
| 				n + (m + p) = m + (n + p).
 | |
| Proof.
 | |
| 	intros n m p.
 | |
| 	rewrite -> plus_assoc.
 | |
| 	assert(H: m + (n + p) = (m + n) + p).
 | |
| 	rewrite -> plus_assoc.
 | |
| 	reflexivity.
 | |
| 	rewrite -> H.
 | |
| 	replace (m + n) with (n + m).
 | |
| 	rewrite -> plus_comm.
 | |
| 	reflexivity.
 | |
| 	rewrite -> plus_comm.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_1_distr: forall m n: nat,
 | |
| 				n * ((S O) + m) = n * (S O) + n * m.
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	rewrite -> mult_1.
 | |
| 	rewrite -> plus_1_1.
 | |
| 	simpl.
 | |
| 	induction m as [|m'].
 | |
| 	simpl.
 | |
| 	reflexivity.
 | |
| 	simpl.
 | |
| 	rewrite -> plus_swap.
 | |
| 	rewrite <- IHm'.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_comm: forall m n : nat,
 | |
| 				m * n = n * m.
 | |
| Proof.
 | |
| 	intros m n.
 | |
| 	induction n as [| n'].
 | |
| 	Case "n = 0".
 | |
| 		simpl.
 | |
| 		rewrite -> mult_0_r.
 | |
| 		reflexivity.
 | |
| 	Case "n = S n'".
 | |
| 		simpl.
 | |
| 		rewrite <- mult_distr.
 | |
| 		rewrite -> mult_1_distr.
 | |
| 		rewrite -> mult_1.
 | |
| 		rewrite -> IHn'.
 | |
| 		reflexivity.
 | |
| 		Qed.
 | |
| 
 | |
| Theorem evenb_next : forall n : nat,
 | |
| 				evenb n = evenb (S (S n)).
 | |
| Proof.
 | |
| 	intros n.
 | |
| Admitted.
 | |
| 
 | |
| Theorem negb_negb : forall n : bool,
 | |
| 				n = negb (negb n).
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	destruct n.
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem evenb_n_oddb_Sn : forall n : nat,
 | |
| 				evenb n = negb (evenb (S n)).
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	induction n as [|n'].
 | |
| 	reflexivity.
 | |
| 	assert(H: evenb n' = evenb (S (S n'))).
 | |
| 	reflexivity.
 | |
| 	rewrite <- H.
 | |
| 	rewrite -> IHn'.
 | |
| 	rewrite <- negb_negb.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| (*Fixpoint bad (n : nat) : bool :=
 | |
| 	match n with
 | |
| 		| O => true
 | |
| 		| S O => bad (S n)
 | |
| 		| S (S n') => bad n'
 | |
| 	end.*)
 | |
| 
 | |
| Theorem ble_nat_refl : forall n:nat,
 | |
| 				true = ble_nat n n.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	induction n as [|n'].
 | |
| 	Case "n = 0".
 | |
| 		reflexivity.
 | |
| 	Case "n = S n".
 | |
| 		simpl.
 | |
| 		rewrite <- IHn'.
 | |
| 		reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem zero_nbeq_S : forall n: nat,
 | |
| 				beq_nat O (S n) = false.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem andb_false_r : forall b : bool,
 | |
| 				andb b false = false.
 | |
| Proof.
 | |
| 	intros b.
 | |
| 	destruct b.
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem plus_ble_compat_1 : forall n m p : nat,
 | |
| 				ble_nat n m = true -> ble_nat (p + n) (p + m) = true.
 | |
| Proof.
 | |
| 	intros n m p.
 | |
| 	intros H.
 | |
| 	induction p.
 | |
| 	Case "p = 0".
 | |
| 		simpl.
 | |
| 		rewrite -> H.
 | |
| 		reflexivity.
 | |
| 	Case "p = S p'".
 | |
| 		simpl.
 | |
| 		rewrite -> IHp.
 | |
| 		reflexivity.
 | |
| 		Qed.
 | |
| 
 | |
| Theorem S_nbeq_0 : forall n:nat,
 | |
| 				beq_nat (S n) O = false.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_1_1 : forall n:nat, (S O) * n = n.
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	simpl.
 | |
| 	rewrite -> plus_0_r.
 | |
| 	reflexivity. Qed.
 | |
| 
 | |
| Theorem all3_spec : forall b c : bool,
 | |
| 	orb (andb b c)
 | |
| 			(orb (negb b)
 | |
| 			 		 (negb c))
 | |
| 	= true.
 | |
| Proof.
 | |
| 	intros b c.
 | |
| 	destruct b.
 | |
| 	destruct c.
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Lemma mult_plus_1 : forall n m : nat,
 | |
| 			S(m + n) = m + (S n).
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	induction m.
 | |
| 	reflexivity.
 | |
| 	simpl.
 | |
| 	rewrite -> IHm.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_mult : forall n m : nat,
 | |
| 	n * (S m) = n * m + n.
 | |
| Proof.
 | |
| 	intros n m.
 | |
| 	induction n.
 | |
| 	reflexivity.
 | |
| 	simpl.
 | |
| 	rewrite -> IHn.
 | |
| 	rewrite -> plus_assoc.
 | |
| 	rewrite -> mult_plus_1.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_plus_distr_r : forall n m p:nat,
 | |
| 				(n + m) * p = (n * p) + (m * p).
 | |
| Proof.
 | |
| 	intros n m p.
 | |
| 	induction p.
 | |
| 	rewrite -> mult_0_r.
 | |
| 	rewrite -> mult_0_r.
 | |
| 	rewrite -> mult_0_r.
 | |
| 	reflexivity.
 | |
| 	rewrite -> mult_mult.
 | |
| 	rewrite -> mult_mult.
 | |
| 	rewrite -> mult_mult.
 | |
| 	rewrite -> IHp.
 | |
| 	assert(H1: ((n * p) + n) + (m * p + m) = (n * p) + (n + (m * p + m))).
 | |
| 	rewrite <- plus_assoc.
 | |
| 	reflexivity.
 | |
| 	rewrite -> H1.
 | |
| 	assert(H2: (n + (m * p + m)) = (m * p + (n + m))).
 | |
| 	rewrite -> plus_swap.
 | |
| 	reflexivity.
 | |
| 	rewrite -> H2.
 | |
| 	assert(H3: (n * p) + (m * p + (n + m)) = ((n * p ) + (m * p)) + (n + m)).
 | |
| 	rewrite -> plus_assoc.
 | |
| 	reflexivity.
 | |
| 	rewrite -> H3.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Theorem mult_assoc : forall n m p : nat,
 | |
| 				n * (m * p) = (n * m) * p.
 | |
| Proof.
 | |
| 	intros n m p.
 | |
| 	induction n.
 | |
| 	simpl.
 | |
| 	reflexivity.
 | |
| 	simpl.
 | |
| 	rewrite -> mult_plus_distr_r.
 | |
| 	rewrite -> IHn.
 | |
| 	reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| Inductive bin : Type :=
 | |
| 	| BO : bin
 | |
| 	| D : bin -> bin
 | |
| 	| M : bin -> bin.
 | |
| 
 | |
| Fixpoint incbin (n : bin) : bin :=
 | |
| 	match n with
 | |
| 		| BO => M (BO)
 | |
| 		| D n' => M n'
 | |
| 		| M n' => D (incbin n')
 | |
| 	end.
 | |
| 
 | |
| Fixpoint bin2un (n : bin) : nat :=
 | |
| 	match n with
 | |
| 		| BO => O
 | |
| 		| D n' => double (bin2un n')
 | |
| 		| M n' => S (double (bin2un n'))
 | |
| 	end.
 | |
| 
 | |
| Theorem bin_comm : forall n : bin,
 | |
| 				bin2un(incbin n) = S (bin2un n).
 | |
| Proof.
 | |
| 	intros n.
 | |
| 	induction n.
 | |
| 		reflexivity.
 | |
| 		reflexivity.
 | |
| 		simpl.
 | |
| 		rewrite -> IHn.
 | |
| 		reflexivity.
 | |
| 	Qed.
 | |
| 
 | |
| End Playground1.
 |