Files
linguist/samples/Cuda/scalarProd_kernel.cuh
2013-11-05 10:57:12 +01:00

52 lines
2.0 KiB
Plaintext

__global__ void scalarProdGPU(
float *d_C,
float *d_A,
float *d_B,
int vectorN,
int elementN
)
{
//Accumulators cache
__shared__ float accumResult[ACCUM_N];
////////////////////////////////////////////////////////////////////////////
// Cycle through every pair of vectors,
// taking into account that vector counts can be different
// from total number of thread blocks
////////////////////////////////////////////////////////////////////////////
for (int vec = blockIdx.x; vec < vectorN; vec += gridDim.x)
{
int vectorBase = IMUL(elementN, vec);
int vectorEnd = vectorBase + elementN;
////////////////////////////////////////////////////////////////////////
// Each accumulator cycles through vectors with
// stride equal to number of total number of accumulators ACCUM_N
// At this stage ACCUM_N is only preferred be a multiple of warp size
// to meet memory coalescing alignment constraints.
////////////////////////////////////////////////////////////////////////
for (int iAccum = threadIdx.x; iAccum < ACCUM_N; iAccum += blockDim.x)
{
float sum = 0;
for (int pos = vectorBase + iAccum; pos < vectorEnd; pos += ACCUM_N)
sum += d_A[pos] * d_B[pos];
accumResult[iAccum] = sum;
}
////////////////////////////////////////////////////////////////////////
// Perform tree-like reduction of accumulators' results.
// ACCUM_N has to be power of two at this stage
////////////////////////////////////////////////////////////////////////
for (int stride = ACCUM_N / 2; stride > 0; stride >>= 1)
{
__syncthreads();
for (int iAccum = threadIdx.x; iAccum < stride; iAccum += blockDim.x)
accumResult[iAccum] += accumResult[stride + iAccum];
}
if (threadIdx.x == 0) d_C[vec] = accumResult[0];
}
}