Files
linguist/samples/Julia/stockcorr.jl
2012-07-23 15:52:49 -05:00

38 lines
1.4 KiB
Julia

## Test case from Issue #445
#STOCKCORR - The original, unoptimised code that simulates two correlated assets
function stockcorr()
## Correlated asset information
CurrentPrice = [78. 102.] # Initial Prices of the two stocks
Corr = [1. 0.4; 0.4 1.] # Correlation Matrix
T = 500 # Number of days to simulate = 2years = 500days
n = 100000 # Number of simulations
dt = 1/250 # Time step (1year = 250days)
Div=[0.01 0.01] # Dividend
Vol=[0.2 0.3] # Volatility
## Market Information
r = 0.03 # Risk-free rate
## Define storages
SimulPriceA = zeros(T,n) # Simulated Price of Asset A
SimulPriceA[1,:] = CurrentPrice[1]
SimulPriceB = zeros(T,n) # Simulated Price of Asset B
SimulPriceB[1,:] = CurrentPrice[2]
## Generating the paths of stock prices by Geometric Brownian Motion
UpperTriangle=chol(Corr) # UpperTriangle Matrix by Cholesky decomposition
for i = 1:n
Wiener = randn(T-1,2)
CorrWiener = Wiener*UpperTriangle
for j = 2:T
SimulPriceA[j,i] = SimulPriceA[j-1,i]*exp((r-Div[1]-Vol[1]^2/2)*dt+Vol[1]*sqrt(dt)*CorrWiener[j-1,1])
SimulPriceB[j,i] = SimulPriceB[j-1,i]*exp((r-Div[2]-Vol[2]^2/2)*dt+Vol[2]*sqrt(dt)*CorrWiener[j-1,2])
end
end
return (SimulPriceA, SimulPriceB)
end