mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			356 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| # Mini Manitoba Hydro LP Model
 | |
| # Written for zimpl 3.0.0a
 | |
| # Licensed under the MIT license
 | |
| # Developed for fun using publicly available sources.
 | |
| # This software comes with no guarantees and no claims that it is fit for any purpose.
 | |
| # john howard, 1 Dec 2009
 | |
| 
 | |
| # Inflows:
 | |
| #  CR churchill river
 | |
| #  LT lower nelson tribs
 | |
| #  SL south indian lake
 | |
| #  RR red river
 | |
| #  WR winnipeg river
 | |
| #
 | |
| # Major Storages:
 | |
| #  LW lake winnipeg
 | |
| #  CL cedar lake
 | |
| #
 | |
| # Controlled Channels:
 | |
| #  MF missi falls
 | |
| #  NT notigi
 | |
| #  EC east channel
 | |
| #  WC west channel
 | |
| #
 | |
| # Generation Projects:
 | |
| #  GR grand rapids
 | |
| #  JP jenpeg
 | |
| #  KE kelsey
 | |
| #  LN lower nelson projects
 | |
| 
 | |
| # variables and constraints are named the following way:
 | |
| # Type Subtype 2LetterName Kind Modifier
 | |
| # (v|k) [c] (..) (q|i|o|p|v|e|s|hk|ss|tw|mb|rc|os|ur) [ Start | End | Max | Min | Adj | Fact | Offset ]
 | |
| 
 | |
| param kTS := 662;
 | |
| set sTime := { 1 .. kTS };
 | |
| 
 | |
| # for 5 day averaging requires indices spaced 3 apart
 | |
| set sTime5 := { <t> in sTime with t < (kTS - 1) and t mod 3 == 0 };
 | |
| 
 | |
| param kCMSd2KCFSdFact := 35.315 / 1000;
 | |
| 
 | |
| # column 8 is month
 | |
| param vMONTH[ sTime ] := read "historical.csv" as "8n" skip 1;
 | |
| set sMonth := { 1 .. 12 };
 | |
| 
 | |
| #########################
 | |
| ### Inital Conditions ###
 | |
| 
 | |
| # South Indian Lake
 | |
| param kSLeMin := 840.0;
 | |
| param kSLeMax := 847.9;
 | |
| param kSLssFactor := 283.7;
 | |
| param kSLvMax := (kSLeMax - kSLeMin) * kSLssFactor;
 | |
| 
 | |
| # Grand Rapids Pond (Cedar Lake)
 | |
| param kGReMin := 830.0;
 | |
| param kGReMax := 841.5;
 | |
| param kGRssFactor := 330.9;
 | |
| param kGRvMax := (kGReMax - kGReMin) * kGRssFactor;
 | |
| 
 | |
| # Lake Winnipeg
 | |
| param kLWeMin := 709.0;
 | |
| param kLWeMax := 714.75;
 | |
| param kLWssFactor := 3040.0;
 | |
| param kLWvMax := (kLWeMax - kLWeMin) * kLWssFactor;
 | |
| 
 | |
| # Kelsey Pond
 | |
| param kKEeMin := 0.0;
 | |
| param kKEeMax := 0.1; # as modelled
 | |
| param kKEssFactor := 902.0;
 | |
| param kKEvMax := (kKEeMax - kKEeMin) * kKEssFactor;
 | |
| 
 | |
| # Storage at aggregate Lower Nelson Projects
 | |
| param kLNeMin := 0.0;
 | |
| param kLNeMax := 3.0; # as modelled
 | |
| param kLNssFactor := 200.0;
 | |
| param kLNvMax := (kLNeMax - kLNeMin) * kLNssFactor;
 | |
| param kLNvStart := kLNvMax / 2;
 | |
| 
 | |
| ####################################################################
 | |
| ### Churchill River through South Indian Lake and Notigi Control ###
 | |
| 
 | |
| param kNToMin := 15; # control discharge limits (KCFS)
 | |
| param kNToMax := 35;
 | |
| 
 | |
| param kMFoMin := 0; # control discharge limits (KCFS)
 | |
| param kMFoMax := 10; # as modelled
 | |
| param kMFoFact := 0.001; # adjustments (calibrated for 92-94 peroid)
 | |
| 
 | |
| var vMFo[ sTime ] >= 1 <= kMFoMax; # Missi Falls acts as spill
 | |
| var vNTo[ sTime ] >= kNToMin <= kNToMax;
 | |
| var vSLv[ sTime ] >= 0 <= kSLvMax;
 | |
| 
 | |
| # 2nd column for Churchill River
 | |
| param vCRq[ sTime ] := read "historical.csv" as "2n" skip 1;
 | |
| 
 | |
| param kSLiAdj := 2.3; # adjustments (calibrated for 92-94 peroid)
 | |
| param kSLvStart := kSLvMax / 2;
 | |
| 
 | |
| # refill
 | |
| subto kcSLvEnd: vSLv[ kTS ] >= kSLvStart;
 | |
| 
 | |
| # change-in-storage + outflow == inflow
 | |
| subto vcSLmb:
 | |
| 	forall <t> in sTime do
 | |
| 		if ( t == 1 ) then	vSLv[ 1 ] - kSLvStart + vMFo[ 1 ] +  vNTo[ 1 ]
 | |
| 		else				vSLv[ t ] - vSLv[ t - 1 ] + vMFo[ t ] +  vNTo[ t ]
 | |
| 		end
 | |
| 		== kCMSd2KCFSdFact * vCRq[ t ] + kSLiAdj;
 | |
| 
 | |
| # Notigi within-week outflow shaping
 | |
| param kNTosFact := 0; # as modelled
 | |
| subto vcNTosA: forall<t> in sTime5 do vNTo[ t - 2 ] >= vNTo[ t ] - kNTosFact;
 | |
| subto vcNTosB: forall<t> in sTime5 do vNTo[ t - 2 ] <= vNTo[ t ] + kNTosFact;
 | |
| subto vcNTosC: forall<t> in sTime5 do vNTo[ t - 1 ] >= vNTo[ t ] - kNTosFact;
 | |
| subto vcNTosD: forall<t> in sTime5 do vNTo[ t - 1 ] <= vNTo[ t ] + kNTosFact;
 | |
| subto vcNTosE: forall<t> in sTime5 do vNTo[ t + 1 ] >= vNTo[ t ] - kNTosFact;
 | |
| subto vcNTosF: forall<t> in sTime5 do vNTo[ t + 1 ] <= vNTo[ t ] + kNTosFact;
 | |
| subto vcNTosG: forall<t> in sTime5 do vNTo[ t + 2 ] >= vNTo[ t ] - kNTosFact;
 | |
| subto vcNTosH: forall<t> in sTime5 do vNTo[ t + 2 ] <= vNTo[ t ] + kNTosFact;
 | |
| 
 | |
| ###########################################################
 | |
| ### Sask River into Cedar Lake and through Grand Rapids ###
 | |
| 
 | |
| param kGRoMin := 5; # plant/control discharge limits (KCFS)
 | |
| param kGRoMax := 53;
 | |
| param kGRsMin := 0;
 | |
| param kGRsMax := 40;
 | |
| param kGRpMax := 472; # generation limits (MW)
 | |
| 
 | |
| var vGRv[ sTime ] >= 0 <= kGRvMax;
 | |
| var vGRs[ sTime ] >= kGRsMin <= kGRsMax;
 | |
| var vGRo[ sTime ] >= kGRoMin <= kGRoMax;
 | |
| var vGRp[ sTime ] >= 0 <= kGRpMax;
 | |
| 
 | |
| # 1st column for Sask River
 | |
| param vSKRq[ sTime ] := read "historical.csv" as "1n" skip 1;
 | |
| 
 | |
| param kGRhk := 9.2; # plant HK factors (MW/KCFS)
 | |
| param kGRiAdj := -0.6; # adjustments (calibrated for 92-94 peroid)
 | |
| param kGRvStart := kGRvMax / 2;
 | |
| 
 | |
| # refill
 | |
| subto kcGRvEnd: vGRv[ kTS ] >= kGRvStart;
 | |
| 
 | |
| # change-in-storage + outflow == inflow
 | |
| subto vcGRmb:
 | |
| 	forall <t> in sTime do
 | |
| 		if ( t == 1 ) then	vGRv[ 1 ] - kGRvStart + vGRo[ 1 ] + vGRs[ 1 ]
 | |
| 		else				vGRv[ t ] - vGRv[ t - 1 ] + vGRo[ t ] + vGRs[ t ]
 | |
| 		end
 | |
| 		== kCMSd2KCFSdFact * vSKRq[ t ] + kGRiAdj;
 | |
| 
 | |
| # compute power from discharge
 | |
| subto vcGRp:
 | |
| 	forall <t> in sTime do
 | |
| 		vGRp[ t ] == kGRhk * vGRo[ t ];
 | |
| 
 | |
| # Grand Rapids within-week outflow shaping
 | |
| param kGRosFact := 10; # as modelled
 | |
| subto vcGRosA: forall<t> in sTime5 do vGRo[ t - 2 ] >= vGRo[ t ] - kGRosFact;
 | |
| subto vcGRosB: forall<t> in sTime5 do vGRo[ t - 2 ] <= vGRo[ t ] + kGRosFact;
 | |
| subto vcGRosC: forall<t> in sTime5 do vGRo[ t - 1 ] >= vGRo[ t ] - kGRosFact;
 | |
| subto vcGRosD: forall<t> in sTime5 do vGRo[ t - 1 ] <= vGRo[ t ] + kGRosFact;
 | |
| subto vcGRosE: forall<t> in sTime5 do vGRo[ t + 1 ] >= vGRo[ t ] - kGRosFact;
 | |
| subto vcGRosF: forall<t> in sTime5 do vGRo[ t + 1 ] <= vGRo[ t ] + kGRosFact;
 | |
| subto vcGRosG: forall<t> in sTime5 do vGRo[ t + 2 ] >= vGRo[ t ] - kGRosFact;
 | |
| subto vcGRosH: forall<t> in sTime5 do vGRo[ t + 2 ] <= vGRo[ t ] + kGRosFact;
 | |
| 
 | |
| ##############################################################################
 | |
| ### Lake Winnipeg Storage as operated by JENPEG and effect of Each Channel ###
 | |
| 
 | |
| param kJPoMin := 0; # plant/control discharge limits (KCFS)
 | |
| param kJPoMax := 93;
 | |
| param kJPsMin := 0; # plant/control discharge limits (KCFS)
 | |
| param kJPsMax := 9e9; # as modelled
 | |
| param kJPpMax := 97; # generation limits (MW)
 | |
| 
 | |
| var vLWv[ sTime ] >= 0 <= kLWvMax;
 | |
| var vECo[ sTime ] >= 0; # upper bound determined by rating curve
 | |
| var vJPo[ sTime ] >= kJPoMin <= kJPoMax;
 | |
| var vJPs[ sTime ] >= kJPsMin <= kJPsMax;
 | |
| var vJPp[ sTime ] >= 0 <= kJPpMax;
 | |
| 
 | |
| # 3rd column for Red River and 4th column for Winnipeg River
 | |
| param vRRq[ sTime ] := read "historical.csv" as "3n" skip 1;
 | |
| param vWRq[ sTime ] := read "historical.csv" as "4n" skip 1;
 | |
| 
 | |
| param kLWiAdj := 11.7; # adjustments (calibrated for 92-94 peroid)
 | |
| param kLWvStart := kLWvMax / 2;
 | |
| 
 | |
| param kJPhk := 1; # plant HK factors (MW/KCFS)
 | |
| param kJPoNovMaxFact := 0; # curves
 | |
| param kJPoNovMaxOffset := 0;
 | |
| param kJPtwFact := 0; # TODO
 | |
| param kJPtwOffset := 0;
 | |
| 
 | |
| # refill
 | |
| subto kcLWvEnd: vLWv[ kTS ] >= kLWvStart;
 | |
| 
 | |
| # change-in-storage + outflow == inflow
 | |
| subto vcLWmb:
 | |
| 	forall <t> in sTime do
 | |
| 		if ( t == 1 ) then	vLWv[ 1 ] - kLWvStart + vJPo[ 1 ] + vJPs[ 1 ] + vECo[ 1 ]
 | |
| 		else				vLWv[ t ] - vLWv[ t - 1 ] + vJPo[ t ] + vJPs[ t ] + vECo[ t ]
 | |
| 		end
 | |
| 		== kCMSd2KCFSdFact * vRRq[ t ] + kCMSd2KCFSdFact * vWRq[ t ] + vGRo[ t ] + vGRs[ t ] + kLWiAdj;
 | |
| 
 | |
| # compute power from discharge
 | |
| subto vcJPp:
 | |
| 	forall <t> in sTime do
 | |
| 		vJPp[ t ] == kJPhk * vJPo[ t ];
 | |
| 
 | |
| # West Channel Max Discharge
 | |
| param vWCoMax[ sMonth ] := <1> 8.6440678, <2> 7.79661017, <3> 7.11864407, <4> 6.61016949, <11> 10.3389831, <12> 9.3220339 default 12.5423729;
 | |
| subto vJPoA:
 | |
| 	forall <t,m> in sTime cross sMonth with m == vMONTH[ t ] do
 | |
| 		vJPo[ t ] <= vLWv[ t ] * vWCoMax[ m ] / kLWssFactor;
 | |
| 
 | |
| # East Channel Discharge
 | |
| subto vcECo:
 | |
| 	forall <t> in sTime do
 | |
| 		vECo[ t ] == vLWv[ t ] * 4.67463938 / kLWssFactor; # convert q/ft (from historical 92-94 period data) to q/v
 | |
| 
 | |
| # Jenpeg within-week outflow shaping
 | |
| param kJPosFact := 2; # as modelled
 | |
| subto vcJPosA: forall<t> in sTime5 do vJPo[ t - 2 ] >= vJPo[ t ] - kJPosFact;
 | |
| subto vcJPosB: forall<t> in sTime5 do vJPo[ t - 2 ] <= vJPo[ t ] + kJPosFact;
 | |
| subto vcJPosC: forall<t> in sTime5 do vJPo[ t - 1 ] >= vJPo[ t ] - kJPosFact;
 | |
| subto vcJPosD: forall<t> in sTime5 do vJPo[ t - 1 ] <= vJPo[ t ] + kJPosFact;
 | |
| subto vcJPosE: forall<t> in sTime5 do vJPo[ t + 1 ] >= vJPo[ t ] - kJPosFact;
 | |
| subto vcJPosF: forall<t> in sTime5 do vJPo[ t + 1 ] <= vJPo[ t ] + kJPosFact;
 | |
| subto vcJPosG: forall<t> in sTime5 do vJPo[ t + 2 ] >= vJPo[ t ] - kJPosFact;
 | |
| subto vcJPosH: forall<t> in sTime5 do vJPo[ t + 2 ] <= vJPo[ t ] + kJPosFact;
 | |
| 
 | |
| # Jenpeg intra-week shaping
 | |
| subto vcJPosI: forall<t> in sTime5 without { kTS - 2 } do vJPo[ t + 3 ] >= vJPo[ t ] - kJPosFact * 2;
 | |
| subto vcJPosJ: forall<t> in sTime5 without { kTS - 2 } do vJPo[ t + 3 ] <= vJPo[ t ] + kJPosFact * 2;
 | |
| 
 | |
| #########################
 | |
| ### Kelsey Operations ###
 | |
| 
 | |
| param kKEoMin := 0; # plant/control discharge limits (KCFS)
 | |
| param kKEoMax := 55.4;
 | |
| param kKEsMin := 0; # as modelled
 | |
| param kKEsMax := 9e9; # as modelled
 | |
| param kKEpMax := 211; # generation limits (MW)
 | |
| 
 | |
| var vKEv[ sTime ] >= 0 <= kKEvMax;
 | |
| var vKEs[ sTime ] >= kKEsMin <= kKEsMax;
 | |
| var vKEo[ sTime ] >= kKEoMin <= kKEoMax;
 | |
| var vKEp[ sTime ] >= 0 <= kKEpMax;
 | |
| 
 | |
| # 5th column for Gunisao River
 | |
| param vGUNq[ sTime ] := read "historical.csv" as "5n" skip 1;
 | |
| 
 | |
| param kKEhk := 3.8; # plant HK factors (MW/KCFS)
 | |
| param kKEiFact := 1; # adjustments (calibrated for 92-94 peroid)
 | |
| param kKEtwFact := 0; # curves
 | |
| param kKEtwOffset := 0;
 | |
| param kKEiAdj := 3; # adjustments (calibrated for 92-94 peroid)
 | |
| param kKEvStart := kKEvMax / 2;
 | |
| 
 | |
| # refill
 | |
| subto kcKEvEnd: vKEv[ kTS ] >= kKEvStart;
 | |
| 
 | |
| # change-in-storage + outflow == inflow
 | |
| subto vcKEmb:
 | |
| 	forall <t> in sTime do
 | |
| 		if ( t == 1 ) then	vKEv[ 1 ] - kKEvStart + vKEo[ 1 ] + vKEs[ 1 ]
 | |
| 		else				vKEv[ t ] - vKEv[ t - 1 ] + vKEo[ t ] + vKEs[ t ]
 | |
| 		end
 | |
| 		== kKEiFact * kCMSd2KCFSdFact * vGUNq[ t ] + kKEiAdj + vECo[ t ] +	vJPo[ t ] + vJPs[ t ];
 | |
| 
 | |
| # compute power from discharge
 | |
| subto vcKEp:
 | |
| 	forall <t> in sTime do
 | |
| 		vKEp[ t ] == kKEhk * vKEo[ t ];
 | |
| 
 | |
| #########################################################################
 | |
| ### Lower Nelson Operations with inflows from Upper Nelson and Notigi ###
 | |
| 
 | |
| param kLNoMin := 0; # plant/control discharge limits (KCFS)
 | |
| param kLNoMax := 165.7;
 | |
| param kLNsMin := 0; # plant/control discharge limits (KCFS)
 | |
| param kLNsMax := 150; # kpill limits (KCFS)
 | |
| param kLNpMax := 3583; # generation limits (MW)
 | |
| 
 | |
| var vLNv[ sTime ] >= 0 <= kLNvMax;
 | |
| var vLNs[ sTime ] >= kLNsMin <= kLNsMax;
 | |
| var vLNo[ sTime ] >= kLNoMin <= kLNoMax;
 | |
| var vLNp[ sTime ] >= 0 <= kLNpMax;
 | |
| 
 | |
| # 6th column for Lower Nelson Tribs
 | |
| param vLTq[ sTime ] := read "historical.csv" as "6n" skip 1;
 | |
| 
 | |
| param kLNhk := 21.7; # plant HK factors (MW/KCFS)
 | |
| param kLNiAdj := 5; # adjustments (calibrated for 92-94 peroid)
 | |
| param kLTiFact := 3; # adjustments (calibrated for 92-94 peroid)
 | |
| 
 | |
| # refill
 | |
| subto kcLNvEnd: vLNv[ kTS ] >= kLNvStart;
 | |
| 
 | |
| # Routed discharges from Notigi to Lower Nelson
 | |
| var vNTor[ sTime ] >= 0;
 | |
| set sUIR := { 1, 2, 3, 4 };
 | |
| param kNTur[ sUIR ] := <1> 0.0, <2> 0.05, <3> 0.80, <4> 0.15; # as modelled
 | |
| subto vcNTorA:
 | |
| 	forall <t> in sTime without { 1, 2, 3 } do
 | |
| 		vNTor[ t ] == vNTo[ t - 0 ] * kNTur[ 1 ] + vNTo[ t - 1 ] * kNTur[ 2 ] + vNTo[ t - 2 ] * kNTur[ 3 ] + vNTo[ t - 3 ] * kNTur[ 4 ];
 | |
| 
 | |
| # change-in-storage + outflow == inflow
 | |
| subto vcLNmb:
 | |
| 	forall <t> in sTime do
 | |
| 		if ( t == 1 ) then	vLNv[ 1 ] - kLNvStart + vLNo[ 1 ] + vLNs[ 1 ]
 | |
| 		else				vLNv[ t ] - vLNv[ t - 1 ] + vLNo[ t ] + vLNs[ t ]
 | |
| 		end
 | |
| 		== kLTiFact * kCMSd2KCFSdFact * vLTq[ t ] + kLNiAdj + vNTor[ t ] + vKEo[ t ] + vKEs[ t ];
 | |
| 
 | |
| # compute power from discharge
 | |
| subto vcLNp:
 | |
| 	forall <t> in sTime do
 | |
| 		vLNp[ t ] == kLNhk * vLNo[ t ];
 | |
| 
 | |
| # Lowern Nelson within-week outflow shaping
 | |
| param kLNosFact := 10; # as modelled
 | |
| subto vcLNosA: forall<t> in sTime5 do vLNo[ t - 2 ] >= vLNo[ t ] - kLNosFact;
 | |
| subto vcLNosB: forall<t> in sTime5 do vLNo[ t - 2 ] <= vLNo[ t ] + kLNosFact;
 | |
| subto vcLNosC: forall<t> in sTime5 do vLNo[ t - 1 ] >= vLNo[ t ] - kLNosFact;
 | |
| subto vcLNosD: forall<t> in sTime5 do vLNo[ t - 1 ] <= vLNo[ t ] + kLNosFact;
 | |
| subto vcLNosE: forall<t> in sTime5 do vLNo[ t + 1 ] >= vLNo[ t ] - kLNosFact;
 | |
| subto vcLNosF: forall<t> in sTime5 do vLNo[ t + 1 ] <= vLNo[ t ] + kLNosFact;
 | |
| subto vcLNosG: forall<t> in sTime5 do vLNo[ t + 2 ] >= vLNo[ t ] - kLNosFact;
 | |
| subto vcLNosH: forall<t> in sTime5 do vLNo[ t + 2 ] <= vLNo[ t ] + kLNosFact;
 | |
| 
 | |
| # Lowern Nelson inter-week outflow shaping
 | |
| subto vcLNosI: forall<t> in sTime5 without { kTS - 2 } do vLNo[ t + 3 ] >= vLNo[ t ] - kLNosFact * 2;
 | |
| subto vcLNosJ: forall<t> in sTime5 without { kTS - 2 } do vLNo[ t + 3 ] <= vLNo[ t ] + kLNosFact * 2;
 | |
| 
 | |
| ########################################################
 | |
| 
 | |
| # 7th column for Load
 | |
| param vLOAD[ sTime ] := read "historical.csv" as "7n" skip 1;
 | |
| var sLOAD >= 0;
 | |
| subto vcLOAD:
 | |
| 	forall <t> in sTime do
 | |
| 		vGRp[ t ] + vJPp[ t ] + vKEp[ t ] + vLNp[ t ] >= vLOAD[ t ];
 | |
| 
 | |
| minimize kSPILL:
 | |
| 	sum <t> in sTime do vMFo[ t ] +
 | |
| 	sum <t> in sTime do vGRs[ t ] +
 | |
| 	sum <t> in sTime do vJPs[ t ] +
 | |
| 	sum <t> in sTime do vKEs[ t ] +
 | |
| 	sum <t> in sTime do vLNs[ t ];
 |