Files
linguist/samples/Chapel/nbody.chpl
Thomas Van Doren a6ccce7b76 Add Chapel parallel programming language.
Includes several example programs from source distribution.
2014-07-03 15:31:08 -07:00

148 lines
4.1 KiB
Chapel

/* The Computer Language Benchmarks Game
http://benchmarksgame.alioth.debian.org/
contributed by Albert Sidelnik
modified by Brad Chamberlain
*/
//
// The number of timesteps to simulate; may be set via the command-line
//
config const n = 10000;
//
// Constants representing pi, the solar mass, and the number of days per year
//
const pi = 3.141592653589793,
solarMass = 4 * pi**2,
daysPerYear = 365.24;
//
// a record representing one of the bodies in the solar system
//
record body {
var pos: 3*real;
var v: 3*real;
var mass: real; // does not change after it is set up
}
//
// the array of bodies that we'll be simulating
//
var bodies = [/* sun */
new body(mass = solarMass),
/* jupiter */
new body(pos = ( 4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01),
v = ( 1.66007664274403694e-03 * daysPerYear,
7.69901118419740425e-03 * daysPerYear,
-6.90460016972063023e-05 * daysPerYear),
mass = 9.54791938424326609e-04 * solarMass),
/* saturn */
new body(pos = ( 8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01),
v = (-2.76742510726862411e-03 * daysPerYear,
4.99852801234917238e-03 * daysPerYear,
2.30417297573763929e-05 * daysPerYear),
mass = 2.85885980666130812e-04 * solarMass),
/* uranus */
new body(pos = ( 1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01),
v = ( 2.96460137564761618e-03 * daysPerYear,
2.37847173959480950e-03 * daysPerYear,
-2.96589568540237556e-05 * daysPerYear),
mass = 4.36624404335156298e-05 * solarMass),
/* neptune */
new body(pos = ( 1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-01),
v = ( 2.68067772490389322e-03 * daysPerYear,
1.62824170038242295e-03 * daysPerYear,
-9.51592254519715870e-05 * daysPerYear),
mass = 5.15138902046611451e-05 * solarMass)
];
//
// the number of bodies to be simulated
//
const numbodies = bodies.numElements;
//
// The computation involves initializing the sun's velocity,
// writing the initial energy, advancing the system through 'n'
// timesteps, and writing the final energy.
//
proc main() {
initSun();
writef("%.9r\n", energy());
for 1..n do
advance(0.01);
writef("%.9r\n", energy());
}
//
// compute the sun's initial velocity
//
proc initSun() {
const p = + reduce (for b in bodies do (b.v * b.mass));
bodies[1].v = -p / solarMass;
}
//
// advance the positions and velocities of all the bodies
//
proc advance(dt) {
for i in 1..numbodies {
for j in i+1..numbodies {
updateVelocities(bodies[i], bodies[j]);
inline proc updateVelocities(ref b1, ref b2) {
const dpos = b1.pos - b2.pos,
mag = dt / sqrt(sumOfSquares(dpos))**3;
b1.v -= dpos * b2.mass * mag;
b2.v += dpos * b1.mass * mag;
}
}
}
for b in bodies do
b.pos += dt * b.v;
}
//
// compute the energy of the bodies
//
proc energy() {
var e = 0.0;
for i in 1..numbodies {
const b1 = bodies[i];
e += 0.5 * b1.mass * sumOfSquares(b1.v);
for j in i+1..numbodies {
const b2 = bodies[j];
e -= (b1.mass * b2.mass) / sqrt(sumOfSquares(b1.pos - b2.pos));
}
}
return e;
}
//
// a helper routine to compute the sum of squares of a 3-tuple's components
//
inline proc sumOfSquares(x)
return x(1)**2 + x(2)**2 + x(3)**2;