mirror of
https://github.com/KevinMidboe/linguist.git
synced 2025-10-29 17:50:22 +00:00
152 lines
4.1 KiB
Ruby
152 lines
4.1 KiB
Ruby
require 'linguist/tokenizer'
|
|
|
|
module Linguist
|
|
# Language bayesian classifier.
|
|
class Classifier
|
|
# Internal: Path to persisted classifier db.
|
|
PATH = File.expand_path('../classifier.yml', __FILE__)
|
|
|
|
# Public: Check if persisted db exists on disk.
|
|
#
|
|
# Returns Boolean.
|
|
def self.exist?
|
|
File.exist?(PATH)
|
|
end
|
|
|
|
# Public: Get persisted Classifier instance.
|
|
#
|
|
# Returns Classifier.
|
|
def self.instance
|
|
@instance ||= YAML.load_file(PATH)
|
|
end
|
|
|
|
# Public: Initialize a Classifier.
|
|
def initialize
|
|
@tokens_total = 0
|
|
@languages_total = 0
|
|
@tokens = Hash.new { |h, k| h[k] = Hash.new(0) }
|
|
@language_tokens = Hash.new(0)
|
|
@languages = Hash.new(0)
|
|
end
|
|
|
|
# Public: Compare Classifier objects.
|
|
#
|
|
# other - Classifier object to compare to.
|
|
#
|
|
# Returns Boolean.
|
|
def eql?(other)
|
|
# Lazy fast check counts only
|
|
other.is_a?(self.class) &&
|
|
@tokens_total == other.instance_variable_get(:@tokens_total) &&
|
|
@languages_total == other.instance_variable_get(:@languages_total)
|
|
end
|
|
alias_method :==, :eql?
|
|
|
|
# Public: Train classifier that data is a certain language.
|
|
#
|
|
# language - Language of data
|
|
# data - String contents of file
|
|
#
|
|
# Examples
|
|
#
|
|
# train(Language['Ruby'], "def hello; end")
|
|
#
|
|
# Returns nothing.
|
|
def train(language, data)
|
|
language = language.name
|
|
tokens = Tokenizer.new(data).tokens
|
|
|
|
tokens.each do |token|
|
|
@tokens[language][token] += 1
|
|
@language_tokens[language] += 1
|
|
@tokens_total += 1
|
|
end
|
|
@languages[language] += 1
|
|
@languages_total += 1
|
|
|
|
nil
|
|
end
|
|
|
|
# Public: Prune infrequent tokens.
|
|
#
|
|
# Returns receiver Classifier instance.
|
|
def gc
|
|
@tokens.each do |language, tokens|
|
|
if @language_tokens[language] > 20
|
|
tokens.each do |name, count|
|
|
if count == 1
|
|
@tokens[language].delete(name)
|
|
@language_tokens[language] -= 1
|
|
@tokens_total -= 1
|
|
end
|
|
end
|
|
end
|
|
end
|
|
self
|
|
end
|
|
|
|
# Public: Guess language of data.
|
|
#
|
|
# data - Array of tokens or String data to analyze.
|
|
# languages - Array of Languages to restrict to.
|
|
#
|
|
# Examples
|
|
#
|
|
# classify("def hello; end")
|
|
# # => [ [Language['Ruby'], 0.90], [Language['Python'], 0.2], ... ]
|
|
#
|
|
# Returns sorted Array of result pairs. Each pair contains the
|
|
# Language and a Float score.
|
|
def classify(tokens, languages = @languages.keys)
|
|
tokens = Tokenizer.new(tokens).tokens if tokens.is_a?(String)
|
|
|
|
scores = {}
|
|
languages.each do |language|
|
|
language_name = language.is_a?(Language) ? language.name : language
|
|
scores[language_name] = tokens_probability(tokens, language_name) +
|
|
language_probability(language_name)
|
|
end
|
|
|
|
scores.sort { |a, b| b[1] <=> a[1] }.map { |score| [Language[score[0]], score[1]] }
|
|
end
|
|
|
|
# Internal: Probably of set of tokens in a language occuring - P(D | C)
|
|
#
|
|
# tokens - Array of String tokens.
|
|
# language - Language to check.
|
|
#
|
|
# Returns Float between 0.0 and 1.0.
|
|
def tokens_probability(tokens, language)
|
|
tokens.inject(0.0) do |sum, token|
|
|
sum += Math.log(token_probability(token, language))
|
|
end
|
|
end
|
|
|
|
# Internal: Probably of token in language occuring - P(F | C)
|
|
#
|
|
# token - String token.
|
|
# language - Language to check.
|
|
#
|
|
# Returns Float between 0.0 and 1.0.
|
|
def token_probability(token, language)
|
|
if @tokens[language][token].to_f == 0.0
|
|
1 / @tokens_total.to_f
|
|
else
|
|
@tokens[language][token].to_f / @language_tokens[language].to_f
|
|
end
|
|
end
|
|
|
|
# Internal: Probably of a language occuring - P(C)
|
|
#
|
|
# language - Language to check.
|
|
#
|
|
# Returns Float between 0.0 and 1.0.
|
|
def language_probability(language)
|
|
Math.log(@languages[language].to_f / @languages_total.to_f)
|
|
end
|
|
end
|
|
|
|
# Eager load instance
|
|
Classifier.instance if Classifier.exist?
|
|
end
|