Files
linguist/lib/linguist/classifier.rb
2012-07-23 13:47:15 -05:00

124 lines
3.6 KiB
Ruby

require 'linguist/tokenizer'
module Linguist
# Language bayesian classifier.
class Classifier
# Public: Train classifier that data is a certain language.
#
# db - Hash classifier database object
# language - String language of data
# data - String contents of file
#
# Examples
#
# Classifier.train(db, 'Ruby', "def hello; end")
#
# Returns nothing.
def self.train!(db, language, data)
tokens = Tokenizer.tokenize(data)
db['tokens_total'] ||= 0
db['languages_total'] ||= 0
db['tokens'] ||= {}
db['language_tokens'] ||= {}
db['languages'] ||= {}
tokens.each do |token|
db['tokens'][language] ||= {}
db['tokens'][language][token] ||= 0
db['tokens'][language][token] += 1
db['language_tokens'][language] ||= 0
db['language_tokens'][language] += 1
db['tokens_total'] += 1
end
db['languages'][language] ||= 0
db['languages'][language] += 1
db['languages_total'] += 1
nil
end
# Public: Guess language of data.
#
# db - Hash of classifer tokens database.
# data - Array of tokens or String data to analyze.
# languages - Array of language name Strings to restrict to.
#
# Examples
#
# Classifier.classify(db, "def hello; end")
# # => [ 'Ruby', 0.90], ['Python', 0.2], ... ]
#
# Returns sorted Array of result pairs. Each pair contains the
# String language name and a Float score.
def self.classify(db, tokens, languages = nil)
languages ||= db['languages'].keys
new(db).classify(tokens, languages)
end
# Internal: Initialize a Classifier.
def initialize(db = {})
@tokens_total = db['tokens_total']
@languages_total = db['languages_total']
@tokens = db['tokens']
@language_tokens = db['language_tokens']
@languages = db['languages']
end
# Internal: Guess language of data
#
# data - Array of tokens or String data to analyze.
# languages - Array of language name Strings to restrict to.
#
# Returns sorted Array of result pairs. Each pair contains the
# String language name and a Float score.
def classify(tokens, languages)
return [] if tokens.nil?
tokens = Tokenizer.tokenize(tokens) if tokens.is_a?(String)
scores = {}
languages.each do |language|
scores[language] = tokens_probability(tokens, language) +
language_probability(language)
end
scores.sort { |a, b| b[1] <=> a[1] }.map { |score| [score[0], score[1]] }
end
# Internal: Probably of set of tokens in a language occuring - P(D | C)
#
# tokens - Array of String tokens.
# language - Language to check.
#
# Returns Float between 0.0 and 1.0.
def tokens_probability(tokens, language)
tokens.inject(0.0) do |sum, token|
sum += Math.log(token_probability(token, language))
end
end
# Internal: Probably of token in language occuring - P(F | C)
#
# token - String token.
# language - Language to check.
#
# Returns Float between 0.0 and 1.0.
def token_probability(token, language)
if @tokens[language][token].to_f == 0.0
1 / @tokens_total.to_f
else
@tokens[language][token].to_f / @language_tokens[language].to_f
end
end
# Internal: Probably of a language occuring - P(C)
#
# language - Language to check.
#
# Returns Float between 0.0 and 1.0.
def language_probability(language)
Math.log(@languages[language].to_f / @languages_total.to_f)
end
end
end