Files
linguist/lib/linguist/classifier.rb
2012-06-19 16:33:29 -05:00

152 lines
4.1 KiB
Ruby

require 'linguist/tokenizer'
module Linguist
# Language bayesian classifier.
class Classifier
# Internal: Path to persisted classifier db.
PATH = File.expand_path('../classifier.yml', __FILE__)
# Public: Check if persisted db exists on disk.
#
# Returns Boolean.
def self.exist?
File.exist?(PATH)
end
# Public: Get persisted Classifier instance.
#
# Returns Classifier.
def self.instance
@instance ||= YAML.load_file(PATH)
end
# Public: Initialize a Classifier.
def initialize
@tokens_total = 0
@languages_total = 0
@tokens = Hash.new { |h, k| h[k] = Hash.new(0) }
@language_tokens = Hash.new(0)
@languages = Hash.new(0)
end
# Public: Compare Classifier objects.
#
# other - Classifier object to compare to.
#
# Returns Boolean.
def eql?(other)
# Lazy fast check counts only
other.is_a?(self.class) &&
@tokens_total == other.instance_variable_get(:@tokens_total) &&
@languages_total == other.instance_variable_get(:@languages_total)
end
alias_method :==, :eql?
# Public: Train classifier that data is a certain language.
#
# language - Language of data
# data - String contents of file
#
# Examples
#
# train(Language['Ruby'], "def hello; end")
#
# Returns nothing.
def train(language, data)
language = language.name
tokens = Tokenizer.new(data).tokens
tokens.each do |token|
@tokens[language][token] += 1
@language_tokens[language] += 1
@tokens_total += 1
end
@languages[language] += 1
@languages_total += 1
nil
end
# Public: Prune infrequent tokens.
#
# Returns receiver Classifier instance.
def gc
@tokens.each do |language, tokens|
if @language_tokens[language] > 20
tokens.each do |name, count|
if count == 1
@tokens[language].delete(name)
@language_tokens[language] -= 1
@tokens_total -= 1
end
end
end
end
self
end
# Public: Guess language of data.
#
# data - Array of tokens or String data to analyze.
# languages - Array of Languages to restrict to.
#
# Examples
#
# classify("def hello; end")
# # => [ [Language['Ruby'], 0.90], [Language['Python'], 0.2], ... ]
#
# Returns sorted Array of result pairs. Each pair contains the
# Language and a Float score.
def classify(tokens, languages = @languages.keys)
tokens = Tokenizer.new(tokens).tokens if tokens.is_a?(String)
scores = {}
languages.each do |language|
language_name = language.is_a?(Language) ? language.name : language
scores[language_name] = tokens_probability(tokens, language_name) +
language_probability(language_name)
end
scores.sort { |a, b| b[1] <=> a[1] }.map { |score| [Language[score[0]], score[1]] }
end
# Internal: Probably of set of tokens in a language occuring - P(D | C)
#
# tokens - Array of String tokens.
# language - Language to check.
#
# Returns Float between 0.0 and 1.0.
def tokens_probability(tokens, language)
tokens.inject(0.0) do |sum, token|
sum += Math.log(token_probability(token, language))
end
end
# Internal: Probably of token in language occuring - P(F | C)
#
# token - String token.
# language - Language to check.
#
# Returns Float between 0.0 and 1.0.
def token_probability(token, language)
if @tokens[language][token].to_f == 0.0
1 / @tokens_total.to_f
else
@tokens[language][token].to_f / @language_tokens[language].to_f
end
end
# Internal: Probably of a language occuring - P(C)
#
# language - Language to check.
#
# Returns Float between 0.0 and 1.0.
def language_probability(language)
Math.log(@languages[language].to_f / @languages_total.to_f)
end
end
# Eager load instance
Classifier.instance if Classifier.exist?
end