mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			291 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Coq
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Coq
		
	
	
		
			Executable File
		
	
	
	
	
(** A development of Treesort on Heap trees. It has an average
 | 
						|
    complexity of O(n.log n) but of O(n²) in the worst case (e.g. if
 | 
						|
    the list is already sorted) *)
 | 
						|
 | 
						|
(* G. Huet 1-9-95 uses Multiset *)
 | 
						|
 | 
						|
Require Import List Multiset PermutSetoid Relations Sorting.
 | 
						|
 | 
						|
Section defs.
 | 
						|
 | 
						|
  (** * Trees and heap trees *)
 | 
						|
 | 
						|
  (** ** Definition of trees over an ordered set *)
 | 
						|
 | 
						|
  Variable A : Type.
 | 
						|
  Variable leA : relation A.
 | 
						|
  Variable eqA : relation A.
 | 
						|
 | 
						|
  Let gtA (x y:A) := ~ leA x y.
 | 
						|
 | 
						|
  Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
 | 
						|
  Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
 | 
						|
  Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
 | 
						|
  Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
 | 
						|
  Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
 | 
						|
 | 
						|
  Hint Resolve leA_refl.
 | 
						|
  Hint Immediate eqA_dec leA_dec leA_antisym.
 | 
						|
 | 
						|
  Let emptyBag := EmptyBag A.
 | 
						|
  Let singletonBag := SingletonBag _ eqA_dec.
 | 
						|
 | 
						|
  Inductive Tree :=
 | 
						|
    | Tree_Leaf : Tree
 | 
						|
    | Tree_Node : A -> Tree -> Tree -> Tree.
 | 
						|
 | 
						|
  (** [a] is lower than a Tree [T] if [T] is a Leaf
 | 
						|
      or [T] is a Node holding [b>a] *)
 | 
						|
 | 
						|
  Definition leA_Tree (a:A) (t:Tree) :=
 | 
						|
    match t with
 | 
						|
      | Tree_Leaf => True
 | 
						|
      | Tree_Node b T1 T2 => leA a b
 | 
						|
    end.
 | 
						|
 | 
						|
  Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
 | 
						|
  Proof.
 | 
						|
    simpl; auto with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
  Lemma leA_Tree_Node :
 | 
						|
    forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
 | 
						|
  Proof.
 | 
						|
    simpl; auto with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
 | 
						|
  (** ** The heap property *)
 | 
						|
 | 
						|
  Inductive is_heap : Tree -> Prop :=
 | 
						|
    | nil_is_heap : is_heap Tree_Leaf
 | 
						|
    | node_is_heap :
 | 
						|
      forall (a:A) (T1 T2:Tree),
 | 
						|
        leA_Tree a T1 ->
 | 
						|
        leA_Tree a T2 ->
 | 
						|
        is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2).
 | 
						|
 | 
						|
  Lemma invert_heap :
 | 
						|
    forall (a:A) (T1 T2:Tree),
 | 
						|
      is_heap (Tree_Node a T1 T2) ->
 | 
						|
      leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2.
 | 
						|
  Proof.
 | 
						|
    intros; inversion H; auto with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
  (* This lemma ought to be generated automatically by the Inversion tools *)
 | 
						|
  Lemma is_heap_rect :
 | 
						|
    forall P:Tree -> Type,
 | 
						|
      P Tree_Leaf ->
 | 
						|
      (forall (a:A) (T1 T2:Tree),
 | 
						|
        leA_Tree a T1 ->
 | 
						|
        leA_Tree a T2 ->
 | 
						|
        is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
 | 
						|
      forall T:Tree, is_heap T -> P T.
 | 
						|
  Proof.
 | 
						|
    simple induction T; auto with datatypes.
 | 
						|
    intros a G PG D PD PN.
 | 
						|
    elim (invert_heap a G D); auto with datatypes.
 | 
						|
    intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
 | 
						|
    apply X0; auto with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
  (* This lemma ought to be generated automatically by the Inversion tools *)
 | 
						|
  Lemma is_heap_rec :
 | 
						|
    forall P:Tree -> Set,
 | 
						|
      P Tree_Leaf ->
 | 
						|
      (forall (a:A) (T1 T2:Tree),
 | 
						|
        leA_Tree a T1 ->
 | 
						|
        leA_Tree a T2 ->
 | 
						|
        is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
 | 
						|
      forall T:Tree, is_heap T -> P T.
 | 
						|
  Proof.
 | 
						|
    simple induction T; auto with datatypes.
 | 
						|
    intros a G PG D PD PN.
 | 
						|
    elim (invert_heap a G D); auto with datatypes.
 | 
						|
    intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
 | 
						|
    apply X; auto with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
  Lemma low_trans :
 | 
						|
    forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
 | 
						|
  Proof.
 | 
						|
    simple induction T; auto with datatypes.
 | 
						|
    intros; simpl; apply leA_trans with b; auto with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
  (** ** Merging two sorted lists *)
 | 
						|
 | 
						|
  Inductive merge_lem (l1 l2:list A) : Type :=
 | 
						|
    merge_exist :
 | 
						|
    forall l:list A,
 | 
						|
      Sorted leA l ->
 | 
						|
      meq (list_contents _ eqA_dec l)
 | 
						|
      (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2)) ->
 | 
						|
      (forall a, HdRel leA a l1 -> HdRel leA a l2 -> HdRel leA a l) ->
 | 
						|
      merge_lem l1 l2.
 | 
						|
  Require Import Morphisms.
 | 
						|
 | 
						|
  Instance: Equivalence (@meq A).
 | 
						|
  Proof. constructor; auto with datatypes. red. apply meq_trans. Defined.
 | 
						|
 | 
						|
  Instance: Proper (@meq A ++> @meq _ ++> @meq _) (@munion A).
 | 
						|
  Proof. intros x y H x' y' H'. now apply meq_congr. Qed.
 | 
						|
 | 
						|
  Lemma merge :
 | 
						|
    forall l1:list A, Sorted leA l1 ->
 | 
						|
    forall l2:list A, Sorted leA l2 -> merge_lem l1 l2.
 | 
						|
  Proof.
 | 
						|
    fix 1; intros; destruct l1.
 | 
						|
    apply merge_exist with l2; auto with datatypes.
 | 
						|
    rename l1 into l.
 | 
						|
    revert l2 H0. fix 1. intros.
 | 
						|
    destruct l2 as [|a0 l0].
 | 
						|
    apply merge_exist with (a :: l); simpl; auto with datatypes.
 | 
						|
    elim (leA_dec a a0); intros.
 | 
						|
 | 
						|
    (* 1 (leA a a0) *)
 | 
						|
    apply Sorted_inv in H. destruct H.
 | 
						|
    destruct (merge l H (a0 :: l0) H0).
 | 
						|
    apply merge_exist with (a :: l1). clear merge merge0.
 | 
						|
      auto using cons_sort, cons_leA with datatypes.
 | 
						|
    simpl. rewrite m. now rewrite munion_ass.
 | 
						|
    intros. apply cons_leA.
 | 
						|
    apply (@HdRel_inv _ leA) with l; trivial with datatypes.
 | 
						|
 | 
						|
    (* 2 (leA a0 a) *)
 | 
						|
    apply Sorted_inv in H0. destruct H0.
 | 
						|
    destruct (merge0 l0 H0). clear merge merge0.
 | 
						|
    apply merge_exist with (a0 :: l1);
 | 
						|
      auto using cons_sort, cons_leA with datatypes.
 | 
						|
    simpl; rewrite m. simpl. setoid_rewrite munion_ass at 1. rewrite munion_comm.
 | 
						|
    repeat rewrite munion_ass. setoid_rewrite munion_comm at 3. reflexivity.
 | 
						|
    intros. apply cons_leA.
 | 
						|
    apply (@HdRel_inv _ leA) with l0; trivial with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
  (** ** From trees to multisets *)
 | 
						|
 | 
						|
  (** contents of a tree as a multiset *)
 | 
						|
 | 
						|
  (** Nota Bene : In what follows the definition of SingletonBag
 | 
						|
      in not used. Actually, we could just take as postulate:
 | 
						|
      [Parameter SingletonBag : A->multiset].  *)
 | 
						|
 | 
						|
  Fixpoint contents (t:Tree) : multiset A :=
 | 
						|
    match t with
 | 
						|
      | Tree_Leaf => emptyBag
 | 
						|
      | Tree_Node a t1 t2 =>
 | 
						|
        munion (contents t1) (munion (contents t2) (singletonBag a))
 | 
						|
    end.
 | 
						|
 | 
						|
 | 
						|
  (** equivalence of two trees is equality of corresponding multisets *)
 | 
						|
  Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2).
 | 
						|
 | 
						|
 | 
						|
 | 
						|
  (** * From lists to sorted lists *)
 | 
						|
 | 
						|
  (** ** Specification of heap insertion *)
 | 
						|
 | 
						|
  Inductive insert_spec (a:A) (T:Tree) : Type :=
 | 
						|
    insert_exist :
 | 
						|
    forall T1:Tree,
 | 
						|
      is_heap T1 ->
 | 
						|
      meq (contents T1) (munion (contents T) (singletonBag a)) ->
 | 
						|
      (forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) ->
 | 
						|
      insert_spec a T.
 | 
						|
 | 
						|
 | 
						|
  Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T.
 | 
						|
  Proof.
 | 
						|
    simple induction 1; intros.
 | 
						|
    apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
 | 
						|
      auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
 | 
						|
    simpl; unfold meq, munion; auto using node_is_heap with datatypes.
 | 
						|
    elim (leA_dec a a0); intros.
 | 
						|
    elim (X a0); intros.
 | 
						|
    apply insert_exist with (Tree_Node a T2 T0);
 | 
						|
      auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
 | 
						|
    simpl; apply treesort_twist1; trivial with datatypes.
 | 
						|
    elim (X a); intros T3 HeapT3 ConT3 LeA.
 | 
						|
    apply insert_exist with (Tree_Node a0 T2 T3);
 | 
						|
      auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
 | 
						|
    apply node_is_heap; auto using node_is_heap, nil_is_heap, leA_Tree_Leaf with datatypes.
 | 
						|
    apply low_trans with a; auto with datatypes.
 | 
						|
    apply LeA; auto with datatypes.
 | 
						|
    apply low_trans with a; auto with datatypes.
 | 
						|
    simpl; apply treesort_twist2; trivial with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
 | 
						|
  (** ** Building a heap from a list *)
 | 
						|
 | 
						|
  Inductive build_heap (l:list A) : Type :=
 | 
						|
    heap_exist :
 | 
						|
    forall T:Tree,
 | 
						|
      is_heap T ->
 | 
						|
      meq (list_contents _ eqA_dec l) (contents T) -> build_heap l.
 | 
						|
 | 
						|
  Lemma list_to_heap : forall l:list A, build_heap l.
 | 
						|
  Proof.
 | 
						|
    simple induction l.
 | 
						|
    apply (heap_exist nil Tree_Leaf); auto with datatypes.
 | 
						|
    simpl; unfold meq; exact nil_is_heap.
 | 
						|
    simple induction 1.
 | 
						|
    intros T i m; elim (insert T i a).
 | 
						|
    intros; apply heap_exist with T1; simpl; auto with datatypes.
 | 
						|
    apply meq_trans with (munion (contents T) (singletonBag a)).
 | 
						|
    apply meq_trans with (munion (singletonBag a) (contents T)).
 | 
						|
    apply meq_right; trivial with datatypes.
 | 
						|
    apply munion_comm.
 | 
						|
    apply meq_sym; trivial with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
 | 
						|
  (** ** Building the sorted list *)
 | 
						|
 | 
						|
  Inductive flat_spec (T:Tree) : Type :=
 | 
						|
    flat_exist :
 | 
						|
    forall l:list A,
 | 
						|
      Sorted leA l ->
 | 
						|
      (forall a:A, leA_Tree a T -> HdRel leA a l) ->
 | 
						|
      meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T.
 | 
						|
 | 
						|
  Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T.
 | 
						|
  Proof.
 | 
						|
    intros T h; elim h; intros.
 | 
						|
    apply flat_exist with (nil (A:=A)); auto with datatypes.
 | 
						|
    elim X; intros l1 s1 i1 m1; elim X0; intros l2 s2 i2 m2.
 | 
						|
    elim (merge _ s1 _ s2); intros.
 | 
						|
    apply flat_exist with (a :: l); simpl; auto with datatypes.
 | 
						|
    apply meq_trans with
 | 
						|
      (munion (list_contents _ eqA_dec l1)
 | 
						|
        (munion (list_contents _ eqA_dec l2) (singletonBag a))).
 | 
						|
    apply meq_congr; auto with datatypes.
 | 
						|
    apply meq_trans with
 | 
						|
      (munion (singletonBag a)
 | 
						|
        (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))).
 | 
						|
    apply munion_rotate.
 | 
						|
    apply meq_right; apply meq_sym; trivial with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
 | 
						|
  (** * Specification of treesort *)
 | 
						|
 | 
						|
  Theorem treesort :
 | 
						|
    forall l:list A,
 | 
						|
    {m : list A | Sorted leA m & permutation _ eqA_dec l m}.
 | 
						|
  Proof.
 | 
						|
    intro l; unfold permutation.
 | 
						|
    elim (list_to_heap l).
 | 
						|
    intros.
 | 
						|
    elim (heap_to_list T); auto with datatypes.
 | 
						|
    intros.
 | 
						|
    exists l0; auto with datatypes.
 | 
						|
    apply meq_trans with (contents T); trivial with datatypes.
 | 
						|
  Qed.
 | 
						|
 | 
						|
End defs.
 |