mirror of
				https://github.com/KevinMidboe/linguist.git
				synced 2025-10-29 17:50:22 +00:00 
			
		
		
		
	All of these code samples currently are mis-identified in my repositories. I'm donating them to the cause.
		
			
				
	
	
		
			178 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
| tic
 | ||
| clear all
 | ||
| %% Elements for grid definition
 | ||
| n=100;
 | ||
| 
 | ||
| %% Dimensionless integrating time
 | ||
| T=2;
 | ||
| 
 | ||
| %% Choice of the mass parameter
 | ||
| mu=0.1;
 | ||
| 
 | ||
| %% Computation of Lagrangian Points
 | ||
| [xl1,yl1,xl2,yl2,xl3,yl3,xl4,yl4,xl5,yl5] = Lagr(mu);
 | ||
| 
 | ||
| %% Computation of initial total energy
 | ||
| E_L1=-Omega(xl1,yl1,mu);
 | ||
| C_L1=-2*E_L1; % C_L1 = 3.6869532299 from Szebehely
 | ||
| E=E_L1+0.03715; % Offset as in figure 2.2 "LCS in the ER3BP"
 | ||
| 
 | ||
| %% Initial conditions range
 | ||
| x_0_min=-0.8;
 | ||
| x_0_max=-0.2;
 | ||
| 
 | ||
| vx_0_min=-2;
 | ||
| vx_0_max=2;
 | ||
| 
 | ||
| y_0=0;
 | ||
| 
 | ||
| % Grid initializing
 | ||
| [x_0,vx_0]=ndgrid(linspace(x_0_min,x_0_max,n),linspace(vx_0_min,vx_0_max,n));
 | ||
| vy_0=sqrt(2*E+2.*Omega(x_0,y_0,mu)-vx_0.^2);
 | ||
| % Kinetic energy computation
 | ||
| E_cin=E+Omega(x_0,y_0,mu);
 | ||
| 
 | ||
| % Inizializing
 | ||
| x_T=zeros(n,n);
 | ||
| y_T=zeros(n,n);
 | ||
| vx_T=zeros(n,n);
 | ||
| vy_T=zeros(n,n);
 | ||
| filtro=ones(n,n);
 | ||
| E_T=zeros(n,n);
 | ||
| delta_E=zeros(n,n);
 | ||
| a=zeros(n,n); % matrix of numbers of integration steps for each integration
 | ||
| np=0; % number of integrated points
 | ||
| 
 | ||
| fprintf('integro con n = %i\n',n)
 | ||
| 
 | ||
| %% Energy tolerance setting
 | ||
| energy_tol=0.1;
 | ||
| 
 | ||
| %% Setting the options for the integrator
 | ||
| RelTol=1e-12;AbsTol=1e-12; % From Short
 | ||
| % RelTol=1e-13;AbsTol=1e-22; % From JD James Mireles
 | ||
| % RelTol=3e-14;AbsTol=1e-16; % HIGH accuracy from Ross
 | ||
| options=odeset('AbsTol',AbsTol,'RelTol',RelTol);
 | ||
| %% Parallel integration of equations of motion
 | ||
| h=waitbar(0,'','Name','Integration in progress, please wait!');
 | ||
| S=zeros(n,n);
 | ||
| r1=zeros(n,n);
 | ||
| r2=zeros(n,n);
 | ||
| g=zeros(n,n);
 | ||
| for i=1:n
 | ||
|     waitbar(i/n,h,sprintf('Computing i=%i',i));
 | ||
| 	parfor j=1:n
 | ||
|         r1(i,j)=sqrt((x_0(i,j)+mu).^2+y_0.^2);
 | ||
| 		r2(i,j)=sqrt((x_0(i,j)-1+mu).^2+y_0.^2);
 | ||
| 		g(i,j)=((1-mu)./(r1(i,j).^3)+mu./(r2(i,j).^3));
 | ||
| 		if E_cin(i,j)>0 && isreal(vy_0(i,j)) % Check for real velocity and positive Kinetic energy
 | ||
|             S(i,j)=g(i,j)*T;
 | ||
|             [s,Y]=ode45(@f_reg,[0 S(i,j)],[x_0(i,j); y_0; vx_0(i,j); vy_0(i,j)],options,mu);
 | ||
| 			a(i,j)=length(Y);
 | ||
| %             if s(a(i,j)) < 2
 | ||
| %                 filtro(i,j)=3;
 | ||
| %             end
 | ||
| 			% Saving solutions
 | ||
| 			x_T(i,j)=Y(a(i,j),1);
 | ||
| 			vx_T(i,j)=Y(a(i,j),3);
 | ||
| 			y_T(i,j)=Y(a(i,j),2);
 | ||
| 			vy_T(i,j)=Y(a(i,j),4);
 | ||
| 
 | ||
| 			% Computation of final total energy and difference with
 | ||
| 			% initial one
 | ||
| 			E_T(i,j)=Energy(x_T(i,j),y_T(i,j),vx_T(i,j),vy_T(i,j),mu);
 | ||
|             delta_E(i,j)=abs(E_T(i,j)-E);
 | ||
|             if  delta_E(i,j) > energy_tol; % Check of total energy conservation
 | ||
|                 fprintf(' Ouch! Wrong Integration: i,j=(%i,%i)\n E_T=%.2f \n delta_E=%f\n\n',i,j,E_T(i,j),delta_E(i,j));
 | ||
|                 filtro(i,j)=2; % Saving position of the point
 | ||
|             end
 | ||
|             np=np+1;
 | ||
|         else
 | ||
| 			filtro(i,j)=0; % 1 = interesting point; 0 = non-sense point; 2 = bad integration point		
 | ||
| 		end
 | ||
| 	end
 | ||
| end
 | ||
| close(h);
 | ||
| t_integrazione=toc;
 | ||
| %%
 | ||
| filtro_1=filtro;
 | ||
| for i=2:n-1
 | ||
|     for j=2:n-1
 | ||
|         if filtro(i,j)==2 || filtro (i,j)==3
 | ||
|             filtro_1(i,j)=2;
 | ||
| 			filtro_1(i+1,j)=2;
 | ||
|             filtro_1(i-1,j)=2;
 | ||
|             filtro_1(i,j+1)=2;
 | ||
|             filtro_1(i,j-1)=2;
 | ||
|         end
 | ||
|     end
 | ||
| end
 | ||
| 
 | ||
| fprintf('integato con n = %i\n',n)
 | ||
| fprintf('integato con energy_tol = %f\n',energy_tol)
 | ||
| fprintf('numero punti totali	\t%i\n',n^2)
 | ||
| fprintf('numero punti integrati	\t%i\n',np)
 | ||
| fprintf('tempo per integrare	\t%.2f s\n',t_integrazione)
 | ||
| 
 | ||
| %% FTLE Computation
 | ||
| fprintf('adesso calcolo ftle\n')
 | ||
| tic
 | ||
| dphi=zeros(2,2);
 | ||
| ftle=zeros(n-2,n-2);
 | ||
| ftle_norm=zeros(n-2,n-2);
 | ||
| 
 | ||
| ds_x=(x_0_max-x_0_min)/(n-1);
 | ||
| ds_vx=(vx_0_max-vx_0_min)/(n-1);
 | ||
| 
 | ||
| for i=2:n-1
 | ||
| 	for j=2:n-1
 | ||
| 		if filtro_1(i,j) && ... % Check for interesting point
 | ||
| 				filtro_1(i,j-1) && ...
 | ||
| 				filtro_1(i,j+1) && ...
 | ||
| 				filtro_1(i-1,j) && ...
 | ||
| 				filtro_1(i+1,j)
 | ||
| 			% La direzione dello spostamento la decide il denominatore
 | ||
| 			
 | ||
| 			% TODO spiegarsi teoricamente come mai la matrice pu<70>
 | ||
| 			% essere ridotta a 2x2
 | ||
| 			dphi(1,1)=(x_T(i+1,j)-x_T(i-1,j))/(2*ds_x); %(x_0(i-1,j)-x_0(i+1,j));
 | ||
| 			
 | ||
| 			dphi(1,2)=(x_T(i,j+1)-x_T(i,j-1))/(2*ds_vx); %(vx_0(i,j-1)-vx_0(i,j+1));
 | ||
| 	
 | ||
| 			dphi(2,1)=(vx_T(i+1,j)-vx_T(i-1,j))/(2*ds_x); %(x_0(i-1,j)-x_0(i+1,j));
 | ||
|             
 | ||
| 			dphi(2,2)=(vx_T(i,j+1)-vx_T(i,j-1))/(2*ds_vx); %(vx_0(i,j-1)-vx_0(i,j+1));
 | ||
|     
 | ||
| 			if filtro_1(i,j)==2 % Manual setting to visualize bad integrated points 
 | ||
| 				ftle(i-1,j-1)=0;
 | ||
| 			else
 | ||
| 				ftle(i-1,j-1)=(1/abs(T))*log(max(sqrt(abs(eig(dphi*dphi')))));
 | ||
|                 ftle_norm(i-1,j-1)=(1/abs(T))*log(norm(dphi));
 | ||
| 			end
 | ||
| 		end
 | ||
| 	end
 | ||
| end
 | ||
| 
 | ||
| %% Plotting results
 | ||
| % figure
 | ||
| % plot(t,Y)
 | ||
| % figure
 | ||
| % plot(Y(:,1),Y(:,2))
 | ||
| % figure
 | ||
| 
 | ||
| xx=linspace(x_0_min,x_0_max,n);
 | ||
| vvx=linspace(vx_0_min,vx_0_max,n);
 | ||
| [x,vx]=ndgrid(xx(2:n-1),vvx(2:n-1));
 | ||
| figure
 | ||
| pcolor(x,vx,ftle)
 | ||
| shading flat
 | ||
| 
 | ||
| t_ftle=toc;
 | ||
| fprintf('tempo per integrare      \t%.2f s\n',t_integrazione)
 | ||
| fprintf('tempo per calcolare ftle \t%.2f s\n',t_ftle)
 | ||
| 
 | ||
| % ora=fstringf %TODO
 | ||
| % save(['var_' num2str(n) '_' num2str(clock(4)])
 | ||
| 
 | ||
| nome=['var_xvx_', 'ode00', '_n',num2str(n)];
 | ||
| save(nome) |